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Abstract

We present Contrastive Feature Masking Vision Trans-
former (CFM-ViT) - an image-text pretraining methodology
that achieves simultaneous learning of image- and region-
level representation for open-vocabulary object detection
(OVD). Our approach combines the masked autoencoder
(MAE) objective into the contrastive learning objective
to improve the representation for localization tasks. Un-
like standard MAE, we perform reconstruction in the joint
image-text embedding space, rather than the pixel space as
is customary with the classical MAE method, which causes
the model to better learn region-level semantics. More-
over, we introduce Positional Embedding Dropout (PED)
to address scale variation between image-text pretraining
and detection finetuning by randomly dropping out the po-
sitional embeddings during pretraining. PED improves de-
tection performance and enables the use of a frozen ViT
backbone as a region classifier, preventing the forgetting
of open-vocabulary knowledge during detection finetuning.
On LVIS open-vocabulary detection benchmark, CFM-ViT
achieves a state-of-the-art 33.9 APr, surpassing the best ap-
proach by 7.6 points and achieves better zero-shot detection
transfer. Finally, CFM-ViT acquires strong image-level rep-
resentation, outperforming the state of the art on 8 out of 12
metrics on zero-shot image-text retrieval benchmarks.

1. Introduction
The ability to detect a vast array of objects in the real

world is fundamental to computer vision and machine learn-
ing. This powers a wide range of applications from au-
tonomous agents to search engines. Unfortunately, to date
most modern object detectors rely on manually annotated
regions and class labels, which is labor-intensive and im-
practical to scale beyond the order of 103 categories.

A new task called open-vocabulary detection (OVD) has
been introduced to address the vocabulary limitation in ob-
ject detection by using image-text pairs for training and
text queries from users at test time [65]. Open-vocabulary
detectors represent categories as text embeddings rather
than discrete class labels, allowing them to predict objects
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Figure 1: We propose CFM-ViT to pretrain vision transformers to
capture more pixel and region information for open-vocabulary de-
tection. CFM-ViT predicts masked contrastive features on top of
the contrastive image-text pretraining. (Top) We visualize (c) the
similarity map between (d) the reconstructed image features (see
top left) and (e) the query text embedding. CFM-ViT correctly pre-
dicts the (c) whole-image semantics from (b) heavily truncated im-
ages. (Bottom) Our open-vocabulary detector exploits the frozen
ViT backbone to retain pretrained knowledge and is able to detect
base and novel object classes (only novel classes are shown).

unavailable during training. Various techniques, such as
knowledge distillation [18, 13], weak supervision [74], self-
training [71, 49, 68], and frozen backbone [33], have been
suggested. Typically, CNN backbones are utilized in these
approaches. As vision transformers have gained significant
traction in image understanding [12, 66, 21, 3], it is crucial
to explore open-vocabulary detectors based on vision trans-
formers [42]. Moreover, to our knowledge, most current
OVD research assumes the availability of pretrained Vision-
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Language Models (VLMs) (e.g. CLIP [47]), and proposes
adaptation or finetuning techniques to overcome the dispar-
ity between image-level pretraining and object-level fine-
tuning [18, 13, 71, 68, 49]. However, as these VLMs are
typically optimized for image-level tasks such as classifica-
tion and retrieval, they do not adequately utilize the pixel-
and region-level information during pretraining, which is
crucial for downstream open-vocabulary detection.

We present CFM-ViT (Contrastive Feature Masking Vi-
sion Transformer), a simple framework to pretrain vision
transformers to capture more detailed pixel/region infor-
mation for open-vocabulary object detection (Fig. 1). In-
spired by MAE [21], we adopt the concept of masked
auto-encoding to enhance object representation during pre-
training. However unlike MAE, we perform prediction in
the joint image-text embedding space rather than the pixel
space as an auxiliary objective to the contrastive image-
text learning. This additional objective provides orthogo-
nal signal from the contrastive learning, and benefits down-
stream detection task without compromising the image-
level tasks. In addition, we propose Positional Embed-
ding Dropout (PED) to address overfitting to the typically
lower-resolution and object-centric pretraining data. By
randomly dropping out positional embeddings during pre-
training, PED aids the model to learn more robust repre-
sentations that better generalize to high-res detection data.
Moreover, PED enables the use of a frozen ViT encoder
as an open-vocabulary region-classifier, which prevents the
forgetting of open-vocabulary knowledge at detection.

We evaluate CFM-ViT on the widely used LVIS and
COCO open-vocabulary detection benchmarks. Our top-
performing model obtains 33.9 APr on LVIS, surpassing
the previous best approach by 7.6 APr at system level. On
the COCO benchmark, CFM-ViT represents the first ViT-
based model and achieves a very competitive novel AP
without using pseudo labels or weak supervision. Although
not optimized for retrieval, CFM-ViT outperforms the state-
of-the-art methods of similar or larger capacity on 8 out of
12 image-text retrieval benchmark metrics. In summary:

• We present an image-text pretraining methodology
(CFM-ViT) to learn localization cues for open-
vocabulary detection by contrastive feature masking.

