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Abstract

Referring video object segmentation aims to segment a
referent throughout a video sequence according to a nat-
ural language expression. It requires aligning the natural
language expression with the objects’ motions and their dy-
namic associations at the global video level but segmenting
objects at the frame level. To achieve this goal, we propose
to simultaneously maintain a global referent token and a
sequence of object queries, where the former is responsi-
ble for capturing video-level referent according to the lan-
guage expression, while the latter serves to better locate
and segment objects with each frame. Furthermore, to ex-
plicitly capture object motions and spatial-temporal cross-
modal reasoning over objects, we propose a novel temporal
collection-distribution mechanism for interacting between
the global referent token and object queries. Specifically,
the temporal collection mechanism collects global informa-
tion for the referent token from object queries to the tempo-
ral motions to the language expression. In turn, the tempo-
ral distribution first distributes the referent token to the ref-
erent sequence across all frames and then performs efficient
cross-frame reasoning between the referent sequence and
object queries in every frame. Experimental results show
that our method outperforms state-of-the-art methods on all
benchmarks consistently and significantly.

1. Introduction
Referring video object segmentation task (RVOS) aims

to segment the target referent throughout a video sequence
given a natural language expression [22]. It has attracted
increasing attention from the academic community, as it
is a basis for assessing a comprehensive understanding
of visual, temporal and linguistic information. Mean-
while, ROVS benefits various downstream interactive ap-
plications such as language-driven human-robot interac-
tion [39], video editing [25] and video surveillance [44].

†Sibei Yang is the corresponding author.
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Figure 1. The comparison of (a) previous best-performing Refer-
Former, (b) video-level decoding, and (c) ours referent-guided dy-
namic temporal decoding.

Compared to referring image segmentation [12,62] that seg-
ments the target object in a single image mainly according
to appearances and spatial and semantic relations, ROVS re-
quires locating referents with temporal consistency accord-
ing to object motions and dynamic associations among ob-
jects across frames.

Previous works mainly follow a single-stage bottom-up
manner [9, 15, 38, 47, 48] or a two-stage top-down fash-
ion [28]. The bottom-up methods early align the vision
and language at the local patch level, failing to explicitly
model objects and their relations [28, 53]. Although top-
down approaches explicitly extract object tracklets and se-
lect object tracklets matched with the language expression,
their two-stage pipeline is complex and less efficient [53].
Recently, transformer-based frameworks [1, 53] have been
proposed to use object queries to capture objects and their
associations in an end-to-end manner. They generate ob-
ject queries and utilize the transformer decoder to search
objects for these object queries in every frame, as shown in
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Figure 2. Comparison of temporal modeling for previous works, naive attempt, and ours. Previous works (MTTR and ReferFormer)
lack temporal modeling when decoding. Besides, object motion and interaction with other objects are crucial for referring video object
segmentation. However, simply modeling temporal interaction with globally visible video-level decoding cannot achieve satisfactory
results. Note that our alternating interaction between the global referent and object queries can dynamically capture spatial-temporal cross-
modal reasoning over objects guided by the global referent information.

Figure 1a and b.
Although these end-to-end transformer-based frame-

works have achieved impressive segmentation results, they
still have limitations needed to be improved. First, their
object queries are frame-level and independently responsi-
ble for the search for objects in each frame, which fails to
capture temporal object motions and effective object track-
ing, as shown in Figure 2a and b. Therefore, we observe
that they often fail to obtain temporally consistent predic-
tions for target referents across an entire video, as shown
in the left example in Figure 2. Second, their interactions
between object queries are also solely performed per frame,
leading to failure to model object-level spatial-temporal as-
sociations between objects. Therefore, they cannot cor-
rectly ground expressions that require cross-modal spatial-
temporal reasoning over multiple objects. For example (see
the right example in Figure 2), they mislocate the left camel
as the target object because they lack to model the relation
between the left camel in the current frame and the camel
walking in the subsequent frame.

