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Abstract

Vision-language models such as CLIP [28] learn a
generic text-image embedding from large-scale training
data. A vision-language model can be adapted to a new
classification task through few-shot prompt tuning. We find
that such a prompt tuning process is highly robust to la-
bel noises. This intrigues us to study the key reasons con-
tributing to the robustness of the prompt tuning paradigm.
We conducted extensive experiments to explore this prop-
erty and find the key factors are: 1) the fixed classname to-
kens provide a strong regularization to the optimization of
the model, reducing gradients induced by the noisy sam-
ples; 2) the powerful pre-trained image-text embedding
that is learned from diverse and generic web data provides
strong prior knowledge for image classification. Further,
we demonstrate that noisy zero-shot predictions from CLIP
can be used to tune its own prompt, significantly enhancing
prediction accuracy in the unsupervised setting. The code
is available at https://github.com/CEWu/PTNL.

1. Introduction

Large-scale vision-language models such as CLIP [28],
ALIGN [13], and CoCa [44] are transforming how we learn
and interact with visual representations. Since these models
learn to align the representations of a broad set of natural
images with their textual descriptions, they have shown an
exceptional ability to solve a wide range of tasks in a data-
efficient manner. For example, using the pre-trained text
encoder, one can obtain a set of class embeddings by en-
coding a canonical sentence such as “A photo of a <CLS>”
and use them to recognize objects without a labeled dataset.
While promising, Zhou et al. [51] showed that these human-
defined sentences (also known as class prompts) can be un-
stable, with seemingly equivalent descriptions leading to
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Figure 1: Comparison with transfer learning approaches on
two datasets with training labels that have incremental noisy
rates. ImageNet Finetuning is finetuning pre-trained model
on ImageNet. For the CLIP pre-trained model, Prompt Tun-
ing is much more robust to the Linear Probe manner. By
combining the generalized cross-entropy (GCE) [47], we
further improve the robustness of Prompt Tuning to noisy
labels. ResNet-50 is used for all approaches as their image
encoders.

different predictions. To address this issue, researchers have
focused on prompt tuning [51], where a learnable prompt
is learned from a small target dataset by back-propagation.

ar
X

iv
:2

30
7.

11
97

8v
1 

 [
cs

.C
V

] 
 2

2 
Ju

l 2
02

3

https://github.com/CEWu/PTNL


Since only the prompt needs to be trained, this framework
is very data-efficient. As a result, prompt-tuning has gained
popularity for adapting vision-language models to down-
stream tasks like few-shot learning [51, 50], continual learn-
ing [39], and object segmentation [29].

While prompt tuning has proven effective when train-
ing on downstream tasks with accurately annotated datasets,
their robustness to noisy labels has been neglected. Since
the quality of annotations for many applications can be low,
learning with noisy labels is critical to solving real-world
problems. In this work, we demonstrate that prompt tuning
is robust to noisy labels, and investigate the mechanisms
that enable this robustness. We hypothesize that the joint
text and image embeddings of vision-language models can
provide a well defined structure to the classification space
(e.g., which classes are most similar and most distinct from
each other). This model-informed structure compensates
for the degradation of the structure present in the data due
to label noise. To verify this hypothesis, we conducted ex-
tensive experiments to study the impact of each component
of a prompt tuning task with noisy labeled data. Beyond
the robustness conferred by the structured label space, we
show that this robustness can be further enhanced when the
learnable prompts are trained using a robust loss function
that mitigates the impact of outliers. Our study has revealed
several interesting findings.

First, the classification performance obtained by tuning
the prompt through a pre-trained CLIP model is signifi-
cantly more robust to noisy labels than the traditional fine-
tuning or linear probing paradigms (see Figure 1). The ro-
bustness of prompt tuning is evident not only due to their
smaller performance degradation with higher noise rates,
but also due to its ability to diminish the gradients induced
by noisy samples. Second, while priming each class with
a shared learnable prompt is necessary for adaptation, en-
suring that the class name remains in the prompt strongly
regularizes the class embeddings and prevents overfitting
to the noisy labels. Finally, we demonstrate the benefits
of this robustness by showing that CLIP zero-shot (noisy)
predictions can be used to tune its own prompt, and sig-
nificantly enhance CLIP prediction accuracy. In fact, we
show that, instead of focusing on samples with confident
predictions (as proposed in prior unsupervised prompt tun-
ing approaches [12]), prompt tuning benefits more from an
increased diversity of training samples as it can tolerate the
noisier predictions associated with them.

The main contributions of our work are as follows:

• We demonstrate that prompt tuning for pre-trained
vision-language models (e.g., CLIP) is more robust
to noisy labels than traditional transfer learning ap-
proaches, such as model fine-tuning and linear probes.

• We further demonstrate that prompt tuning robustness

can be further enhanced through the use of a robust
training objective.

• We conduct an extensive analysis on why prompt tun-
ing is robust to noisy labels to discover which compo-
nents contribute the most to its robustness.

