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Instruction: Take off, fly through the tower of cable bridge and down to the end of the road. Turn left, fly over the
five-floor building with a yellow shop sign and down to the intersection on the left. Head to the park and turn right,
fly along the edge of the park. March forward, at the intersection turn right, and finally land in front of the building
with a red billboard on its rooftop.

Figure 1: An intelligent agent should be able to follow given natural language instructions and navigate to the destination
in an unseen environment with visual perceptions along the way. The green line shows the agent’s ground truth trajectory,
and the chequered flag represents the end of it.

Abstract

Recently emerged Vision-and-Language Navigation
(VLN) tasks have drawn significant attention in both com-
puter vision and natural language processing communi-
ties. Existing VLN tasks are built for agents that navigate
on the ground, either indoors or outdoors. However,
many tasks require intelligent agents to carry out in the
sky, such as UAV-based goods delivery, traffic/security
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patrol, and scenery tour, to name a few. Navigating
in the sky is more complicated than on the ground be-
cause agents need to consider the flying height and
more complex spatial relationship reasoning. To fill
this gap and facilitate research in this field, we pro-
pose a new task named AerialVLN, which is UAV-based
and towards outdoor environments. We develop a 3D
simulator rendered by near-realistic pictures of 25 city-
level scenarios. Our simulator supports continuous nav-
igation, environment extension and configuration. We
also proposed an extended baseline model based on
the widely-used cross-modal-alignment (CMA) naviga-
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tion methods. We find that there is still a significant
gap between the baseline model and human perfor-
mance, which suggests AerialVLN is a new challeng-
ing task. Dataset and code is available at https:
//github.com/AirVLN/AirVLN .

1. Introduction

Recently, a bunch of vision-and-language navigation
tasks, such as R2R [2], RxR [20], REVERIE [28], Touch-
Down [7], Alfred [33], iGibson [23, 32, 36], have drawn a
large amount of attention from different research commu-
nities like computer vision, natural language processing
and robotics. These tasks as well as their datasets have
greatly boosted the research of assembling the capabili-
ties of vision and language understanding, cross-modality
matching, path planning and reasoning [6, 8, 15, 18, 27].
However, all these VLN tasks are designed for ground-
based agents, which means agents can only navigate
indoors or outdoors on the ground. This overlooks an-
other important application scenario: activities in the sky,
which are becoming increasingly popular with the devel-
opment of unmanned aerial vehicles (UAVs), especially
multirotor. We can now use UAVs to enjoy spectacular
scenes without going out of houses and they can be po-
tentially utilized for goods delivery, traffic surveillance,
search/rescue and security patrol [10, 11, 12].

To release humans from manually operating UAVs
and to fill the research gap in the field of navigation in
the sky, we propose a city-level UAV-based vision-and-
language navigation task, named AerialVLN, and a cor-
responding dataset. Navigating in the sky is significantly
different from that on the ground in several aspects. First,
AerialVLN has a larger action space. Compared to con-
ventional ground VLN [2, 7, 19, 20, 28], AerialVLN re-
quires intelligent agents to additionally take actions such
as “rise up” and “pan down” into consideration. More-
over, multirotors can move left/right without turning its
head. Second, the outdoor environments of AerialVLN
are much bigger and more complex. AerialVLN covers a
large variety of city-level scenes. An intelligent agent is
required to distinguish referred buildings/objects by their
spatial relationship from a bird-view as shown in Figure
1. Although the TouchDown [7] task is also devised for
outdoor navigation, its environments are static, while
ours are interactive and dynamic. For example, our agent
can land on a building, and the weather and illumination
conditions can dynamically change in the environment.
Third, to mimic multirotor flying in real life, our Aeri-
alVLN has a much longer path than ground VLNs. On
average, our AerialVLN involves a path length of 661.8

units∗. There are about 9.7 referred objects in one instruc-
tion on average, which is more than 2.6 times as many
as in the R2R dataset [2]. Fourth, intelligent agents
must learn to avoid getting stuck on objects in 3D space.
This is more challenging than avoiding obstacles when
navigating on the ground as in VLN-CE [19] because
agents have to estimate the 3D shapes of obstacles and
the distance to obstacles. All these new characters render
AerialVLN a different and highly challenging task.