In this paper, we aim to address these limitations by em-
powering the decoder with the capability of temporal mod-
eling. A straightforward approach to decode objects with
temporal information is to convert the frame-level decoding
into video-level by inputting a sequence of object queries to
search for objects in a sequence of frames like VisTR [49]
for video instance segmentation, as shown in Figure 1b and
2e. However, this simple attempt fails to achieve satisfac-
tory results while significantly increasing the computational
cost and even underperforming existing query-based trans-
former frameworks. We further analyze the reasons: (1)
The alignment between the natural language expression and
the referent relies on overall objects’ motions and tempo-
ral associations in the entire video. For example, the two
camels can be distinguished only if the walking motion of

the target camel is identified based on the entire video and
aligned with the language expression. In contrast, the above
naive attempt prematurely aligns language with fine-grained
frame-level objects so that its attention is distracted from
focusing accurately on the overall motions and relations of
objects at the video level. (2) However, the precise local-
ization and segmentation of target objects should go back
to and rely more on every single frame because objects with
different motions may cause them to have very different
spatial locations in different frames. A similar observation
is discussed by SeqFormer [54] for video instance segmen-
tation, which suggests processing attention with each frame
independently.

Therefore, to address the challenge of aligning the lan-
guage expression with objects’ motions and temporal asso-
ciations at the global video level but segmenting objects at
the local frame level, we propose to maintain both local ob-
ject queries and a global referent token. Global referent to-
ken captures the video-level referent information according
to the language expression, while local object queries locate
and segment objects with each frame. Furthermore, the ob-
ject queries and the referent token are interacted to achieve
spatial-temporal object information exchange through our
well-designed temporal collection and distribution mech-
anisms, as shown in Figure 2f. Specifically, the tempo-
ral collection collects the referent information from object
queries with spatial and visual attributes to temporal ob-
ject motions to language semantics. In turn, the temporal
distribution first dynamically distributes the referent token
to every frame to extract the referent sequence. Then, the
referent sequence interacts with object queries within each
frame to achieve efficient spatial-temporal reasoning over
objects. Note that the temporal collection and distribution
alternately propagate information between object queries
and the referent token to update each other.



Finally, we propose a Temporal Collection and Distribu-
tion network (TempCD) which integrates our novel tempo-
ral collection and distribution mechanisms into the query-
based transformer framework. Without using sequence
matching or post-processing during inference like the pre-
vious methods [1,53], Our TempCD can directly predict the
segmentation result of every frame based on object queries
in the frame and the referent token.

In summary, our main contributions are as follows,

• We introduce to maintain a global referent token and
a sequence of local object queries parallelly to bridge
the gap between video-level object alignment with lan-
guage and frame-level object segmentation.

• We propose a novel collection-distribution mechanism
for interacting between the referent token and object
queries to capture spatial-temporal cross-modal rea-
soning over objects.

• We present an end-to-end Temporal Query Collection
and Distribution (TempCD) for RVOS, which can di-
rectly predict the segmentation referent of every frame
without any post-processing and sequence matching.

• Experiments on Ref-Youtube-VOS, Ref-DAVIS17,
A2D-Sentences and JHMDB-Sentences datasets show
that TempCD outperforms state-of-the-art methods on
all benchmarks consistently and significantly.

2. Related Work
Referring Image Segmentation (RIS) involves segment-
ing objects in images based on natural language expres-
sions. Compared to Referring Video Object Segmentation
(RVOS), RIS operates on individual images without tempo-
ral information. Previous works [3, 4, 26, 29, 42, 45, 57–59]
focus on the joint modeling of vision and language. Various
methods [6, 13, 14, 16, 20, 21, 35, 60, 64] are explored suc-
cessively, such as using fusion operators like concatenation,
ConvLSTM, attention mechanisms [46], and GNN [10]
to obtain multimodal semantic feature maps. In addi-
tion, some studies attempt to decouple different compo-
nents or key semantics from language, through explicit
two-stage approaches [51, 66] or implicit attention mod-
ules [43, 62, 64, 65], to achieve a more fine-grained under-
standing. Recent models explore novel fusion techniques,
including early fusion [8,63], Linguistic Seed Encoder [23],
and contrastive learning [50], to improve the performance
of RIS. However, for RVOS, it requires not only the mul-
timodal integration of language and image frames but also
temporal modeling at the video level.
Referring Video Object Segmentation (RVOS) aims to
segment the target object described in natural language
from videos. Previous works in RVOS has primarily used
two frameworks: bottom-up and top-down. The top-
down framework [28] directly models the motion informa-