• Motivated by this property, we propose a simple yet ef-
fective method for unsupervised prompt tuning, show-
ing that randomly selected noisy pseudo labels can
be effectively used to enhance CLIP zero-shot perfor-
mance. The proposed robust prompt tuning outper-
formed prior work [12] on a variety of datasets, even
though noisier pseudo-labels are used for self-training.

2. Related Work
Prompt tuning for Vision-Language models. Over the
past few years, there has been huge progress in Vision-
Language Pre-Trained Models (VL-PTMs) [28, 13, 41, 44].
CLIP [28] is considered a representative model of VL-
PTMs. Unlike the conventional, finetuning paradigm, CLIP
applies prompt engineering to incorporate the category in-
formation in the text input such that its pre-trained model
can adapt to various image classification tasks without fur-
ther training. However, the design of a proper prompt
is challenging and requires heuristics. CoOp [51] intro-
duces learnable prompts optimized on target datasets to ad-
dress this problem. To further extend the generalization of
CoOp, CoCoOp [50] introduces a lightweight network to
add additional information from image inputs into learnable
prompts. CoOp has also faced criticism for disregarding the
diversity of visual representations. In contrast, ProDA [18]
tackles this issue by utilizing diverse prompts to capture the
distribution of varying visual representations.

In contrast to the supervised tuning methods above,
UPL [12] proposes a framework to perform prompt tuning
without labeled data. TPT [23] achieves zero-shot transfer
by dynamically adjusting prompts using only a single test
sample.

In addition to downstream tasks for image classification,
recent works have applied prompt tuning on CLIP to various
computer vision tasks such as object detection [29, 6], video
understanding [16, 14], and multi-label recognition [36].
These works reveal the further potential of prompt tuning.
Label noise-robust learning. Deep neural networks
(DNNs) have been well-studied for classification tasks
without label noises. However, if the training data con-
tains label noise, DNNs would easily overfit to the noisy
labels [45]. To overcome this issue, several works have
attempted to improve the noise robustness of DNNs by
approaches including robust losses that tolerate noisy la-
bels [8, 47, 38, 19], loss correction approaches that estimate
a transition matrix to correct the predictions [26, 11, 3, 31,
1, 21, 34, 43, 42], meta-learning frameworks that learn to



correct the label noise in training examples [17, 32, 15, 33,
48, 49] and regularization techniques that are customized to
lower the negative impact of noise [46, 27, 10, 40].

In this work, we demonstrate that prompt tuning on CLIP
naturally holds powerful noise robustness. We explore the
key factors behind such robustness and show its application
on unsupervised prompt tuning.

3. Prompt Tuning
CLIP [28] can perform zero-shot transfer by prompt en-

gineering – the practice of designing text inputs for down-
stream tasks. Specifically, in the case of image classifica-
tion, a normalized image embedding fv is obtained by pass-
ing an image x through CLIP’s visual encoder, and a set of
normalized class embeddings {f ti }Ki=1 by feeding template
prompts of the form “A photo of a <CLS>” into CLIP’s
text encoder. The class posterior is then estimated as

Pr(y = i|x) =
exp

(
sim(fv, f ti )/τ

)
∑K

j=1 exp
(
sim(fv, f tj )/τ

) , (1)

where τ is a temperature factor learned by CLIP and sim

denotes cosine similarity.

Prompt Tuning Although CLIP is capable of zero-shot
transfer, its performance is sensitive to designed text
prompts. To avoid the need for hand-crafted prompts and
improve transfer performance, CoOp [51] showed that text
prompts can be replaced with continuous soft prompts that
can be optimized on a target dataset. Specifically, the name
of a class c is first converted into a classname embedding
wc ∈ Rd and prepended with a sequence of M learnable
tokens pm ∈ Rd shared across all classes. The full prompt
Pc = [p1,p2, ...pM ,wc] for each class c is then processed
by CLIP’s text encoder to compute the corresponding text
embedding f tc , and the class posteriors Pr(y = i|x) are ob-
tained once again through Eq. 1. To adapt the prompt to
the target dataset, CoOp [51] optimizes the shared learn-
able tokens p1,p2, ...pM on a small labeled dataset D =
{(xi, ci)

N
i=1} to minimize the cross-entropy loss

LCE = −E(x,c)∈D [logPr(y = c|x)] . (2)

Robust Prompt Tuning In this work, we show that the
prompt tuning framework [51], describe above, displays
surprising robustness to noisy labels. However, this ro-
bustness can be further enhanced by optimizing the learn-
able prompts using the generalized cross-entropy (GCE)
loss [47], a robust generalization of cross-entropy loss. For-
mally, the GCE loss is defined as

LGCE = E(x,c)∈D

[
1− Pr(y = c|x)q

q

]
. (3)

As shown in [47], GCE is equivalent to the standard cross-
entropy loss of Eq. 2 when x → 0, and equivalent to the (ro-
bust) mean absolute error (MAE) loss ∥1− Pr(y = c|x)∥1
when q = 1. The hyper-parameter q can therefore con-
trol the tradeoff between the highly robust but less perform-
ing MAE loss and the less robust but highly performing CE
loss. While the optimal value for q could be adjusted to the
amount of noise by cross-validation, we found that q = 0.7
lead to overall good performance across several experimen-
tal settings.