• We propose Positional Embedding Dropout (PED) to
bridge the gap between image-text pretraining and
detection finetuning, which enables the use of a
frozen ViT encoder to prevent the forgetting of open-
vocabulary knowledge during detection finetuning.

• CFM-ViT achieves state-of-the-art APr on LVIS open-
vocabulary detection benchmark, shows very compet-
itive performance on COCO and zero-shot transfer to
Objects365, and outperforms the SOTA on 8 out of 12
metrics of zero-shot image-text retrieval benchmarks.

We hope these discoveries would encourage the community
to explore open-vocabulary detection from the perspective
of image-text pretraining.

2. Related Works

Language-supervised open-vocabulary recognition.
Learning representation for open-vocabulary recognition
is a hallmark of general intelligence. Early pioneering
works such as DeViSE [16] and ConSE [43] used deep
convolutional networks to construct a shared image-text
embedding space for zero-shot recognition. To leverage
the co-occurrence of image and text in raw internet
data, researchers have explored various data sources
such as image tags [4, 9, 30], captions [8, 24, 50, 55],
alt-texts [29, 51], image search queries [47], page title [5],
or a combination of these sources [5]. From a modeling
perspective, contrastive learning has become a popular
paradigm because of its simplicity, scalability, and versa-
tility in zero-shot, few-shot, and full finetuning transfer
settings [46, 47, 39, 10, 36]. While most of these works fo-
cus on image-level understanding, we explore the learning
of region-level information in the image-text pretraining,
which is essential for open-vocabulary detection task.

Self-supervised object representation learning. Scaling
up annotation for detection presents a significant challenge.
As a result, many efforts have been made to learn ob-
ject representations in a self-supervised manner. These ap-
proaches can be broadly categorized as contrastive or gen-
erative. These contrastive approaches typically use slid-
ing windows [59], object proposals [57, 25], or point sam-
ples [1] for pixel or region-level contrastive learning. Gen-
erative methods use masked image modeling with recon-
struction targets such as pixels [21], low-level [3, 56] /
high-level image features [6, 73], or combine with the con-
trastive objective [27]. By learning to restore masked im-
ages, the model needs to learn about objects and regions.
However, although these self-supervised methods are suited
for localization tasks, they lack the necessary image-text
learning for open-vocabulary recognition. Some recent
works [58, 45, 67, 26, 14] utilize off-the-shelf CLIP fea-
tures [47] as prediction targets to enhance masked image
modeling by two-stage training. In this work, we propose
a novel approach to combine generative self-supervised
learning jointly with contrastive image-text learning in a
single end-to-end training stage. While some concurrent
works have explored similar objectives for zero-shot image-
level tasks or fully supervised finetuning [11, 60, 54], our
focus is on open-vocabulary detection.

Open-vocabulary object detection and segmentation.
Zero-shot detection aims to enhance detection models be-
yond their limited training categories by aligning region
visual representation and category word embeddings [2,



48, 7, 69] or generating visual features with a genera-
tive model [20, 75]. Open-vocabulary detection [65] im-
proves upon zero-shot detection by incorporating image-
text supervision about the novel categories. With the ad-
vent of image-text pretraining, numerous studies have ex-
plored adapting these pretrained models to open-vocabulary
detection and segmentation [18, 71, 17, 35, 72]. For in-
stance, ViLD [18] distills image-text knowledge into the
detector, while DetPro [13] improves ViLD by category
prompt optimization. Additionally, region-text self-training
has been demonstrated on image caption data [71], classi-
fication data [49], and unlabeled data [68]. Phrase ground-
ing [37], weak supervision [74], and frozen model [33] ap-
proaches have also been explored. Most methods rely on
CNN backbones, but vision transformers are gaining mo-
mentum [42, 72, 31, 34, 38]. While previous studies have
focused on finetuning or adaptation strategies for pretrained
models, ours seeks to improve the image-text pretraining by
predicting the masked representation of vision transformer.

3. Method
We tackle the problem of open-vocabulary object detec-

tion. During training, the model can access the detection
labels of base categories, but at the inference phase, it must
be able to detect objects from a set of novel categories. To
achieve this, we utilize pretrained vision and language mod-
els (VLMs) following previous works [18, 71, 33]. How-
ever, instead of taking off-the-shelf pretrained VLM, we
demonstrate how to better pretrain VLMs with vision trans-
formers [12] for open-vocabulary detection.