tion between segmentation masks of consecutive frames.
However, this two-stage approach, which includes com-
plex computational costs, is limited in terms of video
input length. For the bottom-up framework, some ap-
proaches [9, 15, 38, 47, 48] directly apply RIS methods to
construct multi-modal feature maps for referring segmen-
tation of keyframes. They rely solely on replacing the tra-
ditional image backbone with a 3D temporal backbone for
temporal modeling, which limits the performance of multi-
frames segmentation. To address this issue, URVOS [41]
extends previous methods by building a memory bank that
propagates language referent object information in the tem-
poral dimension. Furthermore, URVOS introduces the Ref-
Youtube-VOS [41] dataset, which provides segmentation
annotations for each frame that require more efficient tem-
poral modeling. In addition, recent works [7, 52, 68] adopt
language guided fusion between temporal features and vi-
sual features to obtain more efficient temporal modeling.
Recently, query-based methods [1, 53] with a transformer
encoder-decoder frameworks [2, 5, 69] attempt to capture
object-level information. They achieve higher performance
by constructing a multimodal feature map of visual and lin-
guistic information, or by using language-initialized queries
with independently decoding with queries for each frame.
Temporal Modeling in Video Instance Segmentation
(VIS). VIS aims to simultaneously track, segment and clas-
sify interest instances in a video. Similarly to RVOS, VIS
requires obtaining instance information from every frame
in the video and maintaining the temporal consistency of
instances. Recent works focus on spatial and temporal
modeling based on instance-level information. VisTR [49]
employs an encoder-decoder transformer based on DETR,
with a concateneated sequence of instance queries as the
input to enable spatial-temporal interactions. The follow-
ing IFC [17] and TeViT [61] explored a more efficient
approach to temporal modeling in the encoder by intro-
ducing supplementary tokens for interaction across frames,
with the decoder aligned with VisTR. Other following
works [24, 56] take advantage of memories or queries from
several previous frames to help instance segmentation in the
current frame, extending to a online fashion. Recently, Se-
qFormer [54] proposes that the acquisition of frame-level
instance information such as position needs to go back to
each frame, i.e., the decoding process should be done in-
dependently for each frame. While these methods provide
potential solutions for temporal modeling, the direct appli-
cation to RVOS is not feasible, because of inconsistent ob-
ject semantics over frames.

3. Method
The framework of our proposed TempCD is shown in

Figure 3. We introduce a sequence of object queries to cap-
ture object information in every frame independently and
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Figure 3. Overall framework of TempCD. TempCD simultaneously maintains a global referent token and a sequence of object queries, and
they interact via the proposed collection-distribution mechanism. Specifically, the temporal collection collects global information for the
referent token from object queries to the temporal motions to the language expression. In turn, the temporal distribution first distributes the
referent token to the referent sequence and then performs efficient cross-frame reasoning between the referent sequence and object queries.

maintain a referent token to capture the global referent in-
formation for aligning with language expression. The refer-
ent token and object queries are alternately updated to step-
wise identify the target object and better segment the target
object in every frame through the proposed temporal collec-
tion and distribution mechanisms.

Specifically, we first introduce encoders and the defini-
tion of object queries in Section 3.1. Then, we present the
temporal collection that collects the referent information for
the referent token from object queries to temporal object
motions to the language expression (see Section 3.2). Next,
we introduce the temporal distribution mechanism that dis-
tributes the global referent information to the referent se-
quence across frames to object queries in each frame (see
Section 3.3). The collection-distribution mechanism ex-
plicitly captures object motions and spatial-temporal cross-
modal reasoning over objects. Finally, we introduce seg-
mentation heads and loss functions in Section 3.4. Note that
as we explicitly maintain the referent token, we can directly
identify the referent object in each frame without requiring
sequence matching as in previous queries-based methods.