4. Analysis of Prompt Tuning with Label Noise
Methods based on prompt tuning for CLIP [28] have

been shown to be effective in few-shot learning [51, 50].
However, these methods have been studied on datasets with
perfect labels. It remains unknown how prompt tuning per-
forms under label noise. We explore this practical training
setting and present our key findings.

4.1. Experimental Settings

Datasets. We conduct in-depth studies on a diverse set
of visual tasks, including generic object classification,
fine-grained recognition, action recognition, and texture
identification. We conduct our experimental analysis on
eight datasets, OxfordPets [25], Food101 [2], DTD [4],
UCF101 [35], Flowers102 [24], FGVCAircraf [22], Cal-
tech101 [7] and ImageNet [30]. Since one of the main bene-
fits of prompt tuning is its data efficiency [12], we focus our
studies on a 16-shot image classification problem, i.e. for
each dataset, we select 16 images per class as our training
set. To examine the effect of noise in prompt tuning, we ran-
domly perturb training labels with different levels of noise
rate (12.5%, 25%, and 50%). Unless otherwise specified,
noisy labels are drawn uniformly at random from other cat-
egories of the dataset. We report average results over four
runs with different training sets in all experiments.
Backbone. We adopt pre-trained CLIP models, namely us-
ing the 63M parameter text Transformer [37] as the text en-
coder, and either a ResNet-50 [9] or a ViT-B/32 [5] as the
visual encoder. Following CoOp [50], we use 16 learnable
tokens in each prompt shared across all categories.
Optimization. Models are trained with a batch size of 32
for 50 epochs, using stochastic gradient descent (SGD) with
momentum of 0.9 and an initial learning rate of 0.002, an-
nealed to zero with a cosine decay schedule.

4.2. Prompt Tuning Is Robust to Noisy Labels

The core observation of this paper is that prompt tuning
vision-language models, such as CLIP, is surprisingly ro-
bust to noisy labels. This can be observed by comparing
prompt tuning for CLIP with two traditional transfer learn-
ing approaches: 1) training a linear classifier on CLIP’s vi-
sual representations (denoted CLIP Linear Probe); and 2)
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Figure 2: Incorporating the generalized cross-entropy (GCE) [47] loss with Prompt Tuning and Linear Probe methods,
originally trained using cross-entropy, can enhance their noise robustness. At high noise rates, Prompt Tuning with GCE
outperforms other methods by a significant margin across four datasets.
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Figure 3: Illustration of different structures for studying the effect of image and text encoders on prompt tuning and prompt
design. The blocks highlighted in red are to be trained, while those highlighted in gray are to be frozen.

fine-tuning the same visual backbone pre-trained on Ima-
geNet. The results on two datasets, DTD and UCF101, are
shown in Figure 1 (a) and (b), respectively. As can be seen,
although linear probes and fine-tuning achieve competitive
performance with perfectly labeled data (0% noise rate),
both procedures suffer from a significant accuracy drop with
higher noise rates of 25% and 50%. This result shows
that prompt tuning is naturally more resistant to noisy la-
bels than the alternatives. We show nevertheless that its ro-
bustness can be further enhanced by training the prompt us-
ing the robust generalized cross-entropy loss (denoted CLIP
Prompt Tuning (GCE) in Figure 1). As can be seen, when
combining Prompt Tuning and GCE, the model’s perfor-
mance remains highly competitive, even for noise rates as
high as 50%. Furthermore, we observe that this robustness
stems from the combination between Prompt Tuning and
GCE, and not from GCE alone. This can be seen in Fig-
ure 2, which depicts the noise robustness of Prompt Tun-
ing and Linear Probes both trained under the cross-entropy
and GCE losses on four datasets. While the robustness of

the linear probe also improves with a GCE loss, the perfor-
mance drop at high noise rates is significantly smaller when
learning through prompt tuning.

Now that we have established the noise robustness of
prompt tuning, the remainder of this Section is dedicated
to providing intuitions and experimental analysis to answer
the why question.

Question: Why is prompt tuning for CLIP-like
vision-language models more robust than tradi-
tional transfer learning against noisy labels?

