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Abstract

This paper proposes a novel lip reading framework, es-
pecially for low-resource languages, which has not been
well addressed in the previous literature. Since low-
resource languages do not have enough video-text paired
data to train the model to have sufficient power to model
lip movements and language, it is regarded as challenging
to develop lip reading models for low-resource languages.
In order to mitigate the challenge, we try to learn general
speech knowledge, the ability to model lip movements, from
a high-resource language through the prediction of speech
units. It is known that different languages partially share
common phonemes, thus general speech knowledge learned
from one language can be extended to other languages.
Then, we try to learn language-specific knowledge, the
ability to model language, by proposing Language-specific
Memory-augmented Decoder (LMDecoder). LMDecoder
saves language-specific audio features into memory banks
and can be trained on audio-text paired data which is more
easily accessible than video-text paired data. Therefore,
with LMDecoder, we can transform the input speech units
into language-specific audio features and translate them
into texts by utilizing the learned rich language knowl-
edge. Finally, by combining general speech knowledge and
language-specific knowledge, we can efficiently develop lip
reading models even for low-resource languages. Through
extensive experiments using five languages, English, Span-
ish, French, Italian, and Portuguese, the effectiveness of the
proposed method is evaluated.

1. Introduction

It is a fascinating ability to understand the conversation
by only looking at the speaker’s lip movements without
listening [1]. If this were possible, we could easily hold
conversations in crowded places, such as at concerts, and
even with people who have trouble speaking up. With the
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great advance of deep learning, a technology called lip read-
ing has made it possible to accurately infer what a speaker
is saying without having to approach the speaker’s voice.
In recent years, the performance of lip reading has signif-
icantly improved from 60.1% Word Error Rate (WER) to
26.9% WER [2, 3] in LRS3 [4], a popular English bench-
mark database.

Such rapid progress could be made with large-scale
audio-visual datasets [4–8], improved neural network ar-
chitecture [9–15], enhanced multi-modal learning strate-
gies [3, 16–22], and carefully designed training methods
[23–25]. Among these progresses, self-supervised learning
methods using audio-visual data show remarkable advance-
ment in both audio-visual speech recognition and lip read-
ing. Recently, AV-HuBERT [3] which pre-trains the trans-
former encoder with multi-modal inputs (i.e., audio and
video) through masked prediction in a self-supervised man-
ner, outperforms other previous lip reading methods once it
is finetuned on lip reading tasks. Despite these advances,
lip reading technologies have been developed primarily in
English rather than in other languages. One main reason
for this is the lack of enough labeled video-text paired data
in other languages. For example, the popular lip reading
dataset in English, LRS3 [4], consists of about 443 hours of
video, while the available video-text paired dataset in Ital-
ian [26] is only about 47 hours, which is not enough for the
model to learn the characteristics of both lip movements and
language. Therefore, to build lip reading models for other
languages rather than English, a new method considering
the insufficient training data should be developed.

In this paper, we focus on developing a novel lip reading
method for low-resource languages which has not been well
explored in previous literature. Specifically, we propose a
novel training method for low-resource language lip reading
that learns 1) general speech knowledge and 2) language-
specific knowledge, and combines the two learned knowl-
edge. First, general speech knowledge refers to the knowl-
edge of modelling short-term speech that can be regarded
as speech units (i.e., phonemes or visemes). Since differ-
ent languages partially share common phonemes [27–29],
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learning to model accurate speech units from high-resource
language can be beneficial in modelling speech representa-
tions for low-resource language. To this end, we train the
visual encoder to predict speech units from input lip move-
ments through masked prediction using a high-resource
language, English. Second, language-specific knowledge
refers to the knowledge of translating learned speech rep-
resentations into text, which can be regarded as the lan-
guage modelling ability of a model. Since learning a lan-
guage requires large-scale data [30–32], it might be insuf-
ficient to only utilize the video-text paired data of low-
resource language. To mitigate the problem, we propose
a Language-specific Memory-augmented Decoder (LMDe-
coder) which can be trained from audio-text paired data in
the target language and be applied for lip reading. The input
of LMDecoder is set to speech units derived from audio, and
Language-specific Memory (LM) saves language-specific
audio features into memory banks, which are for trans-
forming speech units into language-specific speech repre-
sentations. Finally, after learning the two knowledge, we
cascade the two modules (i.e., visual encoder and LMDe-
coder) and we can employ both the accurate lip move-
ments modelling ability (i.e., general speech knowledge) of
the visual encoder and the rich language modelling ability
(i.e., language-specific knowledge) of LMDecoder, for low-
resource language lip reading.

The effectiveness of the proposed method is evaluated
with five languages, English (EN), Spanish (ES), French
(FR), Italian (IT), and Portuguese (PT). Especially, English
is utilized as a high-resource language so employed to learn
general speech knowledge, and other languages are utilized
as low-resource languages thus LMDecoder is trained on
each low-resource language data. Through comprehensive
experiments, we show the proposed method is effective in
developing lip reading models not only for low-resource
languages but also effective for the high-resource language,
by achieving state-of-the-art performance on English data.
The contributions of this paper can be summarized as:

• To the best of our knowledge, this is the first attempt
to analyze the effectiveness of different pre-training
methods, self-supervised pre-training of encoders, su-
pervised pre-training in a high-resource language, and
pre-training of decoders with audio-text data, in build-
ing low-resource lip reading model.

• We propose a novel method of learning and combin-
ing general speech knowledge and language-specific
knowledge to effectively develop lip reading models
for low-resource languages.

• We conduct comprehensive experiments with five lan-
guages, English, Spanish, French, Italian, and Por-
tuguese, and we show the effectiveness of the proposed

method in developing lip reading models for different
nationalities, even with a small-scale dataset.