3.1. Preliminaries: Overall Pipeline

Pretraining. We adopt a dual-encoder image-text con-
trastive model widely used in existing works [47, 29]. The
image embeddings {v} and text embeddings {l} are ob-
tained by global average pooling at the last layers of image
and text encoders. The cosine similarity of the embeddings
in batch B, scaled by a learnable temperature τ are the in-
put to the InfoNCE loss [44, 47]. The image-to-text (I2T)
contrastive loss is formulated as:

LI2T = − 1

B

B∑
i=1

log(
exp(vili/τ)∑B
j=1 exp(vilj/τ)

). (1)

The text-to-image (T2I) contrastive loss is symmetrical
with the I2T loss by exchanging the inner/outer summa-
tion loops. The total contrastive loss Lcon is obtained by
Lcon = (LI2T + LT2I)/2.

Downstream open-vocabulary detection. Our open-
vocabulary detection algorithm follows existing works [65,
18, 33, 31]. At training, for each detected region i, its region
embedding is the RoI-Align feature. The detection score pi

is the cosine similarity between the region embedding and
text embeddings of CB followed by a softmax. Note the
text embeddings are computed from the same text encoder
from the image-text pretraining. At test time, the text em-
beddings are expanded from the CB to CB ∪ CN plus the
“background” embedding. We also extract VLM embed-
ding of region i by RoI-Align at the last feature map of the
ViT backbone. The VLM score zi is the cosine similarity
with the CB∪CN text embeddings. Similarly, the detection
score pi is now computed with CB ∪ CN text embeddings.

An object detector for open-vocabulary scenarios is
trained on the labels of base categories CB , but must be
capable of detecting the union of base and novel categories
(CB ∪ CN ) at test time. Following existing works [65, 18],
we replace the fixed-size classifier layer with the text em-
beddings of base categories. The same text encoder from
the image-text pretraining is used to compute the text
embeddings to maintain the pretrained open-vocabulary
knowledge. The “background” phrase represents the back-
ground category, and the proposals not matched to any CB

annotations are labeled as background.
The ensemble open-vocabulary detection score si

ens is
obtained by geometric means [18, 33]:

si
ens =

{
z
(1−α)
i · pαi if i ∈ CB

z
(1−β)
i · pβi if i ∈ CN

(2)

, where α, β ∈ [0, 1] control the weights for base and novel
categories. The background score comes directly from the
detection score pi, because the VLM score with “back-
ground” phrase tends to be not as reliable.

3.2. Contrastive Feature Masking

Our method performs reconstruction in the joint image-
text embedding space (see Fig. 2-left) as an auxiliary objec-
tive to the contrastive image-text learning (in Sec. 3.1).
Masked feature reconstruction. Following MAE [22],
we randomly mask a large portion of image tokens (e.g.,
mask ratio 75%) for representation learning. However un-
like MAE, we predict the joint image-text embedding in-
stead of the raw pixels to encourage better learning of se-
mantics. Specifically, the output features {f} of the con-
trastive image encoder before the global average pooling is
our reconstruction target. We use the cosine distance be-
tween the reconstructed features {f̂} and unmasked image
features {f} as loss function. Let M be the set of masked
patch indices, and our reconstruction loss Lrec is computed
only on the masked tokens as:

Lrec = 1− 1

B

B∑
i=1

(
1

|M |
∑
k∈M

f · sg(f̂)
∥f∥ · ∥sg(f̂)∥

), (3)

where |M | is the number of masked tokens and sg denotes
stop gradient. The total CFM-ViT loss is Lcon + Lrec.
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Figure 2: CFM-ViT architecture: We present both the image-text pretraining (left) and open-vocabulary detection finetuning (right)
architecture of CFM-ViT. (Left) Building upon contrastive learning, we learn to reconstruct the masked tokens in the joint image-text em-
bedding space. In addition, we propose Positional Embedding Dropout (PED) which randomly masks out the whole PE during pretraining
to mitigate overfitting to the low-res positional embeddings, thus adapting better to the high-res downstream detection task. (Right) The
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the cached category embeddings to compute the region scores. At inference, we exploit the frozen ViT backbone to obtain the VLM score
z, which is combined with the detection score p into the open-vocabulary detection score s (Best viewed in color).

Our reconstruction encoder is identical (weight-shared)
to the contrastive image encoder, but applied only on the
visible, unmasked tokens (e.g., 25%). The decoder takes
the encoded visible tokens and learnable [mask] tokens
added with positional embeddings.
Faster training by contrastive branch masking. The
feature reconstruction branch adds a computation burden
(e.g. 25%) to the pretraining depending on the masking ratio
(e.g. 75%). We note that this cost can be waived by feeding
only the masked tokens (M ) to the contrastive branch, so
that the input patches to the contrastive and reconstruction
encoders are mutually exclusive, and yields the same re-
construction target {f̂k∈M}. Our ablation study in Table 5c
shows that this technique maintains the training efficiency
of contrastive learning, while still achieves significant gains
over the baseline in open-vocabulary detection.
Positional embedding dropout. In vision transformer
encoder, positional embeddings are added to all tokens af-
ter the first patchifying layer to provide the location of each
patch in the image. While the positional embeddings work
well for image classification/retrieval, it tends to overfit
to the lower-resolution object-centric images, and struggle
with higher-resolution images typically used by detection
task. In addition, the recognition of objects in detection oc-
curs at region- rather than image-level (e.g. see VLM scores
zi for region i in Sec. 3.1), which causes difficulty for the
positional embeddings trained only for image-level task.