4.3. Robustness Attribution

To answer this question, we begin by analyzing two
key components of CLIP in isolation, namely the generated
class embeddings and learnable prompts.
Pre-trained CLIP generates effective class embeddings.
We first analyse the impact of the class embeddings gener-
ated by the CLIP text encoder. To this end, in addition to
the class embeddings generated through prompt tuning, we
assess the noise robustness of three different models:



Dataset Method Noise rate
0 12.5 25 50

Classifier-R 74.82 64.10 55.96 36.63
Classifier-C 81.47 70.29 61.87 44.21
TEnc-FT 84.38 70.73 61.11 41.21

OxfordPets

Prompt Tuning 87.89 84.62 81.20 73.13
Classifier-R 63.80 54.66 46.23 28.97
Classifier-C 69.36 60.46 51.85 34.37
TEnc-FT 71.30 61.60 52.64 34.74

Food101

Prompt Tuning 76.99 73.63 71.07 64.30
Classifier-R 48.02 44.30 40.32 30.10
Classifier-C 63.83 57.14 50.36 34.86
TEnc-FT 63.61 55.47 48.21 33.12

DTD

Prompt Tuning 62.86 58.90 53.62 46.19
Classifier-R 67.16 58.33 50.34 31.07
Classifier-C 71.87 64.12 54.79 38.01
TEnc-FT 73.74 64.52 56.10 37.88

UCF101

Prompt Tuning 73.12 68.73 67.66 60.93

Table 1: Comparison of transfer performance at incremental
noise rates between different variants.

Classifier-R Trains a linear probe on the output of CLIP’s
pre-trained visual encoder. The class embeddings (i.e.,
the classifier weights) are initialized at random, and
learned without constrains. See Figure 3 (a).

Classifier-C Similar to Classifier-R, but the classifier
weights are initialized using the text embeddings f tc
obtained from CLIP’s pre-trained text encoder for the
handcrafted prompt. Note that Classifier-C only uses
the CLIP text encoder for initializing its weights. See
Figure 3 (b).

TEnc-FT Trains a CLIP classifier, by associating the im-
age embedding fv with the CLIP text embedding f t

of the correct class through the posterior of eq. (1).
In this case, the entire CLIP text encoder is fine-tuned
on an hand-crafted prompt of the form “A photo of a
<CLS>”. See Figure 3 (c).

Table 1 compares the various models on four datasets
under different levels of label noise. The linear classifier
with CLIP initialization (Classifier-C) outperformed ran-
dom initialization across all levels of noise. This shows that
CLIP class embeddings provide a strong initialization for
few-shot learning. Furthermore, although both Classifiers
degrade considerably with high noise ratios, the CLIP ini-
tialization is also more robust to noise. As for TEnc-FT, it
achieved competitive performance at zero noise rates, but
its accuracy also dropped significantly as the noise rate in-
creased. This highlights (unsurprisingly) that the highly ex-
pressive CLIP text encoder can easily overfit to the noisy
labels. Finally, Prompt Tuning outperformed all alternative
strategies across all noise rates. The advantage of prompt
tuning was especially large for high noise levels. These

Dataset Method Noise rate
0 12.5 25 50

Full-Prompt-Tuning 85.39 74.00 68.66 50.50
CLS-Tuning 85.04 77.02 71.03 53.15OxfordPets
Prompt Tuning 87.89 84.62 81.20 73.13
Full-Prompt-Tuning 72.36 63.14 55.29 38.69
CLS-Tuning 72.07 63.91 56.97 41.73Food101
Prompt Tuning 76.99 73.63 71.07 64.30
Full-Prompt-Tuning 62.80 55.50 49.01 34.66
CLS-Tuning 62.78 56.15 48.46 35.43DTD
Prompt Tuning 62.86 58.90 53.62 46.19
Full-Prompt-Tuning 73.02 64.31 57.11 40.42
CLS-Tuning 72.73 65.64 58.91 44.55UCF101
Prompt Tuning 73.12 68.73 67.66 60.93

Table 2: Comparison of transfer performance at incremental
noise rates between different prompt designs.

observations confirm that (a) the text encoder is essential
for providing a strong but informative regularization of the
text embeddings to combat noisy inputs (Prompt Tuning v.s.
classifiers); and (b) the text encoder should be fixed to pre-
vent overfitting (Prompt Tuning v.s. TEnc-FT).
Effectiveness of prompt. The previous experiment showed
that the class embeddings generated by CLIP pre-trained
text encoder plays a critical role in noise robustness. Next,
we keep the text encoder fixed, and attempt to answer an-
other question: Which components of the prompt provide
noise robustness to prompt tuning?

We hypothesize that the classname token wc provides a
strong regularization to the model, since it is leveraged by
the text encoder to encode relationships between the differ-
ent visual concepts (e.g. how similar or different classes are
from each other). Respecting this structure could help the
model avoid fitting noisy data during training. To verify our
hypothesis, we assess the noise robustness of two additional
models:

Full Prompt Tuning Learns the classname token jointly
with the original learnable tokens (see Figure 3 (e)).

CLS Tuning Adopts a fixed template prompt “A photo of a
<CLS>” and optimizes only the classname token (see
Figure 3(f)).

Table 2 shows the analysis on four dataset for different
noise levels. Compared to prompt-tuning, which optimizes
only learnable tokens shared across all classes, both CLS-
Tuning and Full-Prompt-Tuning models struggle at high
noise rate. Even when the training data is clean, learning
the classname tokens produces worse performance on two
of the four datasets (OxfordPets and Food101). This anal-
ysis validates our assumption that the fixed classname to-
ken is indeed a critical regularization for the prompt tuning.
Learnable classname tokens can be fitted to the noisy train-
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Figure 4: We assess the ability of both methods to suppress noisy gradients by evaluating their noisy-to-clean gradient
norm ratio (noisy gradient rate). This ratio is determined by taking the L2 norm of gradients with respect to the learnable
parameters, which we compute by feeding 64 clean samples and 64 noisy samples to the model during each training epoch.
Specifically, we train the models on data with a 50% noise rate. Results on four datasets show that Prompt Tuning achieves
a lower noisy gradient rate compared to Linear Probe, indicating its superior ability to suppress noisy gradients.

ing data, perturbing the class embeddings and leading to
worse performance.