3.1. Encoders and Query Definition

Language Encoder. Following previous work [53], we
adopt RoBERTa [32] as our language encoder. Given a lan-
guage expression with L words, we extract its sentence fea-
ture Fs ∈ RC , where C denotes channel dimensions. In ad-
dition, we obtain the output feature representation of each
word before the last pooling layer as Fw ∈ RL×C .

Visual Backbone and Encoder. Following previous
works [1, 52, 53, 61], we use ResNet-50 [11] as our vi-
sual backbone. We also follow recent work [1, 53] to eval-
uate our model using the temporal visual backbone net-
work Video-Swin [33] in experiments. For an input video
V ∈ RH×W×3×T with T frames, we first extract its vi-
sual feature maps and further construct multimodal feature
maps V = {vi}Ti=1 by fusing the visual feature maps with
the word features of the expression Fw following [53].
Object Query Definition. Inspired by query-based detec-
tion and segmentation frameworks [2, 5, 69], we leverage
object queries to represent object-level information. For the
video with T frames, we introduce a sequence of T × N
object queries to represent the objects in every frame and
follow [53] to use the language feature Fs to initialize the
object queries as Q ∈ RT ×N×C , where the number of ob-
jects and the dimension of channels are N and C, respec-
tively.
Referent Token Definition. In addition to adopting the ob-
ject queries to represent objects in every frame, we define a
referent token Qg ∈ RC to represent the global information
of the target object. As the language expression naturally
indicates the referent information, we thus use the language
feature Fs to initialize the Qg .

3.2. Temporal Collection from Object Queries

The temporal collection mechanism collects object mo-
tions from frames and aggregates object motions consistent
with the language expression into the global referent token.



We first perform motion collection across object queries
(see Section 3.2.1) and then update the global referent to-
ken from the object motions and language expression (see
Section 3.2.2).

3.2.1 Motion Collection across Object Queries

For simplicity of demonstration, we denote the object
queries output from the (l − 1)-th layer as Ql−1 and input
them into the l-th layer of TempCD. Note that we input the
object queries Q defined in Section 3.1 into the first layer of
TempCD. We utilize Ql−1 to capture object information in
each frame and integrate them to obtain temporal informa-
tion such as object motion and action. Specifically, for i-th
frame, we feed its object queries qi = Qi

l−1 ∈ RN×C and
the multimodal features vi into the DETR transformer de-
coder [2,69] to locate objects, where Qi

l−1 means the object
queries of i-th frame. The computation proceeds as follows,

Q̂l = {DETR(qi, vi)}Ti=1, (1)

where DETR(·, ·) represents the DETR transformer de-
coder, and Q̂l denotes the object queries output by the de-
coder.

Next, to aggregate object motions across the video se-
quence, we combine objects information from queries of
each frame. Specifically, we generate temporal weights
G ∈ RT ×N×1 for each frame given the object queries Q̂l.
This is done by employing a nonlinear layer followed by
a softmax operator. Then, we use the temporal weights G
to integrate the frame-level information and obtain object
motions M ∈ RN×C through a gating mechanism. The
integration is computed as follows,

G = softmax(Q̂lW ),

M =

T∑
i=1

(Gi ⊙ Q̂i
l),

(2)

where W ∈ RC×1 denotes the learnable weights of the lin-
ear layer, Gi ∈ RN×1 is the weight for i-th frames in G,
softmax(·) represents the softmax operation along the tem-
poral dimension, and ⊙ is the element-wise product.