We propose a simple yet effective technique called Po-
sitional Embedding Dropout (PED) to address this problem
by randomly masking out the whole positional embeddings
during training (e.g., with a probability 0.5). This teaches
the model not to rely heavily on the positional embeddings
and thus can process the high-res images and perform bet-
ter region classification. PED not only outperforms both the
baseline and ‘no positional embeddings’ variants, but en-
ables the use of frozen vision transformer to achieve further
improvement in open-vocabulary detection.

3.3. Open-vocabulary Detection

An object detector for open-vocabulary scenarios is
trained on the labels of base categories CB , but must be
capable of detecting the union of base and novel categories
(CB ∪ CN ) at test time (see Sec. 3.1 and Fig. 2-right).
Baseline architecture. Our detector adopts the simple
feature pyramid and windowed attention to handle higher
resolution images as proposed in ViTDet [40], and employs
Mask R-CNN heads and class-agnostic box regression and
mask heads as in [13, 18, 65, 71, 33]. In addition, we lever-
age a recent novel object proposal method [32] by replac-
ing the binary classification in the RPN with the centerness-
based objectness. The predicted objectness score oi is com-
bined into the final OVD score as siOVD = oi · siens.

Our detector backbone is initialized with the pretrained
ViT in the VLM from Sec. 3.2, and is finetuned together



method
pretrained detector APr AP
model backbone

ConvNet based:
DetPro-Cascade [13] ViT-B/32 R-50 20.0 27.0
Detic-CN2 [74] ViT-B/32 R-50 24.6 32.4
RegionCLIP [71] R-50x4 R-50x4 22.0 32.3
ViLD-Ens [18] ViT-B/32 R-152 18.7 26.0
ViLD-Ens [18] ViT-L/14 EffNet-B7 21.7 29.6
ViLD-Ens [18] EffNet-B7 EffNet-B7 26.3 29.3
VL-PLM [68] ViT-B/32 R-50 17.2 27.0
OV-DETR [64] ViT-B/32 R-50 17.4 26.6
Rasheed et al. [49] ViT-B/32 R-50 21.1 25.9
PromptDet [15] ViT-B/32 R-50 21.4 25.3
ViT based:
OWL-ViT [42] ViT-H/14 ViT-H/14 23.3∗ 35.3∗

OWL-ViT [42] ViT-L/14 ViT-L/14 25.6∗ 34.7∗

CFM-ViT (ours) ViT-B/16 ViT-B/16 29.6∗ 33.8∗

CFM-ViT (ours) ViT-L/16 ViT-L/16 35.6∗ 38.5∗

CFM-ViT (ours) ViT-B/16 ViT-B/16 28.8 32.0
CFM-ViT (ours) ViT-L/16 ViT-L/16 33.9 36.6

Table 1: LVIS open-vocabulary object detection. CFM-ViT out-
performs the best existing approach by +7.6 APr , and the other
ViT-based approach [42] by +10.0 APr using the same backbone.
∗: reports box AP.

with the newly added detector heads. Note we do not apply
positional embedding dropout (PED) during finetuning as
the location information is critical in detection.

Backbone learning rate. As the pretrained knowledge in
the backbone is critical in recognizing novel categories, it
is important to set the backbone learning rate so as to pre-
vent forgetting in the finetuning phase. On the other hand,
entirely freezing the backbone limits the ability to adapt to
detection tasks. We find that setting the backbone learning
rate lower (e.g., 0.5×) than the rest of the detector layers
shows advantage in the trade-off. After the detection train-
ing is done, we explore using the frozen ViT backbone at
test time, as described next.

Frozen backbone inference While the ViT backbone
adapts to the detection tasks, it tends to forget some of the
pretrained open-vocabulary knowledge. Therefore, for in-
ference, we propose to use a separate frozen ViT backbone
as an open-vocabulary region classifier. Specifically, we
use the frozen backbone instead of the finetuned backbone
when computing the region VLM score zi (Sec. 3.1). We
find it important for the frozen ViT to be pretrained with our
positional embedding dropout (PED), to serve as a strong
zero-shot region classifier. We show by experiments that
incorporating the PED pretraining and frozen backbone in-
ference provides large gains in open-vocabulary detection.