4.4. Prompt Tuning Suppresses Noisy Gradients

The previous section provided clear evidence of the ro-
bustness of the prompt tuning framework in comparison to
other alternatives. These findings suggest that, by learning
only shared prompt tokens, prompt tuning focuses better on
clean samples than noisy samples. In other words, prompt
tuning can suppress gradient updates from noisy samples,
while aggregating gradients from clean samples. To verify
this hypothesis, we measure the gradients with respect to
the learnable parameters of both CLIP prompt tuning and
linear probing using 50% noise rate. Specifically, we mea-
sure the ratio between the gradient norm induced by noisy
samples and that induced by clean samples. A ratio above
one indicates that noisy samples play a bigger role in the
optimization than clean samples.

Figure 4 shows the noisy-to-clean gradient norm ratio
as models are trained on four datasets. As can be seen,
prompt tuning displays significantly lower ratios than linear
probing. This indicates that noisy samples play a compar-
atively small role with prompt tuning compared to linear
probes. This property likely arises from the highly con-
strained prompt tuning optimization, which restricting the
model to fit the noisy labels.

4.5. Generalization Across Model Architectures

Previous sections have focused on four datasets (Oxford-
Pets, Food101, DTD, and UCF101) and a ResNet-50 image
encoder. We now show that these findings generalize across
model architectures and datasets.
Context length. We first assess the noise robustness of
prompt tuning with increasing numbers of learnable tokens.
We also evaluate a baseline without any learnable tokens
by directly feeding the classname into the model (denoted
as Ctx-0). Figure 5 shows that the optimal context lenght
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Figure 5: Investigation on noise robustness of prompt tun-
ing accompanied by various context lengths. Ctx-x denotes
the model with x learnable tokens.

is dataset dependent, but all context lengths achieve su-
perior performance compared to traditional linear probing.
Ctx-0 outperforms some prompt tuning variants under large
noise rates at 50%, suggesting fixed prompts may be a good
choice when the labeling noise is too strong on the down-
stream task.
Image encoders. To validate whether the noise robustness
of prompt tuning is backbone-agnostic, we also assess CLIP



Dataset Method Noise rate
0 12.5 25 50

ImageNet
RN50-PT 62.83 61.98 60.60 57.97
ViT-B/32-PT 66.48 65.82 64.50 61.75

Caltech101
RN50-PT 90.65 82.51 78.70 70.13
ViT-B/32-PT 93.63 90.34 84.99 77.16

OxfordPets
RN50-PT 87.89 84.62 81.20 73.13
ViT-B/32-PT 89.10 86.59 83.65 75.50

Flowers102
RN50-PT 92.57 86.85 81.73 71.80
ViT-B/32-PT 93.26 87.90 85.34 72.83

Food101
RN50-PT 76.99 73.63 71.07 64.30
ViT-B/32-PT 80.16 77.60 76.06 68.77

FGVCAircraft
RN50-PT 27.13 25.07 23.34 19.05
ViT-B/32-PT 28.37 27.57 25.47 19.57

DTD
RN50-PT 62.86 58.90 53.62 46.19
ViT-B/32-PT 64.88 59.57 57.09 45.22

UCF101
RN50-PT 73.12 68.73 67.66 60.93
ViT-B/32-PT 78.12 75.97 72.83 65.75

Table 3: Noise robustness of prompt tuning (PT) with
ResNet50 or ViT-B/32 as the image encoder on eight
datasets.

Dataset Method Random Confusion

OxfordPets
Linear Probe 46.42±0.88 41.39±1.87

Prompt Tuning 73.13±3.76 66.55±2.02

Food101
Linear Probe 42.63±0.89 37.71±0.52

Prompt Tuning 64.30±2.58 63.93±1.45

DTD
Linear Probe 42.29±2.12 37.69±1.70

Prompt Tuning 46.19±2.12 45.76±1.23

UCF101
Linear Probe 54.05±1.19 50.90±1.45

Prompt Tuning 60.93±0.94 59.11±0.70

Table 4: The impact of random and confusion label noise
at a 50% noise rate on Linear Probing and Prompt Tuning
strategies.

with ViT-B/32 for prompt tuning (denoted ViT-B/32-PT).
Table 3 shows the comparison with RN50-PT. ViT-B/32-PT
outperforms RN50-PT under most settings. Moreover, both
methods do not suffer from a large performance drop and
maintain competitive accuracy at high noise rates.