2. Related Work
2.1. Lip reading

Lip reading [33–38] aims to predict the speech content
by watching talking face videos only. Along with the ad-
vancement of Deep Learning and speech processing tech-
nology, lip reading technology achieves significant develop-
ment. Early work [5] proposed a lip reading model consist-
ing of CNN to predict word from word-level English data.
[10, 11] proposed an architecture composed of ResNet [39]
and RNN [40,41] to improve the word-level lip reading per-
formances. [13,42] proposed to use optical flow information
with RGB information by encoding them with two-stream
networks. [43] changed the RNN-based back-end architec-
ture with temporal convolutions and achieved significant
performance improvement in word-level lip reading. Be-
sides the word-level lip reading, [9] proposed an end-to-end
sentence-level lip reading model that utilizes Connectionist
Temporal Classification (CTC) [44]. Sentence-level large-
scale audio-visual datasets, LRS2 [7] and LRS3 [4], are
proposed to boost lip reading research. By adopting trans-
former [45], powerful architecture for modelling sequence
data, [12] significantly improved the sentence-level lip read-
ing performances. Recently, transformer-variants archi-
tectures [15, 46–48] are shown promising lip reading and
audio-visual speech recognition performances. There are
other works that tried to enhance lip reading performances
by focusing on developing training strategies. [17,21,24,49]
employed knowledge distillation [50] to bring knowledge of
the superior model into the student model. [19,20,22,51,52]
proposed to use memory networks to use the auditory
knowledge in lip reading without audio inputs. [53–55] han-
dled the speaker-dependency issue and proposed speaker-
adaptive lip reading models. Recently, pre-training neural
networks using self-supervised training methods showed re-
markable lip reading performances [3, 16, 18].

However, most of the previous research is focused on de-
veloping lip reading models in principal languages, such as
English and Mandarin. Lip reading for different languages,
especially low-resource languages, has not been well ex-
plored [25]. In this paper, we propose a new method for
low-resource languages that contain a small-scale visual-
text paired dataset. By learning and combining general
speech knowledge and language-specific knowledge, the
proposed method can effectively learn how to model the lips
and the target language, even for the low-resource language.

2.2. Pre-training strategies
Recently, in diverse areas, the pre-trained model shows

remarkable performances when they are applied to differ-
ent downstream tasks [30, 56–62]. It is also shown remark-
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Figure 1. Overview of the proposed method for low-resource language lip reading. (a) Learning general speech representation by using
masked prediction of speech units in a high-resource language. (b) The proposed Language-specific Memory-augmented Decoder (LMDe-
coder) learns language-specific knowledge from audio-text paired data by quantizing the input into speech units. (c) Lip reading models
for low-resource languages can be built by combining general speech knowledge and language-specific knowledge.

able performances in the speech recognition area. In au-
dio speech modelling, wav2vec2.0 [63] and HuBERT [64],
proposed to learn the speech representations by predicting
speech units obtained by clustering the acoustic features
(e.g., MFCC). They achieved state-of-the-art speech recog-
nition performances by pre-training the model on large-
scale unlabeled data. In visual speech modelling, [3,18,65]
proposed self-supervised pretraining methods using audio-
visual correspondences or masked prediction similar to au-
dio pre-training methods. By finetuning the pre-trained
model to the lip reading task, they achieved better lip read-
ing performances than the trained model from the scratch.

In this paper, we also try to pre-train the visual encoder to
learn general speech knowledge by predicting speech units
from lip video using high-resource languages. Moreover, to
learn language-specific knowledge which will be utilized to
translate the captured speech units into words, we propose
Language-specific Memory-augmented Decoder (LMDe-
coder) which can be pre-trained on audio-text paired data.

2.3. Vector quantization

Since discrete representations are natural to express
many modalities, using discrete representations in Deep
Learning shows great progresses in diverse areas, such as
image generation [66–68] and speech processing [63, 64,
69–73]. Especially, by discretizing audio using vector quan-
tization, we can obtain discriminative hidden units which
are highly correlated with the acoustic units (i.e., phoneme)
[64]. We try to use the speech units obtained through vec-
tor quantization of input video and audio in learning general

speech knowledge and language-specific knowledge.

3. Method
Our objective in this paper is to develop lip reading mod-

els for low-resource languages. Different from English,
other languages (e.g., Italian, French, Korean, Japanese,
etc.) have smaller video-text paired data for developing
lip reading networks. Therefore, lip reading research has
been mainly focused on English. To mitigate the insuffi-
cient visual-text paired data of the low-resource language in
building a lip reading model, we propose to learn 1) general
speech knowledge from a high-resource language and 2)
language-specific knowledge from audio-text paired data.

3.1. Learning general speech knowledge

It is known that different languages share some common
phonemes [27–29,73], which means that knowledge learned
to model speech units from lip movements in one language
can be extended to other languages. Therefore, to effec-
tively learn to model the lip movements of low-resource
language, we try to bring the knowledge of a pre-trained
model that is trained to model the speech units from a high-
resource language, English. Motivated by the recent suc-
cess of learning speech representations by predicting speech
units in a self-supervised manner [3, 63, 64, 74], we train
the visual encoder with masked prediction to learn general
speech knowledge.

Specifically, the contiguous α frames of input video xv

with T frames are masked out. Then the masked video x̃v

is encoded through a visual front-end and a transformer to



produce visual features fv . Then, the visual encoder (i.e.,
visual front-end and transformer) is guided to predict the
speech units of the masked region indicated by an indica-
tor Mt ∈ {0, 1}, where the value 1 indicates t-th frame is
masked while the value 0 indicates not. The target speech
units zt ∈ {1, . . . , C} with C classes are obtained by quan-
tizing Mel-frequency Cepstral Coefficient (MFCC) of the
audio corresponding to the input video using a discrete la-
tent variable model (e.g., K-means), which will be itera-
tively improved by using the learned features instead of
MFCC similar to [3,63,64]. The process of learning general
speech knowledge can be written as follows,

LGSK = −
∑

{t|Mt=1}

zt log(ẑt), (1)

where ẑt = Softmax(F (f t
v)) is the probability of the pre-

dicted speech unit using a classifier F (·). For the imple-
mentation, we follow the recent observation of [3] that us-
ing both audio and video inputs to learn the speech rep-
resentations is better than utilizing the video inputs only,
and we use the multi-modal inputs. By training the visual
encoder with the masked prediction of speech units on the
large-scale dataset, the visual encoder can embed lip video
into discriminative speech representations, which will be
extended to other languages. The process for learning gen-
eral speech knowledge is illustrated in Fig.1a.

3.2. Learning language-specific knowledge

The final goal of lip reading is translating the captured
lip movements into words, which implies that the ability of
language modeling can largely affect the final performance.
However, for the low-resource language, video-text paired
data might be insufficient for the model to learn to construct
language. To handle this, as shown in Fig.1b, we propose
a Language-specific Memory-augmented Decoder (LMDe-
coder) which can learn language-specific knowledge from
audio-text paired data usually richer than video-text data.

Specifically, LMDecoder includes Language-specific
Memory (LM) that can save speech representations of the
target language according to speech units. Therefore, af-
ter training, we can extract language-specific speech rep-
resentations from LM by examining the input speech units.
When input audio is given, it is quantized to speech units xa

having C classes, similar to the obtaining of zt in Sec.3.1.
By quantizing the input audio into speech units, the learned
general speech knowledge can be naturally fit to be utilized
in LMDecoder when the visual encoder and LMDecoder are
combined. Then, LM converts the input speech units into
language-specific audio features fa by accessing memory
banks B ∈ RC×d corresponding to speech units as follows,

f t
a = Bi such that xt

a = i, (2)
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Figure 2. Illustration of Language-specific Memory (LM) and the
memory banks B of LM. When a quantized speech unit is given,
LM transforms it into a language-specific audio feature by read-
ing the memory value. Therefore, the mapping of speech units to
language-specific audio features can be constructed.

where d is the dimension of audio features. This proce-
dure is illustrated in Fig.2 and it is similar to accessing the
codebook in [67] and also to using auditory features in lip
reading using the memory network of [19,20,22,52]. Then,
a decoder translates the audio features into words in an au-
toregressive manner [75]. Let y be the ground-truth text to-
kens, then the process of learning language-specific knowl-
edge of LMDecoder can be written as follows,

LLSK = − log p(y|xa) (3)

where p(y|xa) = ΠJ
j=1p(yj |y<j , xa) and J represents the

length of text tokens. As the learning of language-specific
knowledge is purely available with audio-text paired data,
the LMDecoder can learn to model the target language from
large-scale data, even if the video-text paired dataset is
small for the target language. Moreover, since the saved
language-specific representations in LM are auditory fea-
tures, we can bring the rich speech information of audio
into lip reading, similar to [19, 20, 22, 52].

3.3. Lip reading for low-resource language

After training the visual encoder to have general speech
knowledge and the LMDecoder to have language-specific
knowledge, we combine the two modules to compose the
lip reading pipeline for low-resource language (Fig.1c). To
access the saved language-specific audio features in LM,
we employ scaled dot-product attention of [45] using the
encoded visual features fv . Through attention, the poten-
tial mismatches between speech units predicted from video
and predicted from audio can be minimized when access-
ing the memory banks. Specifically, when visual features
fv are encoded by the visual encoder, language-specific au-
dio features saved in LM (i.e., B) are retrieved through an
attention mechanism as follows,

Qt = f t
vWq, K = BWk, V = BWv,

f t
a = Softmax(

QtK⊤
√
d

)V,
(4)



where Wq , Wk, and Wv are embedding matrices for query,
key, and value, respectively. By using visual features as a
query, we can access the memory banks B of LM to find
and extract language-specific audio features related to the
input lip movements. This also can be viewed as a soft at-
tention [76] version of Eq. (2). Finally, with the extracted
language-specific audio features, LMDecoder predicts text
tokens of the target language, ŷ, in an auto-regressive man-
ner by utilizing the learned language-specific knowledge.

4. Experimental Setup
4.1. Network architecture

Basically, the visual encoder has the same architecture as
that of the AV-HuBERT Base [3] except for the LRS2 ex-
periment which utilizes AV-HuBERT Large configuration.
It is composed of a visual front-end and transformer en-
coders. Specifically, the visual front-end is comprised of
ResNet18 [39] whose first stem layer is modified with 3D
convolution [11]. The transformer has 12 encoder layers
where each encoder has a 768 embedding dimension (i.e.,
d = 768), a 3,072 feed-forward dimension, and 12 atten-
tion heads. The LMDecoder consists of Language-specific
Memory (LM), transformer encoders, and transformer de-
coders. LM has memory banks with an embedding matrix
size of C × d, where C is set to 1,000. The transformer en-
coder has 4 layers to model the context from the extracted
audio features fa, with the same embedding size as the
transformer in the visual encoder. The transformer decoder
has 6 layers with a 768 embedding dimension, a 3,072 feed-
forward dimension, and 4 attention heads, to predict the text
tokens. To bridge the visual encoder and LMDecoder, we
utilize scaled dot-product attention of [45] and the size of
each embedding layer is set to the dimension of audio fea-
tures (i.e., Wq,Wk,Wv ∈ Rd×d).

For obtaining the target speech units z, we use that of [3];
they are obtained by clustering MFCC at the first iteration,
and then changed to the cluster of learned audio-visual rep-
resentations through the iteration. For obtaining the speech
units xa from the input audio, we use the features encoded
at the 11-th layer of a pre-trained HuBERT [64] that trained
on VoxPopuli [77] and perform K-means clustering.

4.2. Implementation details

Our experiments are implemented using an open-source
toolkit, fairseq [78]. For the video input, the lip region is
detected through face detection [79] and landmark detec-
tion [80] and we crop the region with a size of 96×96. Ev-
ery input frame is converted into grayscale. For data aug-
mentation purposes, horizontal flipping and random crop-
ping into a size of 88 × 88 are applied to the visual inputs
during training. For masked prediction of speech units, α
is set to 5 at the last iteration and masking is performed

by substituting with random contiguous frames of the same
video, following [3]. For training LMDecoder, the audio in-
put is resampled to 16kHz and quantized through the afore-
mentioned pre-trained HuBERT [64]. For the text tokenizer,
we use a subword-level tokenizer, sentencepiece [81], and
set the dictionary size to 1,000 for all languages.

The visual encoder and LMDecoder are pre-trained sep-
arately. The visual encoder is trained on audio-visual data
of a high-resource language, English, and we directly uti-
lize the pre-trained model of [3] for the visual encoder.
LMDecoder is trained on audio-text paired data in the tar-
get language. For each language (i.e., ES, FR, IT, and PT),
we use the data corresponding to the target language from
Multilingual LibriSpeech (MLS) [82], the audio-text paired
dataset, to train LMDecoder. After training the visual en-
coder and LMDecoder, we combine them with an attention
layer and finetune the entire model on the lip reading data
(i.e., video-text paired data) of the target language. For the
objective function to train LMDecoder and finetuning the
entire lip reading models on the target language video-text
paired data, we use hybrid CTC/attention loss [83]. For de-
coding, we do not use an external language model and the
joint CTC/attention decoding, and only utilize the output of
the decoder for all experiments.

For pre-training LMDecoder and finetuning the entire lip
reading model in the target languages, we employ Adam
[84] optimizer and tri-stage learning rate schedules for all
experiments. The peak learning rate is set to 0.001, and
the warmup stages for pre-training and finetuning are set
to 15,000 steps and 10,000 steps, respectively. LMdecoder
is trained for 60,000 steps on audio-text paired data of the
target language. For finetuning the lip reading model, we
train the model for 50,000 steps by using video-text paired
data in the target language, except for English. We train
the English lip reading model for 30,000 steps by freezing
the visual encoder for 20,000 steps. Further details can be
found in the supplementary material.

4.3. Dataset

Multilingual TEDx (mTEDx) [26] is a multilingual
TEDx corpus for speech recognition and translation. The
dataset is composed of speech audio and transcriptions, for
8 languages. In order to use the dataset in lip reading, we
download the video from Youtube by using the links pro-
vided by the dataset. Based on the data splits of the dataset,
we follow [25] to remove the video not containing a speaker
and unavailable video online. We utilize Spanish (ES),
French (FR), Italian (IT), and Portuguese (PT) to evaluate
the proposed method. The dataset size of each language is
represented in Table 1.

Multilingual LibriSpeech (MLS) [82] dataset is a
large multilingual audio-text paired dataset for Audio-based
Speech Recognition (ASR). The dataset is derived from au-



Modality Dataset Train Validation Test
A-T MLS-ES 918 10 10
A-T MLS-FR 1,077 10 10
A-T MLS-IT 247 5 5
A-T MLS-PT 161 4 4
V-T mTEDx-ES 74 0.7 0.5
V-T mTEDx-FR 86 0.4 0.3
V-T mTEDx-IT 47 0.4 0.4
V-T mTEDx-PT 93 0.7 0.7

Table 1. Data length (Hours) of each dataset. A-T represents
audio-text paired data and V-T represents video-text paired data.

diobooks and consists of 8 languages. We utilize ES, FR, IT,
and PT languages to train the proposed LMDecoder to learn
language-specific knowledge. The dataset size of each lan-
guage is represented in Table 1. Please note that the avail-
able audio-text paired data is much larger than video-text
paired data (i.e., mTEDx).

LRS3 [4] is a large-scale English sentence-level audio-
visual dataset. It consists of about 439 hours of videos. We
use 433 hours of training data to pre-train the visual encoder
with masked predictions of speech units, for learning gen-
eral speech knowledge.

VoxCeleb2 [85] is a large-scale unlabeled audio-visual
dataset. It consists of about 2,442 hours of videos. We use
1,326 hours of training data following [3] to pre-train the
visual encoder along with the LRS3 dataset.

LRS2 [7] is another large-scale English sentence-level
audio-visual dataset derived from television shows. It has
about 224 hours of data. We use the dataset to evaluate the
effectiveness of the proposed lip reading framework in the
high-resource language, English.

4.4. Baselines

In order to analyze the effectiveness of the proposed
method in developing lip reading models for low-resource
languages, we set five baselines to be compared. All the
methods are implemented with the same settings.

Supervised pre-training. This baseline is to evaluate
whether a well-trained lip reading model in a high-resource
language, English, can be employed for other languages. To
this end, we pre-train a state-of-the-art lip reading model,
CM-seq2seq [15], on large-scale labeled datasets in En-
glish, a total amount of 814 hours composed of LRW [5],
LRS2 [7], and LRS3 [4]. Then, the entire pre-trained model
is directly finetuned on each target language.

Self-supervised pre-training of encoders. This base-
line is to evaluate whether the learned general speech
knowledge, the ability to model speech units from lip move-
ments, is beneficial when it is applied to other languages. To
this end, we only utilize the visual encoder pre-trained in a
high-resource language (i.e., 1,759 hours of English data)

Method WER (%)
Afouras et al. [49] 58.5

Zhang et al. [2] 51.7
TM-seq2seq [12] 48.3

CroMM-VSR [19] 46.2
MVM [22] 44.5

CM-seq2seq [15] 37.9
Prajwal et al. [47] 28.9

Auxiliary Task [25] 28.7
AV-HuBERT [3] 25.5

VATLM [86] 24.3
Proposed Method 23.8

Table 2. Comparisons with state-of-the-art methods on LRS2.

with the objective of masked prediction of speech units.
Then, a decoder, to be trained from scratch, is attached
to the visual encoder to construct the lip reading pipeline
and trained on the target lip reading dataset. The model is
trained on a total of 50K iterations and the pre-trained visual
encoder is frozen until 20K iterations. Since this method
can be viewed as the application of AV-HuBERT [3] in dif-
ferent languages, we denote this method as AV-HuBERT.

Pre-training of decoders. This baseline is to evaluate
the effectiveness of pre-training of decoders on audio-text
paired data. To this end, we pre-train a decoder through
ASR task on each target language data of MLS [82] by at-
taching it to a pre-trained audio encoder of [3]. After train-
ing, the decoder is attached to the pre-trained visual encoder
and the entire model is finetuned on the target lip reading
dataset. We denote this method as ASR Pre-train. This
method can be viewed as the absence of LM and quantized
speech units in the proposed method.

Distillation of pre-trained knowledge. This baseline is
to evaluate the effectiveness of the knowledge distillation-
based method of [25] in low-resource language lip read-
ings. To this end, we first pre-train both lip reading and
ASR models initialized from AV-HuBERT [3] on the tar-
get lip reading dataset. Then, by utilizing the pre-trained
lip reading and ASR models as teachers, a new lip reading
model initialized from AV-HuBERT is trained by distilling
the knowledge of the two teachers. We follow other train-
ing configurations of [25] to train the model, and denote this
method as Auxiliary Task.

Proposed Method. The final method is the proposed
method that utilizes the pre-trained general speech knowl-
edge and language-specific knowledge. To evaluate the ef-
fectiveness of the proposed method, we pre-train the visual
encoder in a high-resource language and LMDecoder on the
target language data from MLS [82]. Then, the two mod-
ules are attached by using an attention layer and the entire
model is finetuned on the target lip reading dataset.



5. Experimental Results

5.1. Comparison with the state-of-the-art methods

Before evaluating the lip reading performances for the
low-resource languages, we first evaluate the effectiveness
of the proposed framework on a high-resource language
dataset, LRS2 [7]. To this end, we train our LMDecoder
with the combination of training datasets of LRS2 and
LRS3. Then, the LMDecoder is attached to the pre-trained
visual encoder and finetuned on LRS2 dataset. The evalua-
tion results on LRS2, are shown in Table 2. We compare the
performances obtained by using ‘video-text data’ of LRS2
only, if some works utilize extra video-text data, we report
the performance obtained by using minimum extra video-
text data. The proposed method outperforms the previous
state-of-the-art methods and sets a new state-of-the-art per-
formance, by achieving 23.8% WER. In particular, the pro-
posed method outperforms AV-HuBERT [3] that shares the
same visual encoder by 1.7% WER, which means that the
proposed LMDecoder can contribute to even high-resource
language lip-reading by enriching language modeling abil-
ity.

5.2. Effectiveness in low-resource languages

To evaluate the effectiveness of the different methods on
low-resource lip reading, we compare the performances of
five different lip reading methods described in Sec. 4.4 on
four low-resource languages, ES, FR, IT, and PT. Table 3
shows the comparison results on mTEDx-IT, Table 4 shows
results on mTEDx-FR, Table 5 shows results on mTEDx-
ES, and Table 6 shows results on mTEDx-PT.

Effectiveness of learning general speech knowledge.
Firstly, we compare CM-seq2seq and AV-HuBERT to con-
firm whether learning lip reading in a high-resource lan-
guage using large-scale labeled video-text paired data is
better or learning general speech knowledge from a high-
resource language is better for low-resource languages lip
reading. CM-seq2seq is pre-trained on the lip reading task
using 814 hours of English video-text data and then fine-
tuned on each target language, while AV-HuBERT is pre-
trained on the speech units prediction task using 1,759 hours
of English audio-visual data and then finetuned on each tar-
get language. CM-seq2seq achieves 88.41% WER and AV-
HuBERT achieves 77.36% WER, on French shown in Ta-
ble 4. The results indicate that even if CM-seq2seq is uti-
lized large-scale English labeled data, the knowledge can-
not be fully transferred for French lip reading. On the
other hand, AV-HuBERT, which only utilizes labeled data
of French, achieves better results by expanding the general
speech knowledge learned from English data into French.
Similar tendencies can be found in other languages, IT, ES,
and PT in Tables 3, 5, and 6. The results indicate that it
would be beneficial to learn how to encode general speech

Method Unlabeled
V-A Data

Labeled
A-T Data

Labeled
V-T Data WER

CM-seq2seq [15] - - 47h (+814h) 78.31%

AV-HuBERT [3] 1759h - 47h 73.24%

ASR Pre-train 1759h 294h 47h 71.28%

Auxiliary Task [25] 1759h 47h 47h 71.99%

Proposed Method 1759h 294h 47h 68.04%

Table 3. Lip reading performance comparisons on mTEDx-IT.
(+α) represents the amount of labeled English data.

Method Unlabeled
V-A Data

Labeled
A-T Data

Labeled
V-T Data WER

CM-seq2seq [15] - - 86h (+814h) 88.41%

AV-HuBERT [3] 1759h - 86h 77.36%

ASR Pre-train 1759h 1163h 86h 75.67%

Auxiliary Task [25] 1759h 86h 86h 76.79%

Proposed Method 1759h 1163h 86h 74.74%

Table 4. Lip reading performance comparisons on mTEDx-FR.
(+α) represents the amount of labeled English data.

units instead of learning to translate the lips into text in a
high-resource language, for the purpose of adapting the pre-
trained model to low-resource languages.

Effectiveness of pre-training the decoder. In order to
evaluate the effectiveness of pre-training the decoder us-
ing audio-text data, we compare AV-HuBERT and ASR Pre-
train. The decoder of AV-HuBERT is trained from scratch
by using the video-text paired data of the target language,
while the decoder of ASR Pre-train is trained after initial-
izing with the pre-trained model on audio-text paired data
of the target language. Since the visual encoders of the two
models are the same, we can focus on the effects of pre-
training the decoder using audio-text paired data. As shown
in Table 5, the performance of AV-HuBERT on Spanish is
71.68% WER while ASR Pre-train achieves 70.80% WER.
The results confirm that even if we learn general speech
knowledge from a large-scale English dataset, the ability to
model language might be insufficient to be learned from the
small-scale target language dataset (i.e., video-text paired
dataset). By adapting the language knowledge learned from
an audio-text paired dataset which is larger than the video-
text paired dataset, we can improve the lip reading perfor-
mances for the low-resource languages. Results for other
languages, IT, FR, and PT, are shown in Tables 3, 4, and 6.

Effectiveness of learning language-specific knowledge
through LMDecoder. In order to evaluate the effective-
ness of the proposed method of learning language-specific
knowledge through LMDecoder, we compare ASR Pre-
train and Proposed Method. Different from ASR Pre-
train, the Proposed Method is additionally trained to save



Method Unlabeled
V-A Data

Labeled
A-T Data

Labeled
V-T Data WER

CM-seq2seq [15] - - 74h (+814h) 81.75%

AV-HuBERT [3] 1759h - 74h 71.68%

ASR Pre-train 1759h 992h 74h 70.80%

Auxiliary Task [25] 1759h 74h 74h 70.91%

Proposed Method 1759h 992h 74h 70.16%

Table 5. Lip reading performance comparisons on mTEDx-ES.
(+α) represents the amount of labeled English data.

language-specific audio features in LM and to construct the
mapping between speech units and language-specific au-
dio features by using quantized speech units. Therefore,
by comparing the two methods, we can validate the effec-
tiveness of the proposed lip reading framework for low-
resource languages. ASR Pre-train achieves 71.28% WER
on Italian while the Proposed Method achieves 68.04%
WER which outperforms ASR Pre-train by about 3.24%
WER, shown in Table 3. Since the proposed LMDe-
coder can transform the encoded visual features (i.e., speech
units) into language-specific audio features, it can fully uti-
lize the learned general speech knowledge of the pre-trained
visual encoder, when the two pre-trained modules (i.e., vi-
sual encoder and LMDecoder) are combined. Moreover,
as the LM can provide rich speech information of audio by
reading the memory banks, we can also employ the comple-
mentary effects of multi-modality as proven to be effective
for lip reading in previous works [19, 20, 22]. Similar ten-
dencies can be found in tables 4, 5, and 6.

Comparison with distillation-based method. Finally,
we compare the lip reading performance with a distillation-
based method that utilizes knowledge distillation as an aux-
iliary task. In Tables 3, 4, 5, and 6, compared to Auxiliary
Task, the Proposed Method outperforms the method in all
languages. Even if Auxiliary Task tried to learn from using
the knowledge of superior models (i.e., pre-trained lip read-
ing and ASR models), the Proposed Method can achieve
better performance by employing language-specific knowl-
edge learned from a larger audio-text paired dataset.

Comparing the performances of Proposed Method with
other baselines, we can confirm the effectiveness of the pro-
posed lip reading framework for low-resource languages.

5.3. Ablation study

Different audio-text paired datasets. We perform abla-
tion studies to examine the effectiveness of the proposed lip
reading framework. Firstly, we examine the effect of differ-
ent audio-text paired datasets in learning language-specific
knowledge of LMDecoder. We pre-trained three variants
of LMDecoder by using MLS, mTEDx, and both datasets.
Then, each model is attached to the pre-trained visual en-

Method Unlabeled
V-A Data

Labeled
A-T Data

Labeled
V-T Data WER

CM-seq2seq [15] - - 93h (+814h) 79.17%

AV-HuBERT [3] 1759h - 93h 71.87%

ASR Pre-train 1759h 254h 93h 70.39%

Auxiliary Task [25] 1759h 93h 93h 70.39%

Proposed Method 1759h 254h 93h 69.33%

Table 6. Lip reading performance comparisons on mTEDx-PT.
(+α) represents the amount of labeled English data.

Train data
for LMDecoder

Labeled
A-T Data

Labeled
V-T Data WER

Baseline Decoder 0h 47h 73.24%

MLS-IT 247h 47h 70.45%

mTEDx-IT 47h 47h 71.47%

MLS-IT+mTEDx-IT 294h 47h 68.04%

Table 7. Ablation study using different audio-text paired data.

Method Unlabeled
V-A Data

Labeled
A-T Data

Labeled
V-T Data WER

Without LM 1759h 293h 46h 71.01%

With LM 1759h 293h 46h 68.04%

Table 8. Ablation study with and without LM on mTEDx-IT.

coder, and the entire model is finetuned on the target lan-
guage lip reading dataset. For the ablation study, we use
Italian datasets (i.e., MLS-IT and mTEDx-IT). The abla-
tion results are shown in Table 7. MLS-IT dataset has 247
hours of training data and mTEDx-IT dataset has 47 hours
of training data. Using MLS-IT only to train LMDecoder
achieves 70.45% WER. By using an extra audio-text paired
dataset, MLS-IT, to train language-specific knowledge for
LMDecoder, we can improve the performance from the
baseline that uses the scratch decoder (i.e., 73.24% WER)
by 2.79% WER. Moreover, by using audio-text paired data
of mTEDx-IT only, we can still improve the performance
and achieve 71.47% WER. This shows the effectiveness of
the LM in providing the saved language-specific audio fea-
tures corresponding to speech units. By using both datasets,
the performance improves to 68.04% WER, which shows
the effectiveness of learning language-specific knowledge
using audio-text paired data in building low-resource lan-
guage lip reading models.

