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He has sideburns.

This woman has blond hair and pale skin.

This young man has bangs and black hair. He is smiling.

This woman has arched eyebrows and wavy hair. She is wearing lipstick.

This woman has arched eyebrows and straight hair. She is wearing lipstick.

This woman has bangs and black hair. She is smiling.

Figure 1. 3D face generations of our TG-3DFace. Given input texts, TG-3DFace can generate high-quality 3D faces with multi-view-
consistent rendered face images and detailed 3D face meshes. Notably, fine-grained facial attributes are well controlled by the input texts.

Abstract

Generating 3D faces from textual descriptions has a mul-
titude of applications, such as gaming, movie, and robotics.
Recent progresses have demonstrated the success of uncon-
ditional 3D face generation and text-to-3D shape genera-
tion. However, due to the limited text-3D face data pairs,
text-driven 3D face generation remains an open problem.
In this paper, we propose a text-guided 3D faces genera-
tion method, refer as TG-3DFace, for generating realistic
3D faces using text guidance. Specifically, we adopt an
unconditional 3D face generation framework and equip it
with text conditions, which learns the text-guided 3D face
generation with only text-2D face data. On top of that,

∗ Equal contribution
† Corresponding author

we propose two text-to-face cross-modal alignment tech-
niques, including the global contrastive learning and the
fine-grained alignment module, to facilitate high semantic
consistency between generated 3D faces and input texts.
Besides, we present directional classifier guidance during
the inference process, which encourages creativity for out-
of-domain generations. Compared to the existing methods,
TG-3DFace creates more realistic and aesthetically pleas-
ing 3D faces, boosting 9% multi-view consistency (MVIC)
over Latent3D. The rendered face images generated by TG-
3DFace achieve higher FID and CLIP score than text-to-2D
face/image generation models, demonstrating our superior-
ity in generating realistic and semantic-consistent textures.
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1. Introduction
3D Face generation is a critical technology with diverse

applications in various industry scenarios, e.g., movies and
games. Recent works have demonstrated the success of 3D
face generation with image reconstruction [22, 23] and un-
conditional generation methods [5, 2, 49, 31, 4]. Despite the
photo-realistic 3D face results, the generation process can-
not be guided by texts, which has the potential to increase
creativity and efficiency. Therefore it is highly demanded to
take a step toward text-guided 3D face generation.

Existing methods have been explored to generate 3D
shapes and human bodies based on given texts [6, 28, 43,
16, 30], which enables the controllable generation under
text guidance. However, it is not feasible to directly apply
those generation methods for 3D face generation, owing to
two fact:1) The lack of large-scale text-3D face data pairs
for model training. 2) The richness of 3D facial attributes
that contains much more geometrical details than common
3D objects. Though recent works [3, 1] make attempts to
semantically manipulate the shape or texture of 3D faces
to boost 3D face generation results, they still lead to re-
sults with poor realism and aesthetic appeal such as the loss
of hair, which limits the practical applications. Based on
the above observation, it requires a rethink of a fine-grained
text-driven 3D face generation framework.

To address the above issues, we present a novel fine-
grained text-driven 3D face generation framework, named
TG-3DFace, to generate high-quality 3D faces that are se-
mantically consistent with the input texts. Specifically, TG-
3DFace contains a text-conditioned 3D generation network
and two text-to-face cross-modal alignment techniques.
Firstly, we adopt the architecture design of EG3D [4],
which is an unconditional 3D shape generative adversarial
network, and learn 3D shape generation from single-view
2D images. We inject the texture condition into the gen-
erator and discriminator networks to enable 3D face gener-
ation under the guidance of input texts. Such text-guided
3D face generative model can thus conduct training on text-
2D face images instead of text-3D face shapes, enabling to
transfer the semantic consistency between texts and 2D face
images to guide 3D face generation. Besides, considering
the richness of fine-grained facial attributes that increases
the difficulty of aligning 3D face and input texts, we design
two text-to-face cross-modal alignment techniques, includ-
ing global text-to-face contrastive learning and fine-grained
text-to-face alignment module. The text-to-face contrastive
learning aligns the features of the rendered face images with
their paired text and maximizes the distance between the un-
paired ones in the embedding space, which facilitates global
semantic consistency. The fine-grained text-to-face align-
ment is designed to align the part-level facial features of
the rendered face image to the part-level text features, to
achieve fine-grained semantic alignment between the texts

and the generated 3D faces.
Additionally, we utilize the directional vector in the

CLIP embedding space, calculated between the input text
and the training style prompt text, as an optimization direc-
tion to fine-tune the generator for several steps during infer-
ence. In this way, our TG-3DFace can synthesize novel-
style face that is never seen during training, such as “a
Pixar-style man”.