4.6. Robustness to Correlated Label Noise

So far, we assumed white label noise (i.e., noisy labels
are uniformly drawn from the label space). However, la-
bel noise produced by either human annotators or machine-
generated pseudo labels often displays correlations between
similar visual concepts. For example, UPL [12] observed
that pre-trained CLIP prefers some classes over others dur-
ing zero-shot transfer. Inspired by this observation, we ex-
amine whether CLIP inherent preferences affect the per-
formance of prompt tuning when confronted with CLIP-
generated label noise.
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Figure 6: Confusion matrix generated by averaging the
zero-shot performance over 100 runs using random prompt
tokens.

We begin by measuring the confusion matrix of CLIP
zero-shot predictions with randomly initialized learnable to-
kens on the OxfordPets and UCF101 datasets (see Figure
6). Next, we introduce a challenging type of label noise,
named Confusion noise, where each mislabeled sample is
labeled as the incorrect class that is most favored by zero-
shot CLIP. Finally, we examine the transfer performance of
prompt tuning with both random and confusion noise at a
50% noise rate. Table 4 presents the results on four datasets.
As can be seen, confusion noise presents a bigger challenge
to transfer learning, leading to larger degradation of classi-
fication accuracy at high noise ratios compared to random
noise. Such degradation is visible both for prompt tuning
and linear probes. However, among the two, prompt tuning
still achieves the best overall performance, providing fur-
ther evidence for its robustness even to more challenging
types of noise.

5. Application to Unsupervised Prompt Tuning

Prior work UPL [12] demonstrated that unsupervised
prompt tuning can outperform the transfer performance of
zero-shot transfer based on CLIP. However, UPL does not
fully utilize the noise robustness of prompt tuning.
Baseline UPL. UPL [12] proposed a framework to adapt
CLIP for downstream tasks without any labeled images.
An overview of the framework is shown in Figure 7. This
framework is divided into two phases. In phase 1, UPL
leverages pre-trained CLIP to generate pseudo labels for
unlabeled images. Then, in phase 2, a set of K pseudo-
labels are chosen to optimize the learnable tokens through
the typical prompt-tuning optimization process (described
in CoOp [51]). To increase the quality of training exam-
ples, UPL ranks all pseudo-labeled images based on their
confidence score (Eq. 1) and selects the K most confident
samples per class. Furthermore, inspired by prompt ensem-
bling in CLIP [28], UPL improved transfer performance by
ensembling multiple predictions generated by models with
different learnable prompts.
Robust UPL. In Section 4, we showed that prompt tuning
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Figure 7: The pipeline of unsupervised prompt tuning. It consists of two main phases: Pseudo labeling and Prompt tuning.
To begin, we generate pseudo labels for target datasets by utilizing CLIP with a template prompt for zero-shot transfer. Next,
we randomly select samples per class from the pseudo labels for subsequent training. Finally, we optimize the learnable
prompt representation using the selected pseudo-labeled samples.

can be robust to noisy labels. Furthermore, we showed that
prompt tuning robustness can be further strengthened us-
ing the generalized cross-entropy loss (GCE). Given these
observations, we propose to perform unsupervised prompt
tuning by 1) randomly sample training samples and 2) opti-
mizing the prompt with the robust GCE loss. Random sam-
pling has two effects. On the one hand, it increases the di-
versity of training samples which benefits learning. On the
other hand, it increases the amount of label noise. How-
ever, we expect the label noise to be tolerable by our robust
prompt tuning framework.
Experimental Settings. We experiment with the unsu-
pervised prompt tuning following the same training set-
ting of Section 4. Pseudo-labels are generated by CLIP
zero-transfer with ResNet50 image encoder. We follow the
prompt engineering used by CLIP. There are three types of
hand-crafted prompts, with more details listed in the sup-
plementary material. K is set to 16 in all experiments. Dur-
ing the inference stage, we employ the ensemble-average
approach following UPL [47] to generate predictions com-
bining the outputs of four distinct models. Each model has a
distinct learnable prompt that was initialized with a unique
random seed.
Experimental Results. We compared UPL [12] and the
proposed Robust UPL on a diverse set of visual tasks, in-
cluding generic object classification, fine-grained recogni-
tion, and texture identification. We also assessed Robust
UPL using both a cross-entropy (CE) and generalized cross-
entropy (GCE) losses. Table 5 shows that all three unsuper-
vised prompt tuning methods can improve transfer learning
over zero-shot predictions, at no additional labeling cost.
Among the three methods, Robust UPL trained under GCE
loss obtains the best performance on average. We highlight
once again that Robust UPL randomly samples pseudo la-
beled images for training, instead of using high-confidence
samples as in UPL. As a result, UPL training pseudo-labels
are less diverse, but have less noise. For example, the
pseudo-labels used to train UPL on Caltech were 93% cor-

Dataset 0-Shot UPL [12] Robust UPL
CE GCE

ImageNet 58.18 60.22 61.11 62.14
Caltech101 86.29 90.10 87.14 88.07
OxfordPets 85.77 87.60 86.89 87.71
Flowers102 66.14 69.31 70.04 70.52
Food101 77.31 77.30 77.84 78.51
FGVCAircraft 17.28 15.93 16.35 16.29
DTD 42.32 37.47 44.80 46.69
UCF101 61.46 65.00 66.01 67.12

Table 5: Comparison between CLIP zero-shot classifica-
tion and three strategies for unsupervised prompt tuning:
UPL [12], and our robust UPL framework trained with
cross-entropy and generalized cross-entropy losses.

rect, while the pseudo-labels used to train Robust UPL were
only 83% correct. Nevertheless, these errors did not harm
final performance of Robust UPL; on the contrary, learn-
ing from a more diverse set, while being robust to the noise
enhanced prompt tuning.