4. Experimental Results

Pretraining setup. For the image-text pretraining, we use
the widely-used ViT-B/16 and ViT-L/16 as the image en-

method
pretrained detector novel AP AP
model backbone

ConvNet based:
ViLD [18] ViT-B/32 R-50 27.6 51.3
OV-DETR [64] ViT-B/32 R-50 29.4 52.7
w/ pseudo box labels:
XPM et al. [28] R-50 R-50 27.0 41.2
RegionCLIP [71] † R-50x4 R-50x4 39.3 55.7
PromptDet [15] ViT-B/32 R-50 26.6 50.6
VL-PLM [68] ViT-B/32 R-50 34.4 53.5
Rasheed et al. [49] ‡ ViT-B/32 R-50 36.9 51.5
w/ weak supervision:
Detic-CN2 [74] ViT-B/32 R-50 24.6 32.4
ViT based:*
CFM-ViT (ours) ViT-B/16 ViT-B/16 30.8 42.4
CFM-ViT (ours) ViT-L/16 ViT-L/16 34.1 46.0

Table 2: COCO open-vocabulary object detection (box AP50).
CFM-ViT represents the first ViT-based approach and demon-
strates a very competitive novel AP without using pseudo labeling
or weak supervision. †: RegionCLIP uses an off-the-shelf RPN
during its pretraining. ‡: Rasheed et al. uses an external MViT de-
tector [41] during pretraining. *: The other ViT-based method [42]
report their results on LVIS only.

coder, with an input image size of 224. We use the fixed 2D
sinusoidal positional embeddings, and apply Positional Em-
bedding Dropout (PED) with a drop probability of 0.5. The
image embedding is obtained by global average pooling at
the last ViT layer. The text encoder is a 12-layer Trans-
former as in [47, 62], with the input sequences truncated to
a fixed length of 64 tokens. The L2-normalized image and
text embeddings and a learnable scaling temperature are the
input to the InfoNCE contrastive loss [47].

Our feature reconstruction decoder is a 2-layer ViT, un-
like the 8-layer counterpart of MAE [22] designed for raw
pixel reconstruction. The reconstruction loss is cosine dis-
tance, scaled by a loss coefficient 2.0, and is added to the
contrastive loss. We use ALIGN dataset [29] by default,
while we show using LAION datasets [51] leads to similar
results (Table 6). Unless noted, we use a batch size of 4k
for ablation and 16k for comparisons, and train for 500k it-
erations using the AdamW optimizer with an initial learning
rate (LR) of 5e-4 and linear LR decay. We use 10k warm-up
iterations and a weight decay of 0.01.

Detection finetuning setup. We train our model on base
categories CB with an image size of 1024×1024. The po-
sitional embeddings (PE) are bilinearly interpolated to fit
the higher resolution. We do not apply PE Dropout during
the detection training, and set a lower learning rate for the
backbone (e.g., 0.5 ×) compared to the rest of the model.
We utilize CLIP templates [47] and take the average text
embeddings of each category. We use a batch size 128,
the SGD optimizer with momentum 0.9, an initial learn-
ing rate of 0.18/0.02 and train for 36.8k/11.3k iterations on
LVIS/COCO datasets.



image Flickr30K (1K test set) MS COCO (5K test set)
encoder ——-image-to-text——- ——-text-to-image——- ——-image-to-text——- ——-text-to-image——-

method size R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R10 R@1 R@5 R@10
CLIP [47] 302M 88.0 98.7 99.4 68.7 90.6 95.2 58.4 81.5 88.1 37.8 62.4 72.2
ALIGN [29] 480M 88.6 98.7 99.7 75.7 93.8 96.8 58.6 83.0 89.7 45.6 69.8 78.6
FLAVA [53] 86M 67.7 94.0 - 65.2 89.4 - 42.7 76.8 - 38.4 67.5 -
FILIP [61] 302M 89.8 99.2 99.8 75.0 93.4 96.3 61.3 84.3 90.4 45.9 70.6 79.3
Florence [63] 637M 90.9 99.1 - 76.7 93.6 - 64.7 85.9 - 47.2 71.4 -
CoCa-Large [62] 303M 91.4 99.2 99.9 79.0 95.1 97.4 65.4 85.6 91.4 50.1 73.8 81.8
CFM-ViT (ours) 303M 91.7 99.0 99.9 79.6 95.6 97.7 66.4 86.1 91.5 49.8 73.5 81.6

Table 3: Zero-shot image-text retrieval results on Flickr30K and COCO benchmarks. We evaluate our pretrained model compared to
other methods. We outperform the state-of-the-art CoCa-Large with the same backbone in 8 out of 12 metrics.

4.1. Main Results

LVIS benchmark. We compare with other methods on
the LVIS [19] open-vocabulary detection benchmark which
contains a diverse set of 1203 object categories. The base
categories CB for training are the ‘frequent’ and ‘common’
categories, and novel categories CN are the ‘rare’ categories
which are held out for testing, as in [18, 70, 13]. The main
metric is mask APr, and we report the mean over three runs
following [18] for reproducibility.