We evaluate our model on the Multi-Modal CelebA-HQ
[53], CelebAText-HQ [48] and FFHQ-Text [61] datasets.
The experimental results and ablation analysis demonstrate
that our method can generate high-quality and semantic-
consistent 3D faces given input texts. Besides, our method
can be applied to downstream applications including single-
view 3D face reconstruction and text-guided 3D face ma-
nipulation. In brief, our contributions can be summarized
as follows:

• We propose a novel 3D face generation framework,
TG-3DFace, which equips the unconditional 3D face
generation framework with text conditions to generate
3D faces with the guidance of input texts.

• We propose two text-to-face cross-modal alignment
techniques, including global contrastive learning and
fine-grained text-to-face alignment mechanism, which
boosts the semantic consistency of generations.

• Quantitative and qualitative comparisons confirm that
3D faces generated by our TG-3DFace are more real-
istic and achieve better semantic consistency with the
given textual description.

2. Related Work
2.1. 3D Face Generation

3DFaceGAN [31] applies the generative adversarial net-
works (GANs [13]) to represent, generate and translate 3D
facial shapes meshes. pi-GAN [5] presents a SIREN net-
work as the generator to represent the implicit radiance
field, which conditioned on an input noise. The authors also
propose a mapping network with FiLM conditioning and a
progressive growing discriminator to achieve high quality
results. AvatarMe [22, 23] explores to reconstruct photo-
realistic 3D faces from a single “in-the-wild” face image
based on the state-of-the-art 3D texture and shape recon-
struction method. RigNeRF [2] uses a 3DMM-guided de-
formable neural radiance field to generate a human portrait
trained on a short portrait video. FENeRF [49] proposes to
condition a NeRF generator on decoupled shape and tex-
ture latent code to learn the semantic and texture represen-
tations simultaneously, which helps to generate more accu-
rate 3D geometry. EG3D [4] proposes a tri-plane-based hy-
brid explicit-implicit 3D representation with a high compu-
tational efficiency. They also introduce a dual-discriminator



training strategy to enforce the view-consistency of the fi-
nal output. In contrast to these works, our method explores
text-conditioned 3D face generation with other mechanisms
to enforce the semantic consistency between the given text
and generated 3D face so that the generated 3D faces can be
flexibly controlled by the inputted texts.

2.2. Text-to-Image Generation

Given a text description, text-to-image generation aims
to generate an image to visualize the context described by
the text. There are numbers of works for text-to-image gen-
eration along with the generative models, including gen-
erative adversarial networks (GANs [13]) [39, 58, 59, 54,
26, 9, 62, 50, 55], auto-regressive model [51, 38, 7, 11,
8, 60, 25, 57] and diffusion model [15, 33, 37, 42, 41].
There are also works focusing on facial image generation.
Text2FaceGAN [32] explores to apply the state-of-the-art
GAN at the time on text-to-face generation. Stap et al.
[46] proposes textStyleGAN to generate facial image from
text by conditioning the StyleGAN [20] model on text and
then manipulate the generated image in the disentangled la-
tent space to make the result semantically more close to the
text. SEA-T2F [48] presents a Semantic Embedding and
Attention network for multi-caption text-to-face generation.
TTF-HD [52], TediGAN [53] and AnyFace [47] propose
to align/manipulate the input latent vector of a pretrained
StyleGAN model guided by input text to achieve text-to-
face generation/manipulation. Recently, PixelFace [34] and
OpenFaceAN [35] are proposed to achieve higher perfor-
mance than StyleGAN-based methods. However, these
works only generate single view images and do not consider
3D face generation, while our method outputs high-quality
3D face shapes and multi-view consistent images.