6. Conclusion
In this paper, we provide a comprehensive study on the

robustness to label noise of prompt tuning large vision-
language models (namely, CLIP). Through a series of ex-
periments, we demonstrated that the noise robustness of
prompt tuning can be attributed to the structure imposed on
class embeddings by CLIP’s pre-trained text encoder. We
further demonstrate that prompt tuning can ease overfitting
to mislabeled samples by reducing the gradients induced
by label noise. We extensively experimented with different
model configurations such as backbones and context length,
obtaining consistent results and conclusions. Finally, in-
spired by our findings, we presented a new robust unsuper-
vised prompt tuning approach that favors diversity over cor-
rect predictions, to improve the transfer performance.
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A. Extended Experimental Results
Robustness Attribution. The findings presented in Ta-
ble 6 indicate that the reason behind the noise robustness
observed in prompt tuning can be attributed to the structured
form imposed on class embeddings by CLIP’s pre-trained
text encoder.

Dataset Method Noise rate
0 12.5 25 50

Classifier-R 74.82 64.10 55.96 36.63
Classifier-C 81.47 70.29 61.87 44.21
TEnc-FT 84.38 70.73 61.11 41.21

OxfordPets

Prompt Tuning 87.89 84.62 81.20 73.13
Classifier-R 88.19 74.48 61.14 42.68
Classifier-C 89.94 77.04 63.81 45.96
TEnc-FT 90.75 76.67 62.76 46.45

Caltech101

Prompt Tuning 90.65 82.51 78.70 70.13
Classifier-R 83.40 69.58 60.85 37.74
Classifier-C 94.11 80.26 69.18 47.55
TEnc-FT 94.62 80.91 70.83 49.54

Flowers102

Prompt Tuning 91.71 86.24 81.92 71.80
Classifier-R 63.80 54.66 46.23 28.97
Classifier-C 69.36 60.46 51.85 34.37
TEnc-FT 71.30 61.60 52.64 34.74

Food101

Prompt Tuning 76.99 73.63 71.07 64.30
Classifier-R 30.38 24.84 20.89 13.32
Classifier-C 34.46 29.97 25.91 17.36
TEnc-FT 35.30 29.66 25.31 17.42

FGVCAircr

Prompt Tuning 27.13 25.07 23.34 19.05
Classifier-R 48.02 44.30 40.32 30.10
Classifier-C 63.83 57.14 50.36 34.86
TEnc-FT 63.61 55.47 48.21 33.12

DTD

Prompt Tuning 62.86 58.90 53.62 46.19
Classifier-R 67.16 58.33 50.34 31.07
Classifier-C 71.87 64.12 54.79 38.01
TEnc-FT 73.74 64.52 56.10 37.88

UCF101

Prompt Tuning 73.12 68.73 67.66 60.93

Table 6: Comparison of transfer performance at incremental
noise rates between different variants.

Table 7 validates two observations: (a) the significance
of the text encoder in offering robust regularization of the
text embeddings to tackle noisy inputs (Prompt Tuning ver-
sus classifiers); and (b) the necessity of fixing the text en-
coder to prevent overfitting (Prompt Tuning versus TEnc-
FT).
Robustness to Correlated Label Noise. Table 9 shows that
transfer learning faces a greater challenge with confusion
noise, resulting in a great decline in classification accuracy
at higher noise ratios as opposed to random noise. This de-
cline is evident in both prompt tuning and linear probes.
The robustness of prompt tuning is evident in its ability to
outperform linear probes, even when faced with more chal-
lenging noise types.

Dataset Method
Noise rate

0 12.5 25 50
Full-Prompt-Tuning 85.39 74.00 68.66 50.50
CLS-Tuning 85.04 77.02 71.03 53.15OxfordPets
Prompt Tuning 87.89 84.62 81.20 73.13
Full-Prompt-Tuning 89.21 74.20 61.26 45.92
CLS-Tuning 89.13 76.84 62.27 48.64Caltech101
Prompt Tuning 90.65 82.51 78.70 70.13
Full-Prompt-Tuning 93.93 83.58 77.00 59.52
CLS-Tuning 93.47 84.19 78.74 61.79Flowers102
Prompt Tuning 91.71 86.24 81.92 71.80
Full-Prompt-Tuning 72.36 63.14 55.29 38.69
CLS-Tuning 72.07 63.91 56.97 41.73Food101
Prompt Tuning 76.99 73.63 71.07 64.30
Full-Prompt-Tuning 32.28 28.16 24.67 16.76
CLS-Tuning 30.84 27.86 24.51 17.63FGVCAircraft
Prompt Tuning 27.13 25.07 23.34 19.05
Full-Prompt-Tuning 62.80 55.50 49.01 34.66
CLS-Tuning 62.78 56.15 48.46 35.43DTD
Prompt Tuning 62.86 58.90 53.62 46.19
Full-Prompt-Tuning 73.02 64.31 57.11 40.42
CLS-Tuning 72.73 65.64 58.91 44.55UCF101
Prompt Tuning 73.12 68.73 67.66 60.93