Effectiveness of Language-specific Memory (LM). To
evaluate the effectiveness of Langauge-specific Memory
(LM) in LMDecoder, we experiment by eliminating the LM
from the proposed method. Therefore, the decoder of With-
out LM model is trained with quantized speech units but the
LM is not included. The performance of Without LM on
Italian is shown in Table 8. By eliminating the proposed



LM, the lip reading performance is degraded by about 3%
WER. The result clearly indicates that the saved language-
specific audio features in LM can provide beneficial infor-
mation when it is combined with general speech knowl-
edge, with the following two roles; 1) constructing mapping
between speech units and language-specific audio features,
and 2) providing rich auditory information which can com-
plement the lip reading model.

Different amounts of video-text data. In order to inves-
tigate the effectiveness of the proposed method under dif-
ferent amounts of video-text data situations, we experiment
with 1/3 (15.7h), 2/3 (31.3h), and all (47h) of the video-
text data of mTEDx-IT. This experiment is to confirm how
much the low resources the model can handle. The results
are shown in Table 9. When only 15.7 hours of labeled
video-text data are used, it achieves 75.62% WER, which
shows the model cannot correctly learn from only 1/3 of the
data. When 31.3 hours of data are utilized, the WER perfor-
mance is 69.63%. This performance is better than that of the
other methods obtained using the full data in Table 3. The
results indicate that the proposed method can perform well
even with 2/3 of the data on mTEDx-IT by outperforming
the previous methods trained on full data. By using 100% of
data (47h), the performance is improved to 68.04% WER.

Different amounts of audio-text data. We also exper-
iment with different amounts of audio-text data including
the cases where the audio-text data is even smaller than the
video-text data (47h). The results are shown in Table 10.
The results indicate too small audio data (12h) leads to even
worse performance than the randomly initialized decoder
(i.e., 73.24% WER). We found that when we use about 75%
amount (35h) of the video-text data, it starts to improve the
performance. By using more audio-text data, we can im-
prove the performance more. When using 147h and 294h
of the audio-text paired data, we achieve 70.3% and 68.0%
WERs, respectively, on mTEDx-IT dataset.

Performances of pre-trained ASR models. We pro-
vide the performances of the pre-trained ASR models on
each audio-text paired dataset, before being applied to the
lip reading tasks. We also provide the performances of the
pre-trained LMDecoders on each audio-text paired dataset,
before being applied to the lip reading tasks. Different from
the ASR models, LMDecoders are trained from quantized
audio units with LM while the ASR models are trained from
continuous audio. Please note the objective of pre-training
the LMDecoder is for applying it to lip reading, not for per-
forming ASR (i.e., Audio-based Speech Recognition). The
WER(%) results are shown in Table 11. As the results indi-
cate, the ASR performances of LMDecoder do not perform
better than the ASR Pre-train. However, the lip reading
performances for low-resource languages of the proposed
LMDecoder outperform the ASR Pre-train as shown in Ta-
bles 3, 4, 5, and 6. From the results, we can confirm that

V-T Data Amount 15.7h 31.3h 47h

WER 75.62% 69.63% 68.04%

Table 9. Ablation study using different amounts of video-text
paired data on mTEDx-IT.

A-T Data Amount 12h 35h 47h 147h 297h

WER 86.7% 72.2% 71.5% 70.3% 68.0%

Table 10. Ablation study using different amounts of audio-text
paired data on mTEDx-IT.

Dataset ASR Pre-train LMDecoder

mTEDx-IT 24.65% 29.21%

mTEDx-FR 22.96% 27.48%

mTEDx-ES 25.01% 24.65%

mTEDx-PT 28.35% 36.01%

Table 11. Performances of pre-trained models (ASR) on mTEDx.

the proposed pre-training strategies are more suitable for
low-resource language lip reading than just pre-training a
decoder through ASR.

6. Conclusion

This paper proposed a novel lip reading framework for
low-resource languages. To address the challenge of in-
sufficient video-text paired data of low-resource languages,
we proposed to learn and combine general speech knowl-
edge and language-specific knowledge. Specifically, the vi-
sual encoder is trained with masked predictions of speech
units to learn general speech knowledge, and Language-
specific Memory-augmented Decoder (LMDecoder) is pro-
posed to learn language-specific knowledge from audio-
text paired data. By combining the learned general speech
knowledge and language-specific knowledge, we can effi-
ciently develop lip reading models for low-resource lan-
guages. Through comprehensive experiments on a total of
five languages (English, Italian, French, Spanish, and Por-
tuguese), we verified the effectiveness of the proposed lip
reading framework in low-resource languages.
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A. Training Details
A.1. LRS2

Our proposed method outperforms the previous state-of-
the-art methods and sets a new state-of-the-art performance
in Table 2. In this section, we provide further details for
pre-training the proposed LMDecoder. In addition, we also
give details for finetuning the entire lip reading model with
the LMDecoder on LRS2 dataset.

A.1.1 Pre-training

We pre-train the LMDecoder to learn English-specific
knowledge from 656 hours of audio-text paired data of
LRS2 and LRS3. The LMDecoder consists of LM, trans-
former encoders, and transformer decoders. We set the
memory bank size as 1,000 and use 4 layers for transformer
encoders with a 1,024 embedding dimension, a 4,096 feed-
forward dimension, and 8 attention heads. The configura-
tion of the transformer decoders is the same as transformer
encoders except for having 9 layers. All components of
the LMDecoder are trained in an end-to-end manner with

Pre-training Fine-tuning
# steps 60,000 30,000

# frozen steps - 20,000
tri-stage LR schedule (25%, 0%, 75%) (33%, 0%, 67%)

peak learning rate 1e-3 5e-4
# GPUs 8 8

Adam (β1, β2) (0.9, 0.98) (0.9, 0.98)

Table 12. Training details on LRS2 (EN).

Pre-training Fine-tuning
# steps 60,000 50,000

# frozen steps - -
tri-stage LR schedule (25%, 0%, 75%) (20%, 0%, 80%)

peak learning rate 1e-3 1e-3
# GPUs 8 4

Adam (β1, β2) (0.9, 0.98) (0.9, 0.98)

Table 13. Training details on mTEDx (IT, FR, ES, and PT).

60,000 steps. We use warmup steps of 15,000. The other
training options such as learning rate are shown in Table
12. The tri-learning rate schedule in the table indicates
(warmup, hold, decay) percentage for the total steps.

A.1.2 Finetuning

After the pre-training stage, we compose the lip reading
pipeline by concatenating the pre-trained visual encoder and
the LMDecoder. We employ a pre-trained AV-HuBERT
Large model for the visual encoder. The entire lip read-
ing model is finetuned for 30,000 steps. During finetuning,
we freeze the visual encoder until 20,000 steps. Adam opti-
mizer with a peak learning rate of 0.0005 and warmup steps
of 10,000 is utilized for finetuning. Details are provided in
the last column of Table 12.

A.2. mTEDx

For the low-resource languages, our goal is to learn
language-specific knowledge on each target language by us-
ing audio-text paired data to supplement insufficient video-
text paired data. Therefore, we jointly utilize mTEDx and
MLS datasets to pre-train LMDecoder on the target lan-
guage data. Please note that the MLS dataset has more
audio-text paired data than the mTEDx.

A.2.1 Pre-training

We pre-train the LMDecoder to learn language-specific
knowledge from audio-text paired data of each target lan-
guage (IT: 294h, FR: 1,163h, ES: 992h, and PT: 254h).
The LMDecoder consists of LM, transformer encoders, and
transformer decoders. We set the memory bank size as



1,000 and use 4 layers for transformer encoders with a
768 embedding dimension, a 3,072 feed-forward dimen-
sion, and 12 attention heads. The configuration of the trans-
former decoders is the same as transformer encoders except
for having 6 layers. All components of the LMDecoder are
trained in an end-to-end manner with 60,000 steps. We use
warmup steps of 15,000. The other training options such as
learning rate are shown in Table 13.

A.2.2 Finetuning

After the pre-training stage, we compose the lip reading
pipeline by concatenating the pre-trained visual encoder and
the LMDecoder for each target language. We employ a
pre-trained AV-HuBERT Base model for the visual encoder.
The entire lip reading model is finetuned for 50,000 steps.
In contrast to the experiment on LRS2, we do not freeze the
visual encoder. Adam optimizer with a peak learning rate of
0.001 and warmup steps of 10,000 is utilized for finetuning.
Details are provided in the last column of Table 13.

B. Utilizing Speech Knowledge of Large-scale
Pre-trained English Lip Reading Model

Recently, large-scale pre-trained lip reading models us-
ing ASR-labeled English data have been proposed [38].
They utilized a pre-trained ASR model to label unlabeled
English datasets and obtained 3,448 hours of visual-text
data. In this section, we explore whether we can uti-
lize these large-scale pre-trained English lip reading mod-
els’ speech knowledge for low-resource lip reading. How-
ever, as the visual encoder of their pre-trained model is
not trained with the speech unit prediction task, it is not
matched well with the LMDecoder that is trained using
speech unit inputs. Therefore, we find the performance
degradation when directly cascading the pre-trained visual
encoder of [38] and the LMDecoder. To handle this, we
add a residual connection between the output of the vi-
sual encoder and the input of the decoder so that the im-
perfect memory addressing in Language-specific Memory
(LM) can be complemented through the residual connec-
tion. With this simple modification, we applied the pro-
posed method to combine the speech knowledge learned
from large-scale English data and the language-specific
knowledge learned from language-specific audio-text data.
The results on mTEDx are shown in Table 14, 15, 16, and
17. Compared to using 814 hours of English data, by em-
ploying the knowledge learned from 3,448 hours of English
data, we can largely improve the lip reading performances
for low-resource languages (i.e., IT, FR, ES, and PT). These
results confirm that the speech knowledge learned from one
language can be transferred to different languages. By com-
bining speech knowledge with language-specific knowl-
edge through the proposed method, we can further im-

Method Labeled
A-T Data

Labeled
V-T Data WER

CM-seq2seq [15] - 47h (+814h) 78.31%

CM-seq2seq [38] - 47h (+3448h) 60.40%

Proposed Method 294h 47h (+3448h) 59.74%

Table 14. Lip reading performance comparisons on mTEDx-IT.
(+α) represents the amount of labeled English data.

Method Labeled
A-T Data

Labeled
V-T Data WER

CM-seq2seq [15] - 86h (+814h) 88.41%

CM-seq2seq [38] - 86h (+3448h) 65.25%

Proposed Method 1163h 86h (+3448h) 64.92%

Table 15. Lip reading performance comparisons on mTEDx-FR.
(+α) represents the amount of labeled English data.

Method Labeled
A-T Data

Labeled
V-T Data WER

CM-seq2seq [15] - 74h (+814h) 81.75%

CM-seq2seq [38] - 74h (+3448h) 59.90%

Proposed Method 992h 74h (+3448h) 56.96%

Table 16. Lip reading performance comparisons on mTEDx-ES.
(+α) represents the amount of labeled English data.

Method Labeled
A-T Data

Labeled
V-T Data WER

CM-seq2seq [15] - 93h (+814h) 79.17%

CM-seq2seq [38] - 93h (+3448h) 59.45%

Proposed Method 254h 93h (+3448h) 58.57%

Table 17. Lip reading performance comparisons on mTEDx-PT.
(+α) represents the amount of labeled English data.

prove lip reading performances on low-resource language
datasets. For example, we can improve about 3% WER
more from that of [38] on the mTEDx-ES dataset.