Table 1 reports that the best CFM-ViT model achieves
33.9 APr, a significant improvement over the best exist-
ing ViT-based method OWL-ViT [42] by +10.0 APr. Re-
markably, CFM-ViT using a smaller ViT-B/16 backbone
outperforms OWL-ViT with ViT-L/14 by +4.0 APr. Fur-
thermore, compared to the current best approach ViLD-Ens
with EffNet-B7 backbone, CFM-ViT achieves a +7.6 APr

improvement. Notably, CFM-ViT has a simple finetun-
ing recipe using only vanilla detection losses [23], without
the use of long-tail recognition losses [42, 71, 74], knowl-
edge distillation [18, 13], weak supervision [74], or pseudo
box/mask labels [71, 68, 49], all of which are common
among current open-vocabulary detection methods.

COCO benchmark. We present the comparison on the
COCO open-vocabulary detection benchmark. This setup
uses 48 base categories for training and 17 novel categories
for testing [18]. The main metric is AP50 of novel cate-
gories (‘novel AP’). Due to fewer training categories, the
CFM-ViT model has a tendency to overfit to these cate-
gories using only the vanilla detection losses. This is be-
cause CFM-ViT do not use any auxiliary objectives such as
pseudo box/mask labels [28, 15, 71, 68, 49], knowledge dis-
tillation [18, 13], weak supervision [74] to counter-balance
overfitting on this benchmark. However, Table 2 shows that
CFM-ViT is still very competitive among existing methods
leveraging auxiliary objectives. Moreover, CFM-ViT repre-
sents the first ViT-based method on this benchmark, as the
other ViT-based [42] approach only benchmarks on LVIS.

Zero-shot Image-Text Retrieval. In addition to our main
evaluation on the region-level open-vocabulary detection,

method backbone AP AP50 AP75

supervised [18] R-50 25.6 38.6 28.0
ViLD [18] R-50 11.8 18.2 12.6
DetPro [13] R-50 12.1 18.8 12.9
CFM-ViT (ours) ViT-B/16 15.9 24.6 17.4
CFM-ViT (ours) ViT-L/16 18.7 28.9 20.3

Table 4: Transfer detection on Objects365 (Box APs). All mod-
els are trained on the LVIS base categories and tested on Ob-
jects365 dataset, without finetuning.

we evaluate our image-level representation in zero-shot
image-text retrieval. We take the same CFM-ViT model as
in the last row of Table 1 (ViT-L, batch size 16k) and con-
tinue the pretraining on higher resolution, e.g., 448, for ex-
tra 40K iterations, following the standard protocol [29, 62].

Table 3 shows our comparison with other dual-encoder
methods on Flickr30K and MS COCO benchmarks. CFM-
ViT outperforms state-of-the-art methods of similar or
larger model size, on 8 out of 12 metrics.

Zero-shot Transfer Detection. To assess CFM-ViT’s abil-
ity to generalize in zero-shot transfer detection, we test its
performance on Objects365-v1 validation split [52]. We use
the same detector trained on LVIS base categories (Table 1)
and replace LVIS with Objects365 vocabulary embeddings
for transfer detection without finetuning [18, 13]. We as-
sume all categories are novel and set α, β=(0.0, 0.65) in
Eq. (2). Our best model achieves 18.7 AP, outperforming
ViLD by +6.9 AP and DetPro by +5.6 AP, as shown in Ta-
ble 4. Given the different backbone capacity (R50 vs ViT),
this comparison mainly serves to demonstrate that CFM-
ViT can achieve strong cross-dataset generalization.

4.2. Ablation Study

We ablate the design of CFM-ViT’s pretraining and
open-vocabulary detector. We evaluate on the LVIS open-
vocabulary detection benchmark. The image encoder is
ViT-L/16, and contrastive batch size is 4k by default.

Masked feature reconstruction. Table 5a ablates the
proposed masked image-text pretraining (Sec. 3.2). The
proposed masked feature reconstruction offers a clear ben-



pretraining method APr AP
baseline 27.4 (+x.x) 30.4
w/ feat recon. 30.7 (+3.3) 34.0
w/ pixel recon. 27.1 (+x.x) 31.3
w/ 1st-layer feat recon. 27.2 (+x.x) 30.8

(a) Masked reconstruction. ‘baseline’ is the
contrastive image-text pretraining. Our proposed
masked feature reconstruction improves by +3.3
APr . Reconstruction in the raw pixel space or
the first-layer feature space shows no benefit.

pretraining method APr AP
baseline 27.4 (+x.x) 30.4
w/ PED 28.5 (+1.1) 31.9
w/ feat recon. + PED 31.2 (+3.8) 33.7
w/ no PE 25.8 (+x.x) 29.5
w/ feat recon. + no PE 27.7 (+x.x) 31.9