2.3. Text-to-3D Shape Generation

Text2shape [6] describes a text-conditioned Wasserstein
GAN for generating voxelized 3D objects. CLIP-forge [43]
trains a normalizing flow network to generate 3D shape em-
bedding conditioned on CLIP image embedding and uses
it to generate 3D shapes conditioned on CLIP text embed-
dings. Liu et al. [28] uses an implicit occupancy repre-
sentation and proposes a cyclic loss to enforce the consis-
tency between the generated 3D shape and the input text.
ShapeCrafter [12] explores recursive text-conditioned 3D
shape generation that continuously evolve as phrases are
added. However, these works cannot generate realistic 3D
objects with high fidelity. Text2mesh [30], CLIP-mesh [21]
and Dreamfields [18] use different 3D representations and
optimize them with CLIP semantic loss coupled with some
regularization terms. DreamFusion [36] instead uses a pre-
trained 2D text-to-image diffusion model and introduces a
novel loss based on probability density distillation to opti-
mize the 3D model. Some works [16, 17, 3] explore 3D

avatar generation and animation from text. However, these
works cannot generate high-quality 3D faces as 3D faces
contain more details than other 3D shapes (like chair, sofa)
and human bodies. On the contrary, our method can gen-
erate high-quality 3D faces with rich facial attributes de-
scribed by the given text.

3. The Proposed Method
Our goal is to generate realistic 3D faces from text, fac-

ing the main challenges of limited text-3D face data and
the requirement for semantic alignment between the gener-
ated faces and input texts. To address these challenges, we
propose TG-3DFace, as shown in Figure 2, which learns to
generate 3D faces in condition of input text by using only
text-2D face images. In this framework, global text-to-face
contrastive learning and fine-grained text-to-face alignment
are proposed to improve the semantic consistency between
the generated 3D faces and the input texts.

3.1. Text-conditional 3D Face Generation

As illustrated in Figure 2, the text embedding ē ∈ R512

of input text s is extracted by the CLIP text encoder ET .
The sentence embedding ē, camera parameters p ∈ R25

(including the intrinsic and extrinsic matrices), and a ran-
dom noise z ∈ R512 are concatenated and projected into a
latent code by the mapping network. This latent code then
modulates the convolution kernels of the StyleGAN2 gen-
erator, producing a tri-plane representation of the 3D face
from which 3D positions can be queried. The features of
sampled 3D positions are aggregated and interpreted as a
scalar density and a 32-channel feature by the decoder, both
of which are then processed by a neural volume renderer
[29] to project the 3D feature volume into a 2D face image
x̂. We define the mapping network, the StyleGAN2 genera-
tor, the decoder and the neural volume rendering as our text-
conditional generator Gθ : ē → x̂. Subsequently, the text-
conditional discriminator Dϕ distinguishes real face images
x and the rendered fake images x̂ based on the input text
embedding ē and camera parameters p.

3.2. Text-to-Face Cross-Modal Alignment

3.2.1 Global Text-to-Face Contrastive Learning

In order to generate 3D faces aligned with the input text,
we propose global text-to-face contrastive learning to en-
courage the embeddings (ē, ī) of paired text and face image
close to each other, and unpaired ones (ē, ī

′
) away from

each other, where embeddings of text and images are ex-
tracted by the CLIP text encoder ET and CLIP image en-
coder EI respectively. Global text-to-face contrastive learn-
ing encourages the generator to synthesize 3D faces that are
semantically consistent with input text. In particular, for
each mini-batch, the image x̂i generated from the input text
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Figure 2. The framework of TG-3DFace. The text-conditional generator synthesizes 3D faces from text embedding ē extracted by a pre-
trained CLIP encoder, then renders them with camera parameters p. The text-conditional discriminator distinguishes real face images and
the rendered fake face images and is trained adversarially against the generator. The text-to-face contrastive learning module provides a
global text-face matching loss for the generator, enhancing the semantic consistency between the input texts and generated 3D shapes. The
fine-grained text-to-face matching module helps the generator capture fine-grained semantic content of the input texts more accurately.

si is treated as a positive sample of si, while the other gen-
erated images x̂j are regarded as negative samples. Positive
and negative texts to the image x̂i can be similarly defined.

Formally, the loss function for global text-to-face con-
trastive learning in a mini-batch is defined as:

LCL =
1

2n

n∑
i=1

[L(x̂i) + L(si)], (1)

where the loss for input text si is defined as follows:

L(si) = − 1

n
log

exp(ET (si) · EI(x̂i)/τ)∑n
j=1 exp(ET (si) · EI(x̂j)/τ)

, (2)

where ET and EI are the CLIP text encoder and image en-
coder, τ is a temperature parameter, n denotes the batch
size, and the loss function L(x̂i) of contrastive learning for
the generated image x̂i can be similarly defined.

3.2.2 Fine-grained Text-to-Face Alignment

Until now, it is still challenging for the model to capture
fine-grained facial attributes in the input text, as there is no
fine-grained supervisions during training. To this end, we
explore fine-grained text-to-face alignment training signals
for the text-conditional generator.

In fact, facial attributes are mainly displayed across sev-
eral specific image areas. For example, the image area of
the eyes corresponds to the facial attributes like “blue eyes”,

which means that different face regions have different con-
tributions to an attribute. Inspired by this, we propose to ex-
tract part-level image features, and align them with features
of a set of pre-defined part-level texts about facial attributes,
such as “Black hair”, “Mustache”, etc. As the fine-grained
text-to-face alignment module Cφ shown in Figure 3, the
rendered face image is first segmented into several parts by
an off-the-shelf face parsing algorithm [56]. Then, features
of these part-level images are extracted by a feature extrac-
tor δ, and a similarity matrix is established between these
part-level image features and the fine-grained attribute text
description. The part-level image features are then aggre-
gated according to this similarity matrix, as the feature of
the input face image. The aggregated feature is computed
based on the feature similarity between the fine-grained text
and part-level images, thereby focusing on the semantic in-
formation of the fine-grained attributes.

Formally, the part-level image features F = {fi}Mi=1 ∈
RM×d of an image are extracted by a part-level feature
extractor δ : xp → R512, where xp is a part-level face
image in size of 512 × 512 × 3. Part-level text features
H = {hj}Nj=1 ∈ RN×d of pre-defined part-level texts,
such as “black hair” and “mustache” are extracted using
the CLIP text encoder ET , further projected to a matrix
K = lK(H) ∈ RN×d via learned linear projections lK .
The score maps are computed as:

W = softmax(
FKT

√
d

). (3)
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The softmax function is applied to the rows of the scaled
similarity matrix, where d is the dimension of part-level im-
age feature and text feature. The aggregated image feature
F

′ ∈ RN×d is then computed as F
′
= WTF .

Intuitively, the aggregated image feature F
′

is a
weighted average of the part-level image features F , where
the weights are the score map W , which are correlated to
the similarity between F and K. The i-th row of W is a
normalized similarity vector between the part-level image
feature fi and all the part-level token features K, such that
more similar part-level image features have a higher con-
tribution to the combination, whereas less similar part-level
image features make little impact. To further enhance the
expressiveness of the fine-grained cross-modal alignment,
multi-head attention [51] is utilized in parallel before pass-
ing the results through a learned classifier γ for the final
prediction of facial attributes of the input image.

Given the one-hot ground truth label y ∈ Rk, the facial
attribute classification loss can be calculated using the bi-
nary cross-entropy loss:

LFG = −
k∑

i=1

y(i) log(γ(i)(F
′
)), (4)

where y(i) is the i-th ground truth label and γ(i)(F
′
) is the

i-th predicted label of input image x respectively. k is the
total number of selected attributes.

3.3. Training Loss

During training, the pretrained CLIP text encoder, im-
age encoder, and the face parsing module are frozen, The
rest modules in the framework are trained end-to-end. The
text-conditional generator Gθ, text-conditional discrimina-
tor Dϕ and fine-grained text-to-face alignment module Cφ

play the following minimax game:

min
θ,φ

max
ϕ

1

n

n∑
i=1

{logDϕ(1−Gθ(zi, si, pi)) + logDϕ(xi)

+ [LFG(Gθ(zi, si, pi), yi) + LFG(xi, yi)]}
− ∥∇Dϕ(xi)∥2

+ LCL, (5)

where zi, si, pi, xi and yi are the i-th random noise, in-
put text, camera parameter, real face image and attribute
label in the mini-batch sampled from the training dataset,
n is the batch size. Specifically, we employ the non-
saturating GAN loss function [13], where G is trained to
maximize logDϕ(Gθ(zi, si, pi)) rather than logDϕ(1 −
Gθ(zi, si, pi)) to provide stronger gradients early in train-
ing. The models are trained alternatively from scratch: Dϕ

and Cφ are firstly trained by one step, and then Gθ is trained
for one step, until converges.

3.4. Directional Classifier Guidance

Generally, it is difficult to generate 3D faces from the
out-of-domain input text such as “He is a werewolf wear-
ing glasses” since that all our training data are photographs.
Inspired by classifier guidance in diffusion models [33, 37,
41], that use an auxiliary discriminative model to guide the
sampling process of a pretrained generative model, we uti-
lize the CLIP text encoder and image encoder to design the
directional classifier guidance to guide the inference pro-
cess so as to further improve the text-conditional generator
towards generating out-of-domain 3D faces.

Given a target text like “He is a werewolf wearing
glasses” denoted as s⋆, our generator G generates a 3D face
firstly. However, it may be a man wearing glasses as the
generator G has never seen werewolf. To perform direc-
tional classifier guidance, we clone a copy Gfrozen of G



and freeze it afterwards, and then use Gfrozen and G to
generate a 3D face matching the target text s⋆. The direc-
tional vector VIi between the rendered face images from G
and Gfrozen in CLIP space can be obtained with the CLIP
image encoder as

VIi = EI(G(z, s⋆, pi))− EI(Gfrozen(z, s
⋆, pi)). (6)

Similarly, we use a text prompt “Photo” to describe style of
training data, noted as so, and then the directional vector VT

between s⋆ and so also can be obtained in CLIP space by
the CLIP text encoder as

VT = ET (s
⋆)− ET (so). (7)

We demand VIi to be parallel to VT , so that minimize the
following directional classifier guidance loss:

LDCG =
1

M

M∑
i=1

[1− VIi · VT

|VIi ||VT |
], (8)

where M is the number of randomly sampled camera
poses in each optimization step. Parameters of the text-
conditional generator are updated by the directional classi-
fier guidance loss to synthesize 3D faces matching text s⋆.
In experiments, we find that the changes in s⋆ can result in
3D faces with different styles.

4. Experiments

4.1. Datasets

We conduct experiments on Multi-Modal CelebA-HQ
[53] and CelebAText-HQ [48] datasets to verify the effec-
tiveness of our method for text-guided 3D face generation.
The Multi-Modal CelebA-HQ dataset has 30,000 face im-
ages, and each one has 10 text descriptions synthesized
by facial attributes. The CelebAText-HQ dataset contains
15,010 face images, in which each image has 10 manu-
ally annotated text descriptions. All the face images come
from the CelebA-HQ [24] dataset, in which each face image
has an attribute annotation related to 40 categories, such as
“Black hair”, “Pale skin”, “Young”. These attributions are
used as pre-defined part-level tokens in our method. In or-
der to learn better 3D face shapes, we added FFHQ [20], a
real-world human face dataset without corresponding text
description, to the training set. Off-the-shelf facial pose
estimators [10, 44] are used to extract approximate cam-
era parameters for each face image in the training set. The
FFHQ-Text dataset [61] is a face image dataset with large-
scale facial attributes. Since texts in the FFHQ-Text dataset
are quite different from those in the Multi-Modal CelebA-
HQ dataset, it can be used for cross-dataset experiment.

4.2. Metrics

We quantitatively evaluate the generated 3D faces in
terms of the quality of their rendered 2D face images, in-
cluding (1) the multi-view identity consistency (MVIC) by
calculating the mean Arcface [45] cosine similarity scores
between pairs of face images of the same synthesized 3D
face rendered from random camera poses; (2) the reality and
diversity of the rendered 2D face images, evaluated by the
Frechet Inception Distance (FID) [14]; and (3) the semantic
consistency between the input texts and rendered 2D face
images, measured by CLIP score. The metric is defined as:

CLIPscore(x, s) = max(cosine(EI(x), ET (s))× 100, 0),

which corresponds to the cosine similarity between CLIP
embeddings for an image x and a text s respectively in CLIP
embedding space, EI and ET are CLIP image encoder and
CLIP text encoder respectively. Additional evaluation de-
tails are introduced in the supplemental materials.

4.3. Main Results

In this section, we first qualitatively verify the text-
guided 3D face generation ability of our proposed TG-
3DFace. Figure 1 shows the input texts and correspond-
ing generated 3D faces, including rendered multi-view face
images and 3D face meshes. As we can see, the multi-
view face images are consistent with each other and the 3D
meshes are detailed, indicating that TG-3DFace is able to
generate high-quality 3D faces. Besides, fine-grained facial
attributes including “eyebrows”, “lipstick”, “hair”, etc., can
be well controlled by the input texts, indicating the text-to-
face cross-modal alignment capability of TG-3DFace.

4.4. Comparison on Text-to-3D Face Generation

We benchmark the text-guided 3D face generation abil-
ity of our proposed TG-3DFace by comparing against a
text-to-3D face generation baseline method called Latent3D
[3]. Table 1 shows the MVIC scores of Latent3D and
TG-3DFace. As we can see, TG-3DFace achieves higher
MVIC scores on both datasets, which demonstrates that 3D
faces generated by TG-3DFace have better multi-view con-
sistency. As shown in Figure 4, TG-3DFace can generate
higher-quality 3D faces with detailed topology (e.g., hairs),

Methods Multi-Modal
CelebA-HQ

CelebAText-
HQ

Latent3D [3] 0.87 0.85
TG-3DFace 0.95 0.93

Table 1. Quantitative comparisons on multi-view identity consis-
tency (MVIC) against Latent3D [3] on the Multi-Modal CelebA-
HQ and CelebAText-HQ datasets. MVIC is the higher the better.
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Figure 5. Diverse generation results of TG-3DFace. In each row,
we show input text and generated results of different input noises.

as well as realistic facial texture. The generated 3D faces of
TG-3DFace with different input texts are also more diverse
compared with Latent3D. To further verify the diversity of
our results, we show results from the same input text but
different input noises in Figure 5. As we can see, given the
same input text, TG-3DFace can generate diverse 3D faces
according to different input noises.

4.5. Comparison on Texture Quality

In this section, we further benchmark the texture quality
of generated 3D faces achieved by TG-3DFace and previ-
ous start-of-the-art text-to-2D face/image generation meth-
ods, including SEA-T2F [48], ControlGAN [26], AttnGAN
[54] and AnyFace [47]. As shown in Table 2 and Table
3, our method achieves better FID and CLIP score on both
datasets, indicating the texture of generated 3D faces of TG-
3DFace are of higher fidelity and semantic consistency.

4.6. User Study

We also employ a user study on the CelebAText-HQ
dataset as an additional evaluation. 28 images generated
from texts by different methods are randomly selected and
38 graduate students are invited to rank these images with

Methods FID ↓ CLIP Score ↑
SEA-T2F [48] 93.85 20.81
ControlGAN [26] 74.59 21.38
AttnGAN [54] 51.69 21.52
AnyFace [47] 50.56 -
TG-3DFace 39.02 22.72

Table 2. Quantitative comparisons of different methods on the
Multi-Modal CelebA-HQ dataset, where ↓ means the lower the
better while ↑ means the opposite.

Methods FID ↓ CLIP Score ↑
SEA-T2F [48] 125.32 19.06
ControlGAN [26] 78.01 20.70
AttnGAN [54] 70.59 20.17
AnyFace [47] 56.75 -
TG-3DFace 52.21 21.03

Table 3. Quantitative comparisons of different methods on the
CelebAText-HQ dataset, where ↓ means the lower the better while
↑ means the opposite.

Methods Avg-rank on
Fidelity ↓

Avg-rank on
Semantic Consistency ↓

SEA-T2F [48] 3.19 4.00
ControlGAN [26] 2.92 2.61
AttnGAN [54] 2.15 2.11
TG-3DFace 1.02 1.28

Table 4. User study. Users show a significant preference for our
TG-3DFace over SEA-T2F, ControlGAN and AttnGAN for fi-
delity and semantic consistency.

Methods Avg-rank on
Fidelity ↓

Avg-rank on
Semantic Consistency ↓

SEA-T2F [48] 3.49 3.18
ControlGAN [26] 3.37 3.16
AttnGAN [54] 2.13 2.36
TG-3DFace 1.00 1.30

Table 5. User study with out-of-distribution texts. Users show a
significant preference for our TG-3DFace over SEA-T2F, Control-
GAN and AttnGAN for fidelity and semantic consistency.

the questions “Are these images real” and “Are these im-
ages achieve the attributes specified in the text” (rank 1 is
the best). Ranking results for each method are averaged,
defined as Avg-rank on Fidelity and Avg-rank on Semantic
Consistency. As shown in Table 4, our model achieves bet-
ter results, indicating our generated textures of 3D faces are
of higher fidelity and semantic consistency with input texts.

To validate our TG-3DFace with out-of-distribution
texts, we train our model and compared models on the
Multi-Modal CelebA-HQ dataset, and test them using texts



Input Reconstruction

Figure 6. Single-view 3D reconstruction results of TG-3DFace.

Methods FID ↓ CLIP Score ↑
w/o LCL 52.95 21.50
w/o LFG 50.11 21.86
w/o L∗

FG 52.57 22.03
Full model 39.02 22.72

Table 6. Ablation study on Multi-Modal CelebA-HQ dataset,
where ↓ means the lower the better, ↑ means the opposite.

Methods FID ↓ CLIP Score ↑
w/o LCL 57.51 20.61
w/o LFG 60.57 19.50
w/o L∗

FG 56.75 20.73
Full model 52.21 21.03

Table 7. Ablation study on CelebAText-HQ dataset, where ↓ means
the lower the better and ↑ means the higher the better.

in the FFHQ-Text dataset. We randomly select 28 images
generated from texts by different models respectively and
invite 30 graduate students to rank them. As listed in Ta-
ble 5, our model achieves better results on user study with
out-of-distribution texts.

4.7. Ablation Studies

To analyze the effectiveness of the proposed global text-
to-face contrastive learning and fine-grained cross-modal
alignment, we conduct ablation studies by removing one
of them each time and report the quantitative results on
the Multi-Modal CelebA-HQ dataset and CelebaTextHQ
datasets. As the results listed in Table 6 and Table 7, omit-
ting LCL and LFG adversely affect the FID and CLIP score.
Specifically, the FID increases from 39.02 to 52.95/50.11,
and the CLIP score decreases from 22.72 to 21.50/21.86 on
the Multi-Modal-celebA-HQ dataset. This highlights the
importance of these two modules in improving the quality
of generated 3D faces and enhancing the semantic matching
between the generated 3D faces and the input texts.

To further emphasize the significance of the fine-grained
text-to-face alignment module, we retain its network and
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Figure 7. Comparison on text-guided 3D face manipulation.

loss while removing the operations of face parsing and
part-level feature aggregation, and extract features from the
full image to predict its attributes instead, denoted as “w/o
L∗
FG”. The comparison between “w/o L∗

FG” and the full
model demonstrates the importance of our carefully de-
signed fine-grained cross-modal alignment, ruling out the
possibility of it being replaced by an attribute classifier on
the full image.

4.8. Applications

Single-view 3D Face Reconstruction. Figure 6 illus-
trates the utilization of our learned latent space for single-
view 3D reconstruction via pivotal tuning inversion (PTI)
[40]. The 3D prior over text-guided 3D face generation en-
ables impressive single-view geometry recovery. Building
on this ability, we can further edit the reconstruction result
using directional classifier guidance, which may serve as a
promising area for future research.