AerialVLN is implemented using Unreal Engine 4
[14] and Microsoft AirSim plugins [31], which enables
continuous navigation and near-realistic rendering. In
total, we have collected 25 different city-level environ-
ments, covering a variety of scenes such as downtown
cities, factories, parks, and villages, including more than
870 different kinds of objects. Our AerialVLN dataset
consists of 8,446 flying paths obtained by experienced
human UAV pilots who hold the AOPA (Aircraft Own-
ers and Pilots Association) certificate. We pair each path
with 3 instructions annotated by AMT workers in the stan-
dard dataset setting. Notably, we also align each sub-path
to its sub-instruction, which enables fine-grained cross-
modality matching learning. On average, up to 83 words
are in each instruction, involving a large vocabulary of
4,470 words. Finally, we evaluate five baselines, includ-
ing two golden standard VLN models in VLN, Seq2Seq
model and cross-modal matching (CMA) model, and our
proposed model to serve as starting baselines on Aeri-
alVLN.

2. Related Work
In this section, we review two types of closely related

work: UAV navigation and Ground-based VLN.
UAV Navigation. Unmanned Aerial Vehicle (UAV)
navigation has brought increasing attention in the last
few decades. Early UAV autonomous navigation re-
quires solving the challenges of perceiving, mapping,
localisation, decision-making (path-planning), action-
decomposing and controlling. Inertial UAV navigation
and GPS-based methods are commonly used together
since the former might cause significant errors due to
accumulation, and the latter is usually unable to localise
the vehicle in high precision [22, 26]. However, naviga-
tion in GPS-denied and unknown environments (such as
cities with collapsed buildings or complex electromag-
netic scenarios) becomes the bottleneck of intelligent
UAVs. Vision-based navigation is then believed to be the
solution to autonomous navigation [9, 24, 34].

The most similar works to ours are [3, 4, 13, 25] that
language instructions are also provided. In [3, 4, 25], a

∗One unit equals one meter in our simulated city environment.

https://github.com/AirVLN/AirVLN
https://github.com/AirVLN/AirVLN


Task Routes Instructions Features Language Action Space Path Len. Actions Vocab Intr. Len.
R2R [2] 7,189 21,567 Indoor, discrete Instruction Graph-based 10.0 5 3.1k 29
RxR [21] 13,992 13,992 Indoor, discrete Instruction Graph-based 14.9 8 7.0k 129
CVDN [35] 7,415 2,050 Indoor, discrete Dialog Graph-based 25.0 7 4.4k 34
REVERIE [28] 7k 21,702 Indoor, discrete Instruction Graph-based 10.0 5 1.6k 18
SOON [37] 40K 3,848 Indoor, discrete Instruction Graph-based 16.8 9 1.6k 39
TouchDown[7] 9,326 9,326 Outdoor, discrete Instruction Graph-based 313.9 35 5.0k 90
VLN-CE [19] 4,475 13,425 Indoor, continuous Instruction 2 DoF 11.1 56 4.3k 19
LANI [25] 6,000 6,000 Outdoor, continuous Instruction 2 DoF 17.3 116 2.3k 57
ANDH [13] 6,269 6,269 Outdoor, continuous Dialog 3 DoF 144.7 7 3.3k 89
AerialVLN 8,446 25,338 Outdoor, continuous Instruction 4 DoF 661.8 204 4.5k 83
AerialVLN-S 3,916 11,748 Outdoor, continuous Instruction 4 DoF 321.3 115 2.8k 82

Table 1: Comparison of existing vision-and-language navigation tasks. AerialVLN presents a city-level open envi-
ronment dataset for aerial vision-and-language instruction-based navigation. Note that the en-US subset of RxR is
considered for a fair comparison. Path length unit: meter.

quadcopter agent is required to navigate by following
natural language instructions in only one closed virtual
field. The environment is of size 50×50 with 6×13 land-
marks. It has 6,000 instructions with an average length
of 57 words and a vocabulary size 2,292. Agents are only
allowed for horizontal movements (Forward, Left/Right
and Stop). By contrast, our AerialVLN is much larger,
more complex, and closer to real-world scenarios: Aeri-
alVLN provides 25k crowd-sourced natural language
instruction with an average length of 83 words and a vo-
cabulary size 4,470. AerialVLN has 870 different kinds
of objects and allows agents to move in 4-DOF as multi-
rotor (Forward, Turn Left/Right, Ascent/Descend, Move
Left/Right and Stop). Moreover, AerialVLN presents
25 different open city-level environments, which enables
intelligent agents to be trained and tested more compre-
hensively. Compared to ANDH [13], which focuses on
dialogue-based aerial VLN with bird-view image input,
our AerialVLN task requires agents to navigate with a
first-person view and our environments are interactive
and dynamic, which requires agents to learn to avoid
obstacles. Regarding path length and data amount, our
AerialVLN is four times of ANDH. More comparisons
can be found in Table 1.

Ground-based VLN Tasks. A number of VLN tasks
have been proposed for navigation on the ground. Ander-
son et al. [2] propose a Room-to-Room (R2R) navigation
task, where given a detailed instruction, an agent is re-
quired to navigate from one room to another. Jain et
al. [17] propose to concatenate existing paths in R2R to
form longer paths that are not the shortest ones between
starting and ending points. On the other hand, Chen
et al. [7] propose an outdoor navigation task, Touch-
Down, to highlight challenges for outdoor environments.
Zhu et al. [37] propose an object locating task, SOON,
which uses detailed instruction descriptions. By contrast,
Qi et al. [28] propose a remote object grounding task,
REVERIE, with concise, high-level instructions to bet-

ter mimic the commands we humans give to each other.
However, all the above-mentioned VLN tasks are de-
signed for intelligent agents navigating on the ground, as
shown in Table 1. This cannot reflect the challenges when
navigating in the sky for intelligent agents like multirotor.
To address this problem, in this work, we propose a new
task AerialVLN, which is designed for UAV navigation
in the sky.

3. The AerialVLN Task
As shown in Figure 1, the proposed AerialVLN task

requires an intelligent agent (a multirotor in virtual envi-
ronments) to fly to the destination by following a given
natural language instruction and its first-person view vi-
sual perceptions provided by the simulator. Unlike previ-
ous VLN tasks [2, 20, 37], we do not provide pre-build
navigation graphs in our task, so any point not occupied
by objects (such as buildings and trees) is navigable. This
is closer to the practical scenario.

Formally, at the beginning of each episode, the agent
is placed in an initial pose P = [x, y, z, p, r, y′], where
(x, y, z) denotes the agent’s position and (p, r, y′) rep-
resents pitch, roll, yaw portion of the agent’s orienta-
tion. Then given a natural language instruction X =<
ω1, ω2, ..., ωL >, where L is the length of instruction and
ωi is a single word token, the agent is required to predict
a series of actions. The agent can take both the instruc-
tion and visual perceptions into consideration. Although
our adopted simulator can provide panoramic observa-
tions, here we follow the most robotic navigation tasks
[19] setting to limit our baseline agent to the access of
its front view perceptions (both depth and RGB images)
Vt = {vRt , vDt }. The agent needs to rotate to obtain
other views. Navigation ends when the agent predicts
a Stop action or reaches a pre-defined maximum action
number. The navigation is recognised as a success if the
agent stops at a location that is less than 20 units to the
target location, as 20 metres is the common size of a



helipad in most countries. Considering the average size
(radius) of our environment is around 3867.8 meters, this
20 metres landing area is rather small and challenging.
The next section provides more details about the visual
observation and action space.

4. Simulator
Our simulator is developed based on AirSim [31] and

Unreal Engine 4 [14]. Below we detail its visual percep-
tions and action space.
Visual Observations. In the simulator, an embodied
agent can move and observe in the continuous outdoor
environment freely. At each step t, the simulator outputs
an RGB image vRt and a depth image vDt of its front
view. Considering the outdoor environment setting, the
depth sensor is allowed to perceive 100 meters ahead. In
addition, semantic segments are also accessible for future
usage. The simulator supports dynamic environments,
such as blowing leaves, running cars, varying illumina-
tion (morning, noon, night) and different climate patterns
(sun, rain, snow, fog). This can greatly narrow the gap
when transferring trained agents to the real-world [1].
Action Space. Although the simulator supports flying
towards any given direction and speed/distance, we con-
sider the eight most common low-level actions in UAVs:
Move Forward, Turn Left, Turn Right, Ascend, Descend,
Move Left, Move Right and Stop. To balance the num-
ber of actions performed in a trajectory and the actual
movement of the drone in an outdoor environment, the
Move Forward action continuously moves 5 units along
its current direction. The Move Left and Move Right ac-
tions continuously move 5 units along the corresponding
direction, respectively. The Turn Left and Turn Right
actions turn 15 degrees horizontally. The Ascend and
Descend actions continuously move 2 units vertically.

5. Dataset
In this section, we present the data collection policy

and analysis of collected instructions for AerialVLN.

5.1. Data Collection
The data collection process contains two main steps:

path generation and instruction collection. In contrast
to R2R [2, 4, 5], of which the ground truth trajectories
are automatically generated from navigation graph, we
employed experienced multirotor manipulators (AOPA
licensed) to complete the flying. This enables the trained
agent to learn real human remote pilots’ behaviours. To
ensure the high quality of paths with a reasonable length,
we ask human manipulators to pass several random-
selected landmarks from a pre-defined landmark set in-

(a) Word cloud of nouns (b) Word cloud of verbs
Figure 2: Statistics of nouns and verbs.

cluding buildings, fountains, squares etc. In the simulator,
we also provide hints about directions and distance to
the next landmark to manipulators, which can help them
better accomplish the task (refer to the supplementary
for the interface). The output of the path generation
step includes the multirotor’s pose trace (a series of time-
stamped 6-DoF multirotor poses). The raw flying paths
may have redundant motions, as manipulators sometimes
need to look around to identify their positions and de-
cide where to go. We remove such redundant motion for
smoother ground truth trajectories. Then, the continuous
paths are discretised into meta actions, such as “turn left”
and “move forward” to enable training.

For the second step, we use Amazon Mechanical Turk
(AMT) to collect language instructions for these paths.
Specifically, we show videos of drone flights and require
the annotators to give natural language commands that
can lead a pilot to complete the flying (refer to supplemen-
tary for the interface). To enrich the language diversity
and reduce bias, each video is annotated three times by
different annotators. To avoid ambiguity caused by simi-
lar landmarks, referring expression is required, such as
“land on the rooftop of the building near fountain”. To
validate data quality, all the collected instructions are
manually checked by another group of workers. More
details about the validation policy are presented in the
supplementary material.

5.2. Data Analysis

We totally collected 25,338 instructions with a vocab-
ulary of 4,470 words. On average, each instruction has
83 words. Figure 2 presents the relative word frequency
in the form of word cloud, where the larger the font, the
more frequently the word is used. Figure 2(a) shows that
“building” and “road” are mostly used as reference ob-
jects for navigation. Figure 2(b) shows that “turn”, “go”
and “fly” are the most common verbs.

In Table 1, we provide a comparison between our
AerialVLN dataset and other popular VLN datasets. It
shows that AerialVLN has the largest average path length,
which is about five times ANDH and 40 times the ground-
based VLN, RxR. At the same time, our dataset has the
most average actions per path, which is about four times



R2R[2] ANDH[13] TouchDown[7] AerialVLN
Phenomenon p µ p µ p µ p µ Example in AerialVLN
Reference 100 3.7 92 1.9 100 9.2 100 9.7 ...fly towards the red bridge across...
Coreference 32 0.5 8 0.1 60 1.1 68 1.8 ...move to the next building and after reaching it ...
Comparison 4 0.0 32 0.4 12 0.1 20 0.2 ...get to the tallest tree in view...
Sequencing 16 0.2 8 0.1 84 1.6 68 3.7 ...go towards the next building and ...
Allocentric Relation 20 0.2 32 0.4 68 1.2 56 4.6 ...stop on the middle of the bridge...
Egocentric Relation 80 1.2 32 0.4 92 3.6 100 7.1 ...stop when you get over the first tree...
Imperative 100 4.0 100 1.1 100 5.2 100 6.9 ...lift off and turn right facing left of the old building and head straight...
Direction 100 2.8 100 1.4 96 3.7 100 4.6 ... turn right and head back into ...
Temporal Condition 28 0.4 20 0.2 84 1.9 76 5.6 ...look up until you see the sky...
State Verification 8 0.1 20 0.2 72 1.5 28 1.3 ...the road will now be on your right...

Table 2: Linguistic phenomena in randomly sampled 25 instructions. AerialVLN task has a significant rate of reference,
sequencing, spatial relationship and direction, which brings much more challenges to intelligent agents. p and µ
represent the percentage of instructions that present the phenomena and the average number of the phenomena appears
in each instruction. For a fair comparison, TouchDown Navigation subset is used.

VLN-CE and six times TouchDown. In terms of the
number of instructions, our dataset is about twice VLN-
CE and RxR, four times ANDH. All these characters
render our dataset extremely challenging. In Figure 3,
we present the distribution of instruction length and the
number of actions. As shown in Figure 3(a), instruction
length ranges from 50 to 130 words. Figure 3(b) shows
that most paths have 50 ∼ 240 actions. These diversities
make AerialVLN more challenging.

(a) Instruction length (b) Number of actions per path
Figure 3: Instruction length and number of actions.

As in previous work [7, 20], we have also conducted
statistics on linguistic phenomena of randomly sampled
25 instructions with comparison to other VLN datasets
in Table 2. It shows that our AerialVLN task has a signif-
icant rate of reference, coreference, sequencing, spatial
relationship and direction, which brings much more chal-
lenges.
Dataset Split. Following the common practice in the
VLN community, we divide our dataset into the train,
val seen, val unseen, and test splits. The word “seen”
means the visual environments that have been seen in
the train split. As shown in Table 3, we assign 17
scenes for training and val seen split, where the train
set contains 16, 380 instructions from 5, 460 paths. For
val seen, we assign 1, 818 instructions from 606 paths.
The val unseen and the test split are both assigned 8
scenes, but the test split is about double the size of the
val unseen split, including 1610 paths with 4, 830 instruc-

tions. Please note that the test split is built on unseen
scenes as well and the goal locations for the test set will
not be released. Instead, we provide an evaluation server
where UAV trajectories can be uploaded for scoring.

Besides the standard dataset setting (with all 25
scenes), we also present a variant for small scenes,
AerialVLN-S. It preserves the same split, but it has 17
scenes with a smaller scale and evenly-distributed path
length, which results in a shorter path length (average
path length reduces 51.5%) and shorter instruction length.
In AerialVLN-S setting, the agent can sometimes even
observe the goal at starting point. In this variant, there are
10, 113 instructions for the train and 333 for validation
seen splits, respectively. 531 instructions are assigned
for validation unseen and 771 instructions for the test set,
as shown in Table 3. We hope future researchers employ
AerialVLN to tackle long path length 3D VLN tasks in
the unseen environment and focus on the investigation
of action learning in long time horizons and sparse re-
ward; while utilising AerialVLN-S as the benchmark for
general 3D aerial VLN tasks in first-person view.

AerialVLN AerialVLN-S
Scene Path Instr. Scene Path Instr.

Train 17 5,460 16,380 12 3,371 10,113
Val Seen 17 606 1,818 12 111 333
Val Unseen 8 770 2,310 5 177 531
Test 8 1,610 4,830 5 257 771

Table 3: Dataset splits. AerialVLN is the full dataset, and
AerialVLN-S is for small scenes.

6. Experiment and Results
In this section, we first present the evaluation metrics

and training details of baseline models. Then we provide
extensive evaluation and analysis.

6.1. Evaluation Metrics

We adopt four widely used metrics in VLN tasks [2,
17, 20, 28]: Success Rate (SR), where one navigation is



Figure 4: Main architecture of the Cross-Modal Attention model

considered successful if the agent stops within 20 meters
of the destination; Oracle Success Rate (OSR), where one
navigation is considered oracle success if the distance
between the destination and any point on the trajectory is
less than 20 meters; Navigation Error (NE), the distance
between the stop location to the destination; Success
rate weighted by Normalised Dynamic Time Warping
(SDTW), which considers both the navigation success
rate and the similarity between ground truth path and
model predicted path [16].

6.2. Results

We evaluate five baseline models on our task. Four
of these baselines have served as a golden standard for
VLN tasks as in [1, 2, 28]. The other baseline is our
extension to the best existing baseline. Below we first
briefly introduce baselines and then present the results.

6.2.1 Baselines

Random. The agent randomly selects actions at each
location and stops until the ‘stop’ action is selected or
when reaching the max steps. This is widely used to
reflect how big the solution space can be.
Action Sampling. Action Sampling agents explore the
statistical characteristic of the dataset by sampling actions
according to the action distribution of the training set.
This can be used to measure the similarity of the action
distribution on evaluation and training splits.
LingUNet. LingUNet [25] is a baseline model used by
previously aerial VLN task LANI. Consider that LANI
assume that agent can see the destination from the start
point, LingUNet has an episode-wise paradigm. How-
ever, such assumption can’t stand in AerialVLN task, we
thus adapt LingUNet model into a step-wise paradigm.
Sequence-to-Sequence. Seq2Seq [2] is a baseline
model with a recurrent policy. It takes as input
the concatenation of the RGB feature vt

R =

meanpool(ResNetRGB(v
R
t )), the Depth feature

vt
D = ResNetDepth(v

D
t ), and the instruction embed-

ding s = LSTM(ω1, ..., ωL). Then it projects them to a
hidden representation h

(a)
t = GRU([vt

R, vt
D, s], h

(a)
t−1),

which is further used to predict a distribution over the ac-
tion space. The one with the largest probability is selected
as the next action at = argmax

a
softmax(Wah

(a)
t + ba).

Cross-Modal Attention. Cross-Modal Attention (CMA)
is a classical baseline model for VLN tasks. As shown in
Figure 4, the CMA baseline is based on a bi-directional
LSTM and divides the whole process into two parts.
One is tracking visual observations, and the other one is
decision-making. The former is formulated as h(attn)

t =

GRU([vt
R, vt

D, at−1], h
(attn)
t−1 ), where at−1 ∈ R1×32

and is a learned linear embedding of the previous ac-
tion. The latter encodes the instruction embedding
first and outputs the intermediate hidden state S =
{s1, ..., sL} = BiLSTM(ω1, ..., ωL). Then the atten-
tion mechanism is applied to instructions and images,
which is ŝt = Attn(S, h

(attn)
t ), v̂Rt = Attn(vRt , ŝt),

v̂Dt = Attn(vDt , ŝt), where Attn is a scaled dot-product
attention. Finally, all these features and embeddings are
concatenated to serve as the input of the recurrent net-
work and predict an action for the agent to execute.

(a) Shortest path guidance (b) Look-ahead guidance

Figure 5: Illustration of Look-ahead Guidance. ‘A’ de-
notes starting location; ‘⋆’ denotes destination; ‘X’ de-
notes current location; Blue path denotes ground-truth;
Yellow path denotes “generated ground-truth” when the
agent deviates from the real ground-truth path.



Validation Seen Validation Unseen Test Unseen# AerialVLN NE/m ↓ SR/% ↑ OSR/% ↑ SDTW/% ↑ NE/m ↓ SR/% ↑ OSR/% ↑ SDTW/% ↑ NE/m ↓ SR/% ↑ OSR/% ↑ SDTW/%↑
1 Random 300.8 0.0 0.0 0.0 351.0 0.0 0.0 0.0 356.3 0.0 0.0 0.0
2 Action Sampling 383.1 0.1 2.1 0.1 434.9 0.2 2.1 0.1 441.9 0.2 1.8 0.1
3 Seq2Seq 480.4 2.9 10.2 1.0 551.8 1.1 5.6 0.3 558.8 1.0 4.9 0.3
4 CMA 293.5 2.3 6.5 0.8 360.7 1.6 4.4 0.5 358.6 1.6 4.1 0.5
5 Human - - - - - - - - 73.5 80.8 80.8 14.2

Validation Seen Validation Unseen Test Unseen# AerialVLN-S NE/m ↓ SR/% ↑ OSR/% ↑ SDTW/% ↑ NE/m ↓ SR/% ↑ OSR/% ↑ SDTW/% ↑ NE/m ↓ SR/% ↑ OSR/% ↑ SDTW/% ↑
S1 Random 109.6 0.0 0.0 0.0 149.7 0.0 0.0 0.0 148.5 0.0 0.0 0.0
S2 Action Sampling 213.8 0.9 5.7 0.3 237.6 0.2 1.1 0.1 242.0 0.7 2.5 0.3
S3 LingUNet 383.8 0.6 6.9 0.2 368.4 0.4 3.6 0.9 399.8 0.1 3.1 0.1
S4 Seq2Seq 146.0 4.8 19.8 1.6 218.9 2.3 11.7 0.7 214.6 2.2 9.4 0.7
S5 CMA 121.0 3.0 23.2 0.6 172.1 3.2 16.0 1.1 178.5 3.9 13.1 1.4
S6 Seq2Seq-DA 85.5 9.9 24.1 4.5 143.5 4.0 10.9 0.7 140.2 3.5 9.5 0.6
S7 CMA-DA 92.2 9.9 26.5 3.7 122.7 4.5 13.9 1.0 125.4 4.3 14.8 1.2
S8 Ours (LAG) 90.2 7.2 15.7 2.4 127.9 5.1 10.5 1.4 128.3 4.5 11.6 1.3

Table 4: Performance of baselines on our AerialVLN task (Row 1-5) and AerialVLN-S task (Row S1-S7). There is a
significant gap to human performance.

Look-ahead Guidance (LAG). When training models
in a student-forcing fashion, the ground-truth actions are
usually determined according to the shortest path from
the current location to the destination (see Figure 5(a))
in most existing methods. However, this is unreasonable
because the instructions do not describe the shortest path
from starting to the destination. To mitigate this issue, we
inspired by [29] and propose a new strategy that generates
ground-truth actions according to a “look-ahead” path.
As shown in Figure 5(b), assuming the agent is at location
X currently, the look-ahead path is determined by three
steps: (1) find the shortest path to return to the ground-
truth path (X→B in the example); (2) navigate along
the ground-truth path 10 steps (look-ahead step = 10),
assuming arrive at location C; (3) the look-ahead path is
the shortest path from X to location C, and the ground-
truth action for the next step is the first step on this path.
We combine the aforementioned CMA model and our
look-ahead guidance as our new baseline, denoted as
LAG.

6.2.2 Results

Table 4 shows all the results. The results show that:
1. Random action hardly succeeds. The success rate
of the Random model (Row 1 and S1) is 0%. Even if
we sample actions according to the action distribution
of the training split, the success rate still remains below
1% (Row 2 and S2). Moreover, the oracle success rate
is always below 3% on unseen splits. This indicates an
agent can hardly reach even passing by the destination if
it cannot understand the instructions, visual perceptions,
and their alignment.
2. LingUNet achieves limited success. Performance on
Unseen cases only slightly better than Action Sampling
(Row S2∼S3). This may be attributed to the lack of
recurrent structures in the decision component of the