(b) Positional Embedding Dropout (PED) im-
proves the baseline by 1.1 APr . It achieves a fur-
ther gain of +2.7 when used with masked feature
reconstruction. PED outperforms ‘no PE’ by 3.5
/ 1.6 APr with/without feature reconstruction

contr. / recon. FLOPs APr AP
100% / 00% 1.00× 27.4 30.4
100% / 25% 1.23× 30.7 34.0
100% / 50% 1.44× 29.9 33.1
075% / 25% 1.01× 30.4 33.9

(c) Masking contrastive branch recovers
the training efficiency with little or no per-
formance drop, outperforming the baseline
by +3.0 APr .

bblr APr AP
0.0 9.5 11.4
0.1 25.8 28.5
0.5 27.4 30.4
1.0 26.0 30.2

(d) Backbone fine-
tuning lr ratio (bblr)
w.r.t. added detector
layers.

w/ PED APr AP
baseline 27.4 -→- 24.6 -(-2.8) 30.4 → 30.3
w/ feat-recon. 30.7 -→- 27.1 -(-3.8) 34.0 → 33.4
baseline ✓ 28.5 -→- 30.5 -(+2.0) 31.9 → 31.8
w/ feat-recon ✓ 31.2 -→- 32.5 -(+1.3) 33.7 → 34.1

(e) Frozen backbone inference. When using standard positional
embeddings, it underperforms the finetuned encoder. In contrast,
with the encoder pretrained with PED, the frozen backbone infer-
ence surpasses the finetuned counterpart by +2.0 and +1.3 APr .

model batch APr AP
B/16 4k 24.1 -→- 26.8 -(+2.7) 27.6 → 30.2
B/16 16k 26.4 -→- 28.8 -(+2.4) 30.3 → 33,5
L/16 4k 27.4 -→- 32.5 -(+5.1) 30.4 → 34.1
L/16 16k 30.5 -→- 33.9 -(+3.4) 35.9 → 36.6

(f) Scalabiltiy: The benefit of ‘baseline → CFM-ViT’
across different model and contrastive batch sizes. It im-
proves the baselines by +2.4 to +5.1 APr .

Table 5: Ablation studies on LVIS open-vocabulary detection benchmark. We train on base (‘frequent’ + ‘common’) categories, test on
novel (‘rare’) categories, and report APr . We use ViT-L/16 backbone and contrastive batch size 4k unless otherwise noted.

efit of +3.3 APr over the contrastive image-text pretraining
baseline. In this case, the feature reconstruction target is
the output features of the image encoder. We compare with
other reconstruction targets: normalized image pixels [22]
and the features from the first patchifying layer. We ob-
serve that neither improve over the baseline, likely because
the contrastive pretraining sets a strong baseline represen-
tation [18, 10, 33]. In contrast, the proposed masked fea-
ture reconstruction clearly improves upon the strong base-
line and shows advantage in open-vocabulary detection.

Positional embedding dropout. In Table 5b, we ablate
the positional embedding dropout (‘PED’). PED brings a
gain of +1.1 APr over the baseline (PE without dropout).
This shows that PED effectively reduces overfitting to the
low-res whole-image PE during pretraining, thus adapting
better to the high-res detection task through finetuning. In
addition, PED achieves further gain of +2.7 when used to-
gether with masked feature reconstruction. We compare
PED with another baseline which uses no positional embed-
dings in the ViT encoder (‘no PE’). The PED method out-
performs the ‘no PE’ baseline by 3.5 / 1.6 APr with/without
feature reconstruction. We note that the positional embed-
dings in the reconstruction decoder [22] is always kept. Fi-
nally, PED allows the use of the frozen backbone as a strong
region classifier as shown in Table 5e.

Faster training by masking contrastive branch. Ta-
ble 5c studies image masking ratios of the contrastive and
reconstruction encoders. By default, we apply our con-
trastive encoder on intact images during training, i.e. 100%
tokens. Adding the reconstruction tower with 25% input to-

pretraining data APr AP
ALIGN [29] 32.5 34.1
LAION-2B [51] 32.4 34.3
LAION-400MB [51] 32.2 34.1

Table 6: Pretraining data. ViT-L/16 and batch size 4k is used.

Flickr30K - - MS COCO
I2T T2I - - I2T T2I

baseline 86.0 72.3 - - 59.3 43.4
w/ PED 86.1 72.5 - - 59.1 43.2
w/ feat recon. + PED 87.0 73.6 - - 60.1 44.2

Table 7: Pretraining evaluation on zero-shot image-text re-
trieval (Recall@1). We evaluate the image-level representation
of our pretrained model on Flickr30k and COCO retrieval tasks.
We ablate the positional embedding dropout (PED) and adding
masked feature reconstruction. ViT-L/16 and batch size 4k is used.

kens results in 1.23× more training cost. To maintain the
training efficiency, we explore feeding only 75% tokens to
the contrastive encoder that are mutually exclusive from the
reconstruction branch inputs. This masking technique fully
recovers the training efficiency with little or no accuracy
loss, outperforming the baseline by +3.0 APr.