Table 7: Comparison of transfer performance at incremental
noise rates between different prompt designs.

Integration with Noise-Robust Losses. We examine the
effectiveness of a robust loss function applied to prompt
tuning with noisy labels. In this study, We adopt Gener-
alized Cross Entropy (GCE) [47] as a representative of ro-
bust loss functions for noise-robust learning. Specifically,
cross-entropy loss in Eq. 2 is replaced with GCE loss dur-
ing the training process. Figure 8 shows results of applying
GCE loss to prompt tuning and linear probing for CLIP’s vi-
sion encoder. We observe that both transfer learning meth-
ods obtain an improvement of noise robustness by training
with GCE loss. In particular, prompt tuning further en-
hances its inherent noise robustness. This outcome sug-
gests that prompt tuning offers great applicability to cou-
ple with existing noise-robust loss functions. In addition
to GCE, Figure 9 shows two additional robust loss func-
tions: Symmetric Cross Entropy (SCE) [38] and Normal-
ized Cross Entropy (NCE) combined with a Reverse Cross
Entropy (RCE) [20]. Both losses also improve the noise ro-
bustness of prompt tuning, but GCE still achieves slightly
better performance.

B. Capacity of classifiers with random prompt
tokens

Prompt tuning has a limited parameter space given by the
length of the prompt tokens. This parameter space is funda-
mentally different from that of a whole neural network and
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Figure 8: Incorporating the generalized cross-entropy (GCE) [47] loss with Prompt Tuning and Linear Probe methods, origi-
nally trained using cross-entropy, can enhance their noise robustness. At high noise rates. PromptTuning(+GCE) consistently
and significantly outperforms other approaches on all datasets.

Dataset Method 0-Shot
OxfordPets Random Prompt 40.93±11.19

Caltech101 Random Prompt 59.65±9.56

Flowers102 Random Prompt 14.86±8.40

Food101 Random Prompt 34.63±11.10

FGVCAircraft Random Prompt 3.43±1.97

DTD Random Prompt 21.20±3.51

UCF101 Random Prompt 32.93±5.48

Table 8: CLIP zero-shot with random prompts.

may present special properties related to the robustness of
the model. Instead of updating the learnable prompts with
noisy data, we evaluate the classifiers with random prompts
. Table 8 summarizes the average zero-shot performance

over 100 runs. Surprisingly, the results show that CLIP can
achieve non-trivial zero-shot performance, even with ran-
dom prompts. This indicates that as long as the classname
token is provided to the pre-trained text encoder, CLIP is ca-
pable of computing non-trivial class embeddings for generic
image classification.

C. Unsupervised Prompt Tuning Settings
Pseudo-labels are generated by CLIP zero-transfer with

ResNet50 image encoder. We follow the prompt engineer-
ing used by CLIP. There are three types of hand-crafted
prompts: ”A photo of a <label name>” for generic object
datasets; ”A photo of a <label name>, a type of <collective
name>” for fine-grained object datasets (e.g., prompts for
OxfordPets are appended ”a type of dog” or ”a type of cat”);



Dataset Method Random Confusion

OxfordPets
Linear Probe 46.42±0.88 41.39±1.87

Prompt Tuning 73.13±3.76 66.55±2.02

Caltech101
Linear Probe 56.24±1.96 56.25±6.92

Prompt Tuning 70.13±3.76 70.86±1.83

Flowers102
Linear Probe 68.92±0.76 45.94±0.69

Prompt Tuning 71.80±1.00 69.63±1.31

Food101
Linear Probe 42.63±0.89 37.71±0.52

Prompt Tuning 64.30±2.58 63.93±1.45

FGVCAircraft
Linear Probe 21.98±0.48 15.38±0.71

Prompt Tuning 19.05±1.06 18.04±1.32

DTD
Linear Probe 42.29±2.12 37.69±1.70

Prompt Tuning 46.19±2.12 45.76±1.23

UCF101
Linear Probe 54.05±1.19 50.90±1.45

Prompt Tuning 60.93±0.94 59.11±0.70

Table 9: The impact of random and confusion label noise
at a 50% noise rate on Linear Probing and Prompt Tuning
strategies.
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Figure 9: Combination of traditional transfer learning and
prompt tuning approaches, with three robust loss functions.

and ”<label name> texture” for the DTD dataset. K is set
to 16 in all experiments.