3.2.2 Global Referent Token Collection

Next, we update the global referent token Qg
l−1 ∈ RC at the

(l − 1)-th layer to referent token Qg
l ∈ RC by selecting the

object motions M ∈ RN×C consistent with the language
feature Fs ∈ RC . Note that we input the global referent
token Qg defined in Section 3.1 into the first layer of Tem-
pCD. We first calculate the cosine similarity between the
language feature Fs and the object motions M . We obtain
the similarity scores S = {sj}Nj=1 as follow,

sj = cos(Fs,mj), (3)

where cos(·, ·) means the cosine similarity function and mj

denotes the j-th object’s motion feature in M . Next, we
update the global referent token Qg as the motion feature
of the object with the highest similarity score to the global
referent token. To ensure the selection process is differ-
entiable, we implement this selection through the Gumbel
Softmax operator [18, 36]. The calculation is as follows:

Sgumbel = softmax((S +Gs)/τ),

Sonehot = onehot(argmaxN (Sgumbel)),

Sreferent = Sonehot − sg[Sgumbel] + Sgumbel,

(4)

where softmax(·) represents the softmax operation along
dimension N , Gs ∈ RN×1 is sampled from the
Gumbel(0, 1) distribution, τ is the temperature coefficient
hyperparameter, and sg is the stop gradient operation. Ad-
ditionally, argmaxN represents choosing the index with the
highest similarity score, and onehot represents setting the
highest-scoring item to 1 based on the selected index and
setting the others to 0. The one-hot vector Sreferent ∈ RN×1

indicates the selection from the object motions. The global
referent token Qg ∈ RC is updated as follows:

Qg
l = MLP(LayerNorm(S⊤

referentM) +Qg
l−1), (5)

where MLP(·) denotes a three-layer linear layer with acti-
vation function, and LayerNorm(·) is the same as the Lay-
erNorm in standard Transformer.

We obtain the updated global referent token Qg that con-
tains information on the referent object aligned with the lan-
guage expression. Next, we feed it into the Temporal Dis-
tribution module to assist in distributing the referent infor-
mation into each frame.

3.3. Temporal Distribution from Referent Token

The temporal distribution aims to propagate the referent
information to all frames and perform dynamically spatial-
temporal reasoning over objects based on the referent infor-
mation. First, we distribute the global referent token to each
frame independently to extract the referent sequence across
all frames (see Section 3.3.1). Next, we perform the effi-
cient cross-frame reasoning between the referent sequence
and object queries in every frame (see Section 3.3.2).

3.3.1 Global Referent Token Distribution

Given the global referent token Qg
l , we distribute the ref-

erent object information to every frame and further ob-
tain the referent sequence across all frames, denoted by
Rl = {ri}Ti=1, which refers to the target object in each
frame.

Specifically, we first compute the cosine similarity
scores between the object queries Q̂l = {qi}Ti=1 and the
global referent token Qg

l . Then we obtain the index di of the



object query with the highest similarity score to the global
referent token for every frame i independently. The compu-
tation is as follows,

si,j = cos(qi,j ,Qg
l ),

di = argmaxj{si,j},
(6)

where qi,j is the j-th object query in the i-th frame, and si,j
is the corresponding similarity score. For every frame i, we
select the object query di with the highest similarity score
and fuse it with the global referent token Qg

l to generate the
referent sequence Rl = {ri}Ti=1 as follows,

Rl = {MLP(LayerNorm(qi,di
+Qg

l ))}
T
i=1. (7)

We end up with referent sequence Rl ∈ RT×C across all
frames, which is used as crucial objects to interact with ob-
ject queries in every frame independently.

3.3.2 Spatial-temporal Reasoning over Object Queries

We leverage the referent sequence Rl ∈ RT×C , which
encodes the referent object information across all frames,
to interact with the object queries to achieve the cross-
frame temporal reasoning over multiple objects and further
distribute referent information to all object queries in all
frames.