Baseline, resulting in the model’s inability to effectively
model historical information.
3. The golden baselines Seq2Seq and CMA achieve
success rate 1.0%∼ 1.6% on unseen splits of the full
dataset (Val Unseen and Test Unseen, Row 3∼4) and
2.2%∼3.9% on the AerialVLN-S dataset (Row S4∼S5).
At the same time, the oracle success rate also rises to 5%
and 16%, respectively. This indicates that learning-based
models have a larger chance to succeed than random
models. However, the success rate is still rather low
compared to human performance (SR: ∼80%).
4. When applying the Dataset Aggregation (DA [30], an
offline student-forcing strategy where executed actions
are sampled from predictions instead of ground-truth
actions) technique to mitigate the training-test discon-
nection problem (agents in test are not exposed to the
consequences of their actions during training), the perfor-
mance becomes better with about 6% improvement on
seen split and about 1% improvement on unseen splits
(Row S6∼S7). This demonstrates exploring non-ground-
truth actions helps learn more from training data and
increases generalisation ability. On the other hand, com-
paring to the results of the same model (e.g., CMA-DA)
on ground-based VLN tasks, such as continuous R2R,
the performance on AerialVLN is rather low: SR 4.5%
vs.27%. This indicates AerialVLN is much more chal-
lenging.
5. By incorporating our proposed look-ahead guidance
(LAG) to the best baseline model CMA, it achieves fur-
ther enhanced performance (Row S8) on unseen splits
in terms of both SR and SDTW, which demonstrates the
look-ahead guidance can help the agent to fly according
to instructions.

We also present a qualitative result in Figure 6. It
shows that when the agent can align visual and textual
landmarks (as well as understand rotation commands), it



Figure 6: Visualisation of a successful navigation of our LAG model. Green arrows indicate horizontal movement
motions (Move Forward, Move Left/Right); blue arrows represent vertical motion (Move Up/Down) and horizontal
rotation (Turn Left/Right). The final red circle denotes Stop. We highlight aligned landmarks by coloured bounding
boxes in images and words in the instruction using the same colour. The superscript of words denotes the index of the
corresponding action in images.

has a large chance to succeed.
Possible reasons for failures We find that the length of
path magnificently influences the success rate. Seq2Seq
and CMA could follow instructions at an early stage
but they cannot get back on track once deviate. Take
AerialVLN for example, we further divide it into a long-
path set (average path length 813.2m) and a short-path
set (average path length 326.9m). Success rate on the
former is only 1.8% while the latter can be up to 7.4%.
Failure to stop correctly also leads to the low success
rate. Supplementary material provides further failure
analysis. As shown in Table 4, OSR of both Seq2Seq
and CMA is significantly higher than SR, which suggests
that the agent has passed the goal location and failed to
stop around it.

6.3. Modality Ablation Study

To investigate the importance of different modalities
in this task, we conduct an ablation study based on the
CMA model via removing RGB, Depth, RGB+Depth
(Vision), and Language from inputs, one by one. The
results are presented in Table 5.

It shows that both the vision and language inputs play

# Vision Instr. Validation Unseen
NE/m↓ SR/%↑ OSR/%↑ SDTW/%↑

1 RGB+D ✓ 122.7 4.5 13.9 1.0
2 RGB ✓ 145.5 3.2 7.9 1.0
3 D ✓ 205.5 3.0 18.1 0.8
4 - ✓ 177.0 1.3 12.1 0.3
5 RGB+D - 145.4 2.1 11.1 0.5

Table 5: Modality Ablations.
the most important role (Row 1 vs. Row 4, Row 1 vs.
Row 5). This is reasonable because without either of
them the task actually is non-sense. Additionally, the
large performance drop indicates the dataset has little
visual or textual bias. On the vision side, without depth
information (Row 2) or RGB information (Row 3) leads
to a success rate drop and without RGB drops more. This
indicates both RGB and depth information matter to the
final success and RGB information contributes more.

7. Conclusion
In this work, we introduce a new task and a large-

scale dataset, AerialVLN, for the exploration of vision-
and-language navigation in the sky. The linguistic anal-
ysis yields that AerialVLN dataset presents significant
challenges to complex language understanding and its
associated visual-textual alignment. We also evaluate



several widely adopted baselines, of which the perfor-
mance drops significantly on our task and falls far behind
human performance. This indicates that our task provides
a broad study space for further research.
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