Text-guided 3D Face Manipulation. The proposed
directional classifier guidance enables our method to cre-
ate many interesting results in diverse styles based on our
learned text-guided 3D face generative model. Given a text
that differs significantly from the texts in training data dur-
ing inference time, the proposed directional classifier guid-
ance can be used to optimize the generator for a few minutes



to synthesize 3D faces with styles outside the training set.
Figure 7 compares 3D face editing results achieved by dif-
ferent text-driven 3D texture manipulation methods, includ-
ing Latent3D [3], Clip-Matrix [19], FlameTex1, Text2Mesh
[30], ClipFace [1] and TG-3DFace. As we can see, Clip-
Matrix, FlameTex, and Text2Mesh cannot get the correct
texture according to the text. Latent3D cannot capture
finer-grained localization of manipulations, such as chang-
ing the color of eyes, and it cannot generate textures in
various styles, such as Pixar. Although ClipFace can gen-
erate the corresponding texture of 3D faces according to
the input texts, they can not handle accessories like head-
wear, or eyewear, due to the use of the FLAME [27] model,
which does not capture accessories or complex hair. Our ap-
proach yields consistently high-quality textures for various
prompts, in comparison to these baselines. In general, our
generator enables high-quality editing, and the style will be
more obvious in texture.

4.9. Parameters and Runtime

Table 8 compares parameters and inference time running
on a single NVIDIA Tesla V100 GPU between our TG-
3DFace and several existing text-guided 3D face or object
generation methods. We can see that when the model pa-
rameters of TG-3DFace are not large, the inference time to
generate a 3D face is only 0.05 seconds, and the manipula-
tion time is only 1.5 minutes.

Methods Total
Params

Trainable
Params

Inference
Time

Latent3D [3] 661 M - 6 min
Clip-Matrix [19] 154 M 2.6 M 30 min
Text2Mesh [30] 151 M 659 K 25 min
TG-3DFace (generation) 240 M 76 M 0.05 s
TG-3DFace (manipulation) 190 M 39 M 1.5 min

Table 8. Comparison of total parameters, trainable paramateres,
and inference time per sample.

5. Implementation Details
We train our model with a batch size of 32, and use a

discriminator learning rate of 0.002 and a generator learn-
ing rate of 0.0025. Similar to EG3D [4], we blur images
when they enter the discriminator, gradually reducing the
amount of blur of the first 200 K images, and we train
our model without style mixing regularization. According
to EG3D, low neural rendering resolutions (e.g., 64) en-
able faster speed of training and inference, while higher
neural rendering resolutions (e.g., 128) facilitate more de-
tailed shapes and more view-consistent 3D renderings. Fol-
lowing EG3D, the neural rendering resolution is gradually

1 https://github.com/HavenFeng/photometric optimization

increased from 642 to 1282 over 1 million images during
training. The total training time of our model on 8 NVIDIA
Tesla A100 GPUs is 48 hours. When the directional classi-
fier guidance is used in the inference phase, the generator is
optimized for 100 iterations at a learning rate of 0.002.

6. Conclusion
In this paper, we propose a novel method named TG-

3DFace for generating high-quality 3D faces with multi-
view consistent and photo-realistic rendered face images.
Specifically, a text-conditional 3D face GAN enables the
model can be trained from text-face images rather than the
supervision of 3D faces. Global text-to-face contrastive
learning and fine-grained text-to-face alignment modules
are proposed to improve the semantic consistency between
the generated 3D faces and input texts. Furthermore, we
extend our model to synthesize out-of-domain 3D faces by
introducing directional classifier guidance. Extensive ex-
perimental studies manifest the effectiveness of our method.

7. Limitation and Future Work
First, our method cannot infer identity information from

textual descriptions, such as “Toms Bond”. Second, the 3D
faces generated by our method are sometimes asymmetry,
such as wearing only one earring. Third, the race of the gen-
erated faces is similar to that of training data. We will con-
sider improving the quality of generated shape, and will ex-
pand the races of training images so that the resulting faces
are not limited to a single race.
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