Backbone learning rate ratio. CFM-ViT requires the re-
tention of pretrained knowledge in the backbone to recog-
nize novel categories. Table 5d reports the advantage to set
the backbone learning rate lower than the rest of the detector
during the finetuning, with a ratio 0.5× being the optimal
value. Higher ratios lead to forgetting, while lower ratios
limit the ability to adapt to the detection task.



Figure 3: Qualitative results on LVIS novel categories (top) and Objects365 zero-shot transfer detection (bottom). For LVIS results,
we only show the novel categories for clarity. CFM-ViT detects many novel categories such as rag doll, persimmon, paperweight, hardback
book, shepherd dog on LVIS, and shrimp, power outlet on Objects365.

Frozen backbone inference. Our ablation studies so far
do not involve frozen backbone inference. All ablations use
the finetuned ViT backbone to compute the VLM scores (pi
in Sec. 3.1 and Eq. (2)). In Table 5e, we assess the effi-
cacy of the frozen backbone as a region classifier by sub-
stituting the finetuned ViT encoder with a frozen ViT en-
coder and analyze the performance (see the rightmost part
of Fig. 2). Our experiments show that the frozen backbone
underperforms the finetuned encoder when using standard
positional embeddings, which applies to both the baseline
with and without feature reconstruction loss. However, we
find that pretraining the ViT encoder with positional em-
bedding dropout (PED) leads to signficantly improved per-
formance with frozen backbone, surpassing thoese of the
finetuned backbone by +2.0/+1.3 APr, without/with feature
reconstruction loss. This result demonstrates the efficacy of
PED in reducing the domain gap between contrastive pre-
training and detection finetuning, thus improving zero-shot
region classification. Combined with feature reconstruc-
tion, our full method achieves an overall improvement of
+5.1 APr over the baseline.

Model size and batch size. Table 5f studies the effect of
model size and batch size in CFM-ViT pretraining on the
downstream open-vocabulary detection. We observe that in-
creasing the batch size from 4k to 16k leads to an improve-
ment of +2.7 / 1.4 APr for both ViT-B/L, while upgrading
from ViT-B to ViT-L results in an improvement of +5.9 / 5.6
APr for both batch sizes. These results align with obser-
vations from the contrastive learning literature [47, 29, 46]
that larger batch sizes and model sizes are both highly bene-
ficial. Importantly, we find that CFM-ViT consistently out-
performs the baseline by +2.4 to +5.1 APr, across all batch
and model sizes tested, further demonstrating its efficacy.

Pretraining data. Apart from the ALIGN data [29], we
also experiment with LAION datasets [51] in Table 6.
LAION-2B / LAION-400M results in 32.4 / 32.2 APr,
which is comparable to the ALIGN result 32.5 APr.
Image-text retrieval. In addition to ablations on open-
vocabulary detection, we investigate the effects of posi-
tional embedding dropout and masked feature reconstruc-
tion on zero-shot image-level retrieval, and report the results
in terms of Recall@1 metrics on Flickr30K and MS COCO
datasets. Table 7 shows that positional embedding dropout
effectively preserves the quality of image-level representa-
tion, while masked feature reconstruction yields an average
improvement of 1% Recall@1 across all metrics.

4.3. Visualizations

Feature reconstruction. In Fig. 1, we show our feature
reconstruction results from our pretraining (Sec. 3.2). For
visualization, we compute the similarity map (c) between
the reconstructed image features (d), and a query text em-
bedding (e). We observe that the learned feature reconstruc-
tions are semantically plausible with respect to the queried
image-text pairs.
Open-vocabulary detection outputs. In Fig. 3, we visu-
alize our CFM-ViT outputs on LVIS novel categories (top
row) and zero-shot transfer detection on Objects365 (bot-
tom row). For both visualizations, we use the same model
as in the last row of Table 1, which is trained on the LVIS
base categories. On both datasets, CFM-ViT is able to de-
tect many novel categories unavailable during training.

5. Conclusion
We introduce Contrastive Feature Masking Vision Trans-

former (CFM-ViT) which imbues the image-text pretrain-
ing with pixel/region-level semantics for open-vocabulary



object detection. By using feature construction and posi-
tional embedding dropout, CFM-ViT is simple and scalable,
outperforming the state-of-the-art on LVIS open-vocabulary
detection benchmark by large margins, and shows very
competitive performance on COCO benchmark and zero-
shot transfer to Objects365. In addition, CFM-ViT outper-
forms the state-of-the-art on 8 out of 12 metrics of zero-shot
image-text retrieval benchmarks. We hope CFM-ViT would
inspire the community to explore image-text pretraining for
open-vocabulary detection [31].
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