Specifically, for each object query qi,j at the i-th frame,
we concatenate it with the objects of the referent sequence
in all other frames to construct the cross-object query se-
quence Ci,j = {r1, .., ri−1, qi,j , ri+1..., rT } ∈ RT ×C . The
object-level interaction across frames is implemented by
multi-head self attention, which is computed as follows,

Ĉi,j = MHSA(Ci,j), (8)

where MHSA(·) denotes the multi-head self-attention
mechanism. The j-th updated object queries in Ĉi,j for ev-
ery frame i are concatenated as Qf

l ∈ RT ×N×C to input
to next decoder layer. Note that our cross-frame interaction
only requires interaction with referent sequences to object
queries in each frame, which achieves efficient cross-frame
interaction over multiple objects.

3.4. Prediction Heads and Loss

We integrate the referent sequence and object queries in
each decoder layer to the prediction heads for predicting
results. To simplify the presentation, we use the final layer
for details.

We extract the referent sequence R ∈ RT×C and com-
bine them with the object queries Ql to obtain the output
referent sequence R̂ for prediction. Specifically, we use a
gating mechanism to integrate the information from Ĉ into
video-level features, which is similar to Eq 2. Next, we cal-
culate cosine similarity between each sequence Cj,i and the

language sentence feature Fs, which is similar to Eq 3, to
obtain the score for each object qi,j . We select the highest-
scoring object qri in each frame and combine it with R to
obtain the final referent sequence R̂ ∈ RT ×C of the re-
ferred object in each frame:

R̂ = {MLP(LayerNorm(ri + qri ))}. (9)

Finally, we feed R̂ into the segmentation head to predict the
segmentation results. Additionally, similar to [53] and [1],
we use a box prediction head to regress the box coordinates
for each query. We utilize Dice [37] loss and Focal [30] loss
as the segmentation loss and GIOU [40] loss and L1 loss as
the box loss.

4. Experiment
Datasets. We conduct experiments on four benchmark
datasets that are publicly available: Ref-Youtube-VOS [41],
Ref-Davis-2017 [22], A2D-Sentences [9], and JHMDB-
Sentences [9]. Ref-Youtube-VOS consists of 3978 videos
and approximately 15K language descriptions. Ref-Davis-
2017 contains approximately 90 videos. A2D-Sentences
and JHMDB-Sentences [19, 55], originally focused on ac-
tion recognition, have been expanded to incorporate lan-
guage expression annotations. This expansion has yielded
a total of 3782 videos for A2D-Sentences and 928 videos
for JHMDB-Sentences, each accompanied by correspond-
ing language descriptions.
Implementation Details. Following [53], we pre-train our
model on RefCOCO dataset [67]. We utilize a text en-
coder derived from RoBERTa [32], coupled with either
ResNet50 [11] or Video-Swin serving [33] as our visual
backbone. We train our model for 6 epochs with an ini-
tial learning rate of 1e-4 and the AdamW [34] optimizer.
Consistent with prior works [1, 41, 53], we use the J ,
F , and J&F metrics for evaluation on Ref-Youtube-VOS
and Ref-Davis-2017 datasets, and Overall IoU and Mean
IoU as evaluation metrics on A2D-Sentences and JHMDB-
Sentences datasets.

4.1. Comparison with State-of-the-Art Methods

As shown in Table 1 and Table 2, we compare TempCD
with state-of-the-art methods on four benchmarks. Tem-
pCD consistently outperforms state-of-the-art methods on
all datasets.
Comparison of Ref-Youtube-VOS and Ref-Davis-2017
Datasets. Results for the Ref-Youtube-VOS and Ref-Davis-
2017 datasets are presented in Table 1. With a standard
ResNet-50 [11] visual backbone, our model exhibits im-
provements of 2.7%, 4%, and 3.4% for the J , F , and J&F
metrics, respectively, on the Ref-YoutubeVOS dataset. Em-
ploying the advanced temporal visual backbone, Video-
Swin-B [33], our approach consistently outperforms the



Backbone Method Ref-Youtube-VOS Ref-Davis17
J F J&F J F J&F

ResNet-50

CMSA [65] 33.3 36.5 34.9 32.2 37.2 34.7
CMSA+RNN [65] 34.8 38.1 36.4 36.9 43.5 40.2

URVOS [41] 45.3 49.2 47.2 47.3 56.0 51.5
MLRL [52] 48.4 51.0 49.7 50.1 55.4 52.7
LBDT [7] 48.2 50.6 49.4 – – 54.5

ReferFormer [53] 54.8 56.5 55.6 55.8 61.3 58.5
Ours 57.5 60.5 59.0 57.3 62.7 60.0

Video-Swin-T
MTTR [1] 54.0 56.6 55.3 – – –

ReferFormer [53] 58.0 60.9 59.4 – – –
Ours 60.5 64.0 62.3 59.3 65.0 62.2

Video-Swin-B ReferFormer [53] 61.3 64.6 62.9 58.1 64.1 61.1
Ours 63.6 68.0 65.8 61.6 67.6 64.6

Table 1. Comparison with state-of-the-art models for RVOS on Ref-Youtube-VOS and Ref-Davis-2017 datasets.

Backbone Method A2D-S JHMDB-S
oIoU mIoU oIoU mIoU

VGG16 Hu et al. [12] 47.4 35.0 54.6 52.8

I3D
Gavrilyuk et al. [9] 53.6 42.1 54.1 54.2

ACAN [48] 60.1 49.0 75.6 56.4
CMPC-V [31] 65.3 57.3 61.6 61.7

Resnet-50

ClawCraneNet [27] 63.1 59.9 64.4 65.6
MMMMTBVS [68] 67.3 55.8 61.9 61.3

LBDT [7] 70.4 62.1 64.5 65.8
Ours 76.6 68.6 70.6 69.6

Table 2. Comparison with state-of-the-art models for RVOS on
A2D-Sentences (A2D-S) and JHMDB-Sentences (JHMDB-S).

previous state-of-the-art model [53] on the Ref-Davis-2017
dataset, achieving a 3.5% increase across the aforemen-
tioned metrics. Note that evaluations on the RefDavis-2017
dataset are performed using models trained on the Ref-
Youtube-VOS dataset.

Furthermore, we present a thorough evaluation of the
effectiveness of our TempCD through subsequent compar-
isons: (1) We compare our model to MTTR [1], a pioneer-
ing method that adopts a query-based framework for RVOS,
despite lacking temporal modeling in both the encoder and
decoder stages. Our TempCD surpasses MTTR, achieving
a 7% improvement in the J&F metric on the Ref-Youtube-
VOS dataset. This outcome underscores the heightened ef-
ficacy of our introduced temporal decoding modules. (2)
Compared with LBDT [7], our TempCD achieves a signif-
icant 9.6% enhancement in the J&F metric. This result
suggests that, unlike [7, 41, 52] that integrate temporal and
visual features via a bottom-up framework, our proposed
TempCD achieves more efficient temporal modeling.
Comparison on A2D-Sentences and JHMDB-Sentences.
As presented in Table 2, our approach yields mean im-
provements of 6.2% in Overall IoU and 5.2% in Mean IoU,
surpassing the predominant state-of-the-art method [7] for

these two datasets. In contrast to Ref-Youtube-VOS, these
datasets predominantly comprise segmentation annotations
for keyframes that encapsulate actions. When compared to
prior studies [9, 15, 38, 47, 48] that adopt temporal encoders
to process video temporal information, our method consis-
tently attains enhancements across these two datasets. This
highlights the significance of explicitly capturing and inte-
grating video-level temporal context into individual frames.

4.2. Ablation Study

To validate the impact of modules in our model, we
evaluate six variants of our TempCD on Ref-Youtube-VOS
dataset. The results are shown in Table 3. All experiments
are performed with Video-Swin-B as the visual backbone.
Baselines. (1) Our baseline model employs T sets of frame-
level object queries (“Local Query”). These queries are con-
catenated sequentially and fed into the decoder, following a
similar approach to VisTR [49]. The derived results (53.7%
J , 56.3% F , and 55.0% J&F) suggest a misalignment
between the natural language representations and the ref-
erent semantics at the individual frame level. (2) Another
subsequent baseline is established by integrating a singu-
lar shared set of video-level object queries across all frames
(“Global Query”). The global queries are performed an in-
ner product with the feature map v of each frame, yielding
segmentation outcomes. While this approach intrinsically
aligns with language representations and achieves consis-
tency between frames, it struggles to adapt to frame-level
variability, resulting in a performance decline relative to the
first baseline.
Query Collection and Distribution. (3) A natural en-
hancement for baseline (1) entails integrating cross-frame
temporal attention on a referent sequence, which is selected
from local queries by the similarity with language. This
modification leads to a performance improvement of 3.4%.
(4) Another endeavor to enhance the baseline (1) involves
the introduction of an additional set of global queries. These



(a) a white duck walking behind and passed a small rooster

(b) a deer eating a fruit from a person's hand

(c) a person on the left side of the road wearing a red shirt and grey pants

Previous SOTA (ReferFormer)Ours

Figure 4. Visualization for segmentation results of previous best-performing ReferFormer [53] and ours.

Method J F J&F

1 Local Query 53.7 56.3 55.0
2 Global Query 52.9 55.5 54.2
3 1+Cross-Frame 56.2 59.1 57.6
4 1+Motion Collection 58.1 61.5 59.8
5 3+4 60.7 64.4 62.6
6 5+Gumble-Softmax 61.4 65.4 63.4
7 Ours 63.6 68.0 65.8

Table 3. Ablation Study on Ref-Youtube-VOS dataset.

queries collect motion information from local queries and
serve to distribute global context to local queries. Specif-
ically, we utilize a Top-K strategy to select global infor-
mation based on the similarity score with language. This
facilitates implicit frame level interaction and, significantly,
fosters semantic alignment between global queries and lan-
guage expressions. This alignment contributes to a marked
performance gain of 5.6%. (5) We further incorporate both
(3)’s explicit cross-frame temporal modeling and (4)’s mo-
tion collection and distribution, which delivers a 2.8% im-
provement. (6) We replace the Top-K selection, which does
not allow gradient calculation, with Gumbel Softmax, im-
proving J&F by 0.8%. (7) Our complete model further
enhances the vanilla cross-frame temporal attention mech-
anism. Instead of solely updating the referent sequence via
temporal interaction, local object queries are also extended
to incorporate temporal context information from referent
sequence, facilitating cross-frame interaction over multiple
objects. The full decoder of our proposed method achieves
the performance of 65.8% in terms of J&F .

4.3. Visualization

Figure 4 visualizes several qualitative results. The re-
ferring expression in (a) describes the motion of a white
duck, a pivotal feature that distinguishes it from similar
ducks. Our proposed TempCD effectively captures the mo-
tion of the referent which is aligned with the language ex-
pression and enables accurate localization and segmenta-
tion of the specific duck. In contrast, Referformer fails to

locate the referent object, primarily attributed to a seman-
tic incongruity between the expression and the frame-level
queries. In the instance of (b), the deer’s corresponding ac-
tion appears in certain frames but lacks uniform presence.
Our approach successfully captures its global semantics in-
cluding motions and aligns it seamlessly with the referring
expression, bridging the gap between local semantics and
the referring expression via the Collection and Distribution
mechanisms. Conversely, ReferFormer identifies the ref-
erent accurately in specific frames that correspond to the
specified action, yet exhibits errors in others due to a no-
ticeable lack of temporal context. All these observations
collectively underscore the value of temporal interaction in
fostering refined segmentation across frames. Besides, (c)
illustrates that our method can still precisely locate and seg-
ment referent objects in complex scenes. The second frame
presents a scenario of occlusion, wherein the referent is ob-
scured by another bicycle. Our approach detects the lack of
correspondence between visible entities in a frame and the
specified referent sequence, facilitated by cross-frame inter-
actions between the visible objects and those delineated by
the referent sequence.

5. Conclusion

This paper proposes an end-to-end Temporal Query Col-
lection and Distribution (TempCD) network for referring
video object segmentation, which maintains object queries
and the referent token and achieves alternating interaction
between them via the proposed novel temporal collection-
distribution mechanism.
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