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Abstract

Recently, large-scale diffusion models, e.g., Stable diffu-
sion and DallE2, have shown remarkable results on image
synthesis. On the other hand, large-scale cross-modal pre-
trained models (e.g., CLIP, ALIGN, and FILIP) are com-
petent for various downstream tasks by learning to align
vision and language embeddings. In this paper, we ex-
plore the possibility of jointly modeling generation and dis-
crimination. Specifically, we propose DiffDis to unify the
cross-modal generative and discriminative pretraining into
one single framework under the diffusion process. DiffDis
first formulates the image-text discriminative problem as a
generative diffusion process of the text embedding from the
text encoder conditioned on the image. Then, we propose
a novel dual-stream network architecture, which fuses the
noisy text embedding with the knowledge of latent images
from different scales for image-text discriminative learning.
Moreover, the generative and discriminative tasks can ef-
ficiently share the image-branch network structure in the
multi-modality model. Benefiting from diffusion-based uni-
fied training, DiffDis achieves both better generation abil-
ity and cross-modal semantic alignment in one architecture.
Experimental results show that DiffDis outperforms single-
task models on both the image generation and the image-
text discriminative tasks, e.g., 1.65% improvement on av-
erage accuracy of zero-shot classification over 12 datasets
and 2.42 improvement on FID of zero-shot image synthesis.

1. Introduction

“What I cannot create, I do not understand.” by Richard
Feynman (a well-known theoretical physicist).

Recently, large-scale diffusion models (DM) [18], 48] [53]]
such as Stable Diffusion and DallE2 have shown
impressive results in image synthesis and re-define the ca-
pacity of state-of-the-art text-guided image synthesis. Typ-
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Figure 1. Comparison of our framework and single-task models.
(a) The diffusion-based image generation-only model. (b) The
image-text discrimination-only model. (c) Our DiffDis joints the
discriminative and generative tasks under the diffusion processing
into one framework. Better viewed in colors.

ically speaking, these models contain more than one bil-
lion parameters and have a large model capacity; thus
have a good generalization and cover an extensive range
of domains. Here, by rethinking the famous remarks from
Richard Feynman, we explore whether such powerful gen-
erative models can learn the ability to further discriminate
and understand cross-modal data.

On the other hand, recent large-scale Vision-Language

Pre-training (VLP) models [42, 22| like CLIP[42]
and ALIGN [22] have demonstrated success in vari-



ous downstream zero-shot image classification or retrieval
tasks. Similar to large-scale diffusion models, these mod-
els are pre-trained with millions of image-text pairs col-
lected from the Internet. The critical idea of these works
is to contrastively align the image and text embeddings into
a joint feature space, thus gaining zero-shot discrimination
capability, which is different from the diffusion models that
consider the problem as the parameterized Markov chain.
In this paper, we focus on bridging the generative diffusion
models with VLP models to empower the generative diffu-
sion model with the cross-modal discrimination capability,
in the spirit of similar principles via large-scale pretraining.

There exist some methods that have considered combin-
ing generative models and discriminative models into a sin-
gle framework. The famous generative adversarial networks
(GAN) [15] introduce the discriminator to guide the adver-
sarial learning of the generator. However, the implicit ad-
versarial of GAN would lead to mode-collapse and training
instabilities. Moreover, HybViT [56] tried to replace the
UNet structure in GLIDE [36] with a ViT [14] model and
directly added a classification head to perform image gener-
ation and classification jointly, while ignoring the powerful
diffusion process for the discriminate task. On the other
hand, recent unified general vision models such as Pix2Seq
[6], OFA [54]], and Unified I/O [34] try to unify different
vision-language tasks into an autoregressive sequence pre-
diction framework. However, the autoregressive image gen-
eration solutions such as DallE [44]] and OFA [54] show
inferior performance compared to the DM-based models,
such as DallE2 [43] and Stable Diffusion [45], in terms of
both generation quality and sampling efficiency.

In this paper, we present DiffDis, a unified vision-
language diffusion model for both generative and discrim-
inative tasks under the diffusion paradigm. Specifically,
DiffDis first formulates the image-text discriminative prob-
lem as a generative diffusion process of the text embedding
outputted by the text encoder conditioned on the input im-
age. Therefore, the generation and discrimination tasks can
share the same image-branch network (i.e., original U-Net)
in the multi-modality diffusion model. During inference,
zero-shot image classification is performed by calculating
the cosine similarity between the generated text embedding
and the downstream text embeddings. Secondly, we de-
sign a dual-stream network architecture to better fuse the
knowledge of latent images with different scales into the
text query in image-text alignment. Finally, a unified train-
ing paradigm is further proposed to alternatively feed the
required inputs and the conditions when jointly performing
diffusion-based generative and discriminative tasks. When
training discriminative tasks, the image branch serves as an
image encoder to feed conditional information into the re-
verse text embedding diffusion process and vice versa.

Extensive experiments have shown that the proposed

DiffDis method can achieve better performance on both
zero-shot classification and text-guided image generation
tasks. Compared to the single-task baseline, our unified
framework DiffDis can achieve 1.65% improvement on the
average zero-shot classification accuracy on 12 datasets and
a 2.42 improvement on FID of zero-shot image synthesis
compared to the single-task model. This work is the first
to unify the training of generative and discriminative tasks
under the diffusion process. We hope that this research will
serve as an early-stage exploration for future studies aiming
to unify these two tasks under the diffusion process, thereby
providing more choices for future multi-task multi-modal
jointly-training frameworks.
Our contributions can be summarized as:

* We propose DiffDis to explore a unified vision-
language diffusion model for both multi-modality gen-
eration and discrimination tasks.

* DiffDis reformulates the image-text discriminative
problem by utilizing a generative diffusion process of
the text embeddings conditioned on input images.

* We propose a dual-stream network architecture and a
diffusion-based unified training paradigm for jointly
training the generative and discriminative tasks.

» Extensive experiments demonstrate that our DiffDis
outperforms single-task models, achieving a 1.65%
improvement on average zero-shot classification accu-
racy across 12 datasets and a 2.42 improvement on FID
of text-guided image generation. Additionally, DiffDis
outperforms CLIP, with a 4.7% improvement on aver-
age zero-shot classification accuracy across 12 datasets
and a 14.5% improvement on average R@1 of image-
text retrieval tasks on Flickr30k and MSCOCO.

2. Related Work

Vision-Language Pre-training. Current communities in
natural language processing and computer vision both fa-
vor the pre-train-and-fine-tune scheme because of the su-
perior performance of the pre-trained models [[11, 4} [13].
Recent works such as CLIP[42] and ALIGN [22] then ex-
tend this diagram to a joint cross-modal domain of Vision-
and-Language Pre-training (VLP). These large-scale mod-
els have shown promising results in various downstream
tasks, such as zero-shot classification and image-text re-
trieval. Their great generalization ability mainly comes
from the large-scale automatic-collected image-text dataset
from the Internet (e.g, YFCC100M [51], CC12M [3]) The
VLP models can be categorized by their pre-training tasks:
(a) Image-text contrastive learning task: CLIP [42]], ALIGN
[22], FILIP [57]] and UNIMO [28]] utilize the cross-modal



U-Net Blocks N

Image )
Encoder — Add Image Noise
Image X Latent lmage z +N Generation Stream
; pi
- -
y s U Uz~ Us Us| Us Image Noise €, Add Text Noi
Acat Text Text Condition ¢ ext Noise
Sitting on = Encoder
the porCh ’ tN Discrimination
Stream
Text Query e
ey Unified Transformer N
. . Blocks - i
Feature Extraction Architecture ¢ Text Noise €,, Joint Stream

Figure 2. Overall model architecture of DiffDis. DiffDis includes an image encoder to encode the image input « into the latent image
z and a text encoder to obtain the text condition c¢ and text query e with the caption input y. For text-conditional image generation, the
latent image z will be added noise and is fed into the UNet with c as the condition to predict the added noise ¢.. For image-text alignment
learning, the text query e will be added noise and is fed into the UNet with latent image z as the condition to predict the added noise e..

contrastive learning which aligns the textual and visual em-
bedding; (b) Language Modeling (LM) based tasks: Visu-
alBERT [27], UNITER ([7], M6[29], and DALL-E [44] em-
ploy LM-like objectives, including both masked LM (e.g.,
Masked Language), and autoregressive LM (e.g., image
captioning). In contrast, we try to follow the diffusion
framework to perform image-text alignment learning in an
end-to-end unified manner while maintaining the benefit of
strong image generation ability.

Denoising Diffusion Probabilistic Models. Since Ho
et al. [18] build a connection between diffusion model
[48] and denoising score matching model [50] and pro-
pose DDPMs (Denoising Diffusion Probabilistic Models)
to achieve high image generation quality, diffusion mod-
els start to attract attention. Nichol et al. [37] propose
to learn the variances of the reverse diffusion process
to achieve higher sampling efficiency with fewer forward
passes. Dhariwal et al. [12] achieve better image gen-
eraion quality than GANSs by finding a better model archi-
tecture through ablations and propose a new sampling tech-
nique called classifier guidance. While classifier guidance
requires training an extra classifier model, Ho er al. [20]
propose classifier-free guidance to circumvent this prob-
lem by jointly training a conditional and an unconditional
model and combine the resulting conditional and uncondi-
tional scores to achieve the same effect as classifier guid-
ance. Recently, diffusion models are applied to text-to-
image generation and achieve appealing generation results
[36L119,143L146. 145]. Some methods [56} 1] make an attempt
to unify the generation and discriminative tasks by directly
adding a classification head into the UNet structure while
our DiffDis formulate the discriminative problem into the
powerful diffusion process.

3. Methodology

In this section, we first review some preliminaries about
diffusion models (Sec. [3.1). Then we introduce our formu-

lations of generative and discriminate tasks under the uni-
fied diffusion process (Sec. [3.2), followed by a detailed de-
scription of the network architecture of the proposed unified
DiffDis (Sec. [3.3). Finally, the training paradigm is intro-
duced to deal with the generative and discriminative tasks
with different inputs and conditions (Sec. [3.4).

3.1. Preliminary on Diffusion Models

Given a sample from the real data distribution zg ~
q(xo), Gaussian diffusion models first produce a Markov
chain of latent variables 1, ..., x7 by progressively adding
Gaussian noise to the sample according to some variance
schedule given by f3; as follows:

q(ze | wmr) =N (%z; vi1- ﬁtﬂﬁt—l,ﬁtf) , (D

and then learn a model to approximate the true posterior:

Do (-rtfl | I‘t) = N(IU/G (xtat) 72‘9 (l‘t,t)) ) (2)

to perform the reverse denoising process for sampling:
starting from a random noise zr ~ N(0,I) and gradu-
ally reducing the noise to finally get a sample xy. While
a tractable variational lower-bound Ly 15 on logps(zo)
can be used to optimize ug and Yy, to achieve better re-
sults, Ho et al. [18] instead adopt a denoising network
€g (¢, t) which predicts the noise component of a noisy
sample x; ~ ¢q(z¢|z() and the following training objective:

L = Epoqlao)emn0,0,0~0,7] € — €0 (xe, )] >, (3)
where ¢ uniformly sampled from {1, ..., T'}.

3.2. Task Reformulation

Basic Notations. We denotes the image-text dataset as D =
{xi,y;} N ;, where z; and y; denote the i-th image and text.



N is the total number of image-text pairs. As shown in Fig.
DiffDis consists of an image encoder V and text encoder
T. Besides, ®,, and &4 represent the UNet model used for
text-conditional image generation, and the encoder part of
UNet model with additional transformer blocks for image-
text alignment learning, respectively.

Diffusion-based Text-conditioned Image Generation.
The generative part of DiffDis aims to generate images con-
ditioned on input text prompts. Following the standard dif-
fusion models [36[19}143| 146} 45], DiffDis generates image
samples by gradually removing the noise from a random
Gaussian noise signal over a finite number of steps. The
diffusion model is trained by adding and predicting the dif-
ferent levels of noise on the image in the opposite direction
of the sampling process.

Specifically, in the training procedure, the diffusion pro-
cess of image can be represented as a parameterized Markov
chain, which adds 7 steps’ random Gaussian noise € to
gradually convert the original image z to a random Gaus-
sian distribution 7. Following the LDM [45]], we utilize
the latent image z = V(z) € R¥*W>ds outputted by the
image encoder V instead of the RGB space of image z as the
input signal. Therefore, the diffusion-based text-conditional
image generation loss L ¢, which aims to predict the added
Gaussian noise, can be formulated as:

EIG = EV(w),esz(O,I),tZ [Hez - (pu(ztvtzvc)HQ] 4

where text condition ¢ = T (y) € RL*4v denotes the token-
wise representations of the text prompt y. L and d,, repre-
sent the context length and embedding dimensions of out-
putted token embeddings, respectively.

During the inference (sampling) process, starting from
a random Gaussian noise zr ~ N(0,I), we reverse the
diffusion process and gradually remove the predicted noise
®,, (2, t.,c) to obtain the sampled latent image after finite
steps. We use an image decoder D to convert the sampled
latent image back to RGB space & = D(Z). DDIM sampler
[49]] and classifier-free guidance [20]] are employed. More
details can refer to Algorithm
Diffusion-based Image-text Alignment Pretraining. Pre-
vious methods perform image-text alignment pretraining by
aligning the visual feature and textual feature in a com-
mon semantic space, where the positive image-text pairs are
pulled towards each other and the negative image-text pairs
are pushed against each other [57,122]. The image-text con-
trastive (ITC) loss, like in CLIP [42], first calculates the
cosine similarity of normalized visual feature v; and textual
feature e; to measure the relevance of each image and text:
sﬁ’] = sfj = vTe], where s7 jo S denote the image-to-
text similarity and the text-to- 1mage 51m11ar1ty Besides, v;
is the global representation of the image x; and e; is the
global representation of the text y;. Based on s} ; and s?’ i
the ITC loss can be calculated as [42]].

To reformulate this image-text alignment problem into a
diffusion process, we propose the denoising diffusion-based
image-text alignment which treats the latent image z as the
condition and learns the distribution of the corresponding
text embedding e € R'*%v, The diffusion process of e can
be formulated as

= Ve + V1 — e, ©)
t

T e 6)

j=0

where we omit the index 7, and j3; is used to control the
strength of added noise for timestep t.. The v € (0,1] is
the scale factor to scale the text embedding eg.

In contrast to the image generation task, the diffusion
model ®y is trained to estimate the original clean text query
éo = Py(ey, te, 2). Note that Py can also be a noise predic-
tion model to predict the noise €.

Then the diffusion-based image-text alignment objective
is to minimize the distance between ¢y and e. In detail, we
first calculate the cosine similarity between €, and e:

ap=1- B, a =

s = ége, @)

Note that we omit the index of the embeddings here. Then
the diffusion-based image-text alignment loss £;7 4 can be
calculated as:

& exp(sf,;) exp(s?,;)
L = I _SPii) +log —=——2 ],
4= "398 2 %8 S (st T B S exp(sTy)
(8)

where B denotes the batch size and L1 4 is calculated for
each diffusion step during training.

3.3. Unified Model Architecture

Feature Extraction Modules. As shown in Fig. [2} DiffDis
includes an image encoder to obtain the latent image [435]]
and a text encoder to obtain the text condition and text
query. Specifically, the image encoder V of an autoencoder
aims to convert the image « from RGB space to image’s la-
tent representation z which improves the training efficiency
and perform image generation on high-resolution image
synthesis. On the other hand, we adopt the text encoder 7
to encode the text prompt y to the text condition ¢ and text
query e. Note that the dimensions of these two text embed-
ding outputs are different. The text condition ¢ € RE*%v is
the token-wise representation of the text prompt y while the
text query e € R'¥% is the normalized global representa-
tion of the text prompt y.

Unified Architecture. The following UNet’s structure re-
ceives three inputs: latent image z, text condition ¢ and
text query e. For text-conditional image generation task,
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Figure 3. Detailed architecture of dual-stream deep fusion atten-
tion block. Compare to the conventional attention block (blue
part) in [45], we design a dual-stream deep fusion attention archi-
tecture to better fuse the knowledge of latent image into the text
query in cross-modal alignment learning. The separate FFNs learn
modality-specific information. Besides, we build a cross-block
skip connection from the noised text query e; with time condition
to the hidden text query h.;—1 outputted from the last block.

we adopt the noisy latent image z; and text condition c as
input to predict the noise €, added on latent image z. For
diffusion-based image-text alignment learning, we adopt
the latent image z and noisy text query e; as input to pre-
dict the original clean text query e. Note that it is viable
to predict the noise €, added on text query e for the align-
ment learning. More training details can refer to Sec. [3.4]
Besides, the @y also contains a unique transformer with M
transformer block and a linear predictor. The unique trans-
former follows the middle block of the UNet to obtain more
semantic information. The transformer’s input is the con-
catenation of the flattened image’s feature map and the text
query outputted from the middle block of UNet. Finally,
the linear predictor will be fed by the text query token and
predict the original clean text query e.

Dual-stream Deep Fusion Attention Block. We modify
the architecture of attention blocks in UNet to better unify
these two tasks with different inputs. Previous stable diffu-
sion [435]] directly use K transformer decoder blocks to in-
ject the text condition information into the latent image via
the cross-attention mechanism. As illustrated in Fig. [3] we
proposed a dual-stream deep fusion block to better fuse the
latent image knowledge into the text query for cross-modal
alignment learning. Specially, we adopt an additional fully-

Algorithm 1 Diffusion-base Unified Training
Input: Image «x, Text y, Image Encoder V, Text Encoder 7T,
Timestep 7.

1: repeat
2: c,e="T(y)
z=V(x)
ty,te ~ Uniform({1,...T})
€x2,6c ~ N(0,1)
Mask e and calculate £;¢ based on Eq. [}
Mask c and calculate L7 4 based on Eq. B}
Calculate total loss £ based on Eq. [9]
Take gradient descent step on

vu,«‘) l:Total
10: until converged

> Get text condition and text query

R A

connected layer to project the text query embedding into the
same dimension as the hidden latent image space. Then the
concatenation of the projected text query and the hidden la-
tent image h, ;1 outputted by the last block will pass K
transformer blocks. In each transformer block, we propose
the modality-specific feedforward neural network (FFN) for
text and image. Besides, the text query will skip the cross-
attention layer. Following the transformer blocks, we sep-
arate the concatenation between the text query and the im-
age hidden, and project the text query back to the text em-
bedding space using a fully-connected layer. Furthermore,
we build a cross-block skip connection from the noised text
query e; with time condition to the hidden text query h¢ ;1
outputted by the last block. The hidden text query h. ;1 is
initialized to zero.

3.4. Diffusion-base Unified Training

In this section, we introduce the training paradigm to
unify diffusion-based image generation training and cross-
modal alignment learning into a single framework. Algo-
rithm T]illustrates the whole training algorithm.

To alternatively feed the required inputs and the con-
ditions when performing diffusion-based generation and
alignment tasks, we introduce the masking mechanism to
erase the unnecessary input. Note that the whole inputs’
space includes the latent image z outputted by the image
encoder, text condition ¢ and text query e outputted by the
text encoder. For the image generation task, we mask the
text query e, and feed the noisy latent image z; with time
step ¢ and text condition c into the following UNet model.
While for image-text alignment learning, to avoid leaking
textual information, we mask the text condition ¢, then feed
the noisy text query e; with timestep ¢ and the latent image
z as condition. Considering the image generation loss L;¢
from Eq. [ and the diffusion-based image-text alignment
loss L4 from Eq. [8] the total loss of DiffDis Lrstq; can



Algorithm 2 Text-conditional Image Generation Sampling.

Input: Text y, Text Encoder 7, Image Decoder D,
Timestep 7', Noise Schedule {f;}1_,, Classifier-free guid-
ance scale w.

1. zp ~ N(O,I)

2: ¢ = T(y)

3 ap=1-F, a4 = HZ:1 o

4 fort=1T,...,1do > For simplify, ¢ stands for ¢ .
5: €, = (1+w)q)u(zt7tac) 7w(pu(ztat)

6 = VE () T e,

7: end for

8: return D(z)

Algorithm 3 Image-text Alignment Inference.

Input: Image z, Text 3’ of Downstream Task, Image En-
coder V, Text Encoder 7, Timestep 7', Noise Schedule
{B:}L_,, Classifier-free guidance scale w.

1: e ~ N(O, I)

2z = V(T)

Bap=1-p 0o = HZ:1 Qy

4: fort=T,...,1do > For simplify, ¢ stands for ¢..
5: éo = (1 4+ w)Py(es, t,z) — wPq(ey, t)

6: ée:(et—@éo)/\/l—dt

7: er—1 = /Oy (=" ‘\/1&%%)-1-\/1—@—1%

8: end for

9: eg = eo/|leol| > L2 Normalize
10: e=T(y) > Extract Text Embedding
1: e=¢/|le|| > L2 Normalize
12: Perform the similarity e] e on downstream tasks.

be calculated as:

Lrotal = L1g +ALrTA 9

where A\ denotes the weight factor.

Algorithm [2] and Algorithm [3] show the inference algo-
rithm of sampling processes of text-conditional image gen-
eration and image-text alignment, respectively. During in-
ference, different sampling acceleration techniques, such as
classifier-free guidance sampling [20], can also be seam-
lessly integrated into our framework for both tasks.

4. Experiments

In this section, we first describe the detailed experiment
settings (Sec. [.1). Then we show the results on zero-shot
image classification, image-text retrieval and text-to-image
generation (Sec. 4.2)). Finally, we conduct ablation studies
on our DiffDis to validate the effectiveness of implementa-
tion designs (Sec. [4.3).

4.1. Experiment Setting

Model Architecture. To obtain better image synthesis per-
formance, we initialize the autoencoder and UNet from Sta-
ble Diffusion-v1 —1[1_1 The transformer in model ® is trained
from scratch and contains 6 transformer blocks with 768
model width and 64-dim attention heads. The text encoder
is initialized from CLIP-ViT-L/14 [42]].

Experiment Details. We pre-train models on Conceptual
Caption Dataset (CC3M) [47] to evaluate our DiffDis’s ef-
fectiveness. The resolutions of the original image and the
latent image are set as 256 x 256 x 3 and 32 x 32 x 4 re-
spectively. Following Stable Diffusion, the pixel values of
the image are normalized to [-1, 1] and the autoencoder and
text encoder are frozen. We pre-train our DiffDis model for
6 epochs using the AdamW [33]] optimizer with weight de-
cay of le-4. The batch size is set as 256 and the learning
rate is set as le-5 with 1000 steps linear warmup and kept
unchanged until the training is finished. The new parame-
ters introduced for the discriminative tasks use the learning
rate of le-4. We simply set A to 1 and randomly drop 10%
text condition for image generation and 10% image con-
dition by zeroing the image for diffusion-based image-text
alignment to enable the classifier-free guidance [20]]. Ex-
ponential moving average (EMA) is applied every iteration
and the decay coefficient is set as 0.9999. The EMA model
is utilized to evaluate the performance of downstream tasks.
Evaluations. For zero-shot image classification, we eval-
uate our proposed DiffDis model on 12 classification
datasets, i.e., CIFAR10 [25], CIFAR100 [25], Caltech101
[26], StanfordCars [24], Flowers102 [38], Food101 [3],
SUN39 [2], Describable Textures Dataset (DTD) [8], Air-
crafts [35], OxfordPets [40], EuroSAT [16], and Ima-
geNet [10]. We adopt DDIM sampler [49] as described
in Algorithm [3 to predict the text embedding and calcu-
late the similarity between predicted text embedding and
text embedding. During inference, we use 8 sampling steps
and classifier-free guidance scale [20] of 3. Following
CLIP [42], we ensemble the prompt templates to improve
the zero-shot classification performance by averaging the
text embeddings across different prompt templates.

For zero-shot image-to-text retrieval and text-to-image
retrieval tasks, we conduct experiments on karpathy split
test set [23] of MSCOCO [30] and Flickr30K [4.1] which are
widely used benchmark datasets. The inference processing
of retrieval is similar to image classification.

For zero-shot text-to-image generation, we evaluate
the performance on 30,000 text prompts from MSCOCO
dataset [30] under the evaluation of FID, KID by apply-
ing torch-fidelity [39]. We also calculate CLIP-Score [17]
under pre-trained CLIP-RN50. We compare our proposed

I'Stable-Diffusion-v1-1 checkpoint: https://huggingface.co/CompVis/stable-

diffusion-v-1-1-original



— g (o] 2]
(] -
= = = S = — ) L = 3
= = : & = % £ 8 5 % | ¥
S £ &2 T 2 B z a 5 &£ e & | 5
= = = s 5 g =) E £ £ g g e
O @) @) n & 9 1%} a < o 53| — <
CLIP-ViT-B/32 | 63.0 285 582 11 124 128 243 76 15 115 118 167 | 208
CLIP-ViT-B/16 | 572 270 548 10 129 136 288 10.1 1.1 103 108 19.7 | 20.6
CLIP-ViT-L/14 | 575 281 572 18 108 143 312 121 17 117 249 211 | 227
DiffDis 571 323 686 31 169 162 351 264 20 285 175 259 | 274

Table 1. Top-1 accuracy(%) of zero-shot image classification on 12 datasets. Note that CLIP models are pre-trained on CC3M by using 4x

larger batch size and 3.3x longer training epochs.

Flickr30K MSCOCO
Model image-to-text text-to-image image-to-text text-to-image
R@l R@5 R@10 R@I R@5 R@I10| R@l R@5 R@10 R@l R@5 R@I10 | MeanR@1
CLIP-ViT-B/32 | 18.8 423 539 125 305 399 10.1 253 353 70 189 27.1 12.1
CLIP-ViT-B/16 | 30.1 564 689 194 421 527 144 346 46.1 10.3 265  36.6 18.6
CLIP-ViT-L/14 | 29.9 583 704 203 46.1 576 147 350 471 11.3 284 389 19.1
DiffDis 498 775 856 388 679 776 | 263 509 628 195 422 542 33.6

Table 2. Results of zero-shot image-text retrieval on Flickr30K and MSCOCO datasets. ‘R@K’ means top-K recall. ‘Mean R@1’ means
the average R@1 of image-to-text retrieval and text-to-image retrieval on Flickr30K and MSCOCO. Note that CLIP models are pre-trained

on CC3M by using 4x larger batch size and 3.3x longer training epochs.

DiffDis with Stable Diffusion fine-tuned on CC3M with the
same training hyper-parameters. All models use PNDM
sampler [31] with 50 sampling steps under the classifier-
free guidance scale [20] of 3.

4.2. Main Results

Zero-shot Image Classification. Table [T| presents detailed
results on 12 classification datasets, comparing CLIP-ViT-
B/32, CLIP-ViT-B/16, and CLIP-ViT-L/14 pre-trained on
the same dataset, i.e., CC3M. To ensure a fair compari-
son with DiffDis, all CLIP models’ text encoders are ini-
tialized from the pre-training [42]]. Despite CLIP mod-
els being pre-trained with a 4x larger batch size and 3.3x
longer training epochs, DiffDis achieves an average accu-
racy gain of 4.7% across 12 datasets, outperforming CLIP-
ViT-L/14. Moreover, DiffDis demonstrates significant per-
formance improvements on some domain-specific datasets
such as OxfordPets, which we attribute to its strong gener-
ation ability to capture fine-grained information.

Zero-shot Image-Text Retrieval. Table [2] presents exper-
imental results on image-to-text (I2T) retrieval and text-to-
image (T2I) retrieval for Flickr30K and MSCOCO datasets.
We can observe that DiffDis outperforms CLIP-ViT-L/14 in
R@1 of I2T retrieval and T2I retrieval by 11.6% and 8.2%,
respectively, on the MSCOCO dataset. Moreover, on the
Flickr30K dataset, DiffDis achieves superior results with
19.9% and 18.5% improvements in R@1 of 12T retrieval
and T2I retrieval, respectively.

Zero-shot Text-to-Image Generation. In addition to the
Stable Diffusion model pre-trained on CC3M, we com-

Model Text-to-Image Generation)

FID| KID] CLIP-Scoret
OFA (Finetuned) [53] 10.5 - -
LAFITE [58]] 26.9 - -
DALLE [44] 17.8 - -
GLIDE [36] 12.2 - -
DALLE2 [43]] 10.4 - -
Stable Diffusion 10.8 2.9e-3 24.6
DiffDis 9.8 2.3e-3 24.4

Table 3. Quantitative evaluation of FID and CLIP-score on
MSCOCO dataset for zero-shot text-guided 256 x 256 image syn-
thesis. The Stable Diffusion and DiffDis are pre-trained on CC3M.

Task FID] ZS-Acct Mean R@I11
Dis - 11.31 15.82
Gen 43.47 - -
Hybrid 41.05 12.96 19.72

Table 4. Results of DiffDis with train-from-scratch UNet.

pare our proposed DiffDis model with LAFITE [58],
DALLE [44], GLIDE [36l], DALLE2 [43], and OFA [53].
Table [3] demonstrates that our proposed DiffDis model
makes a comparable performance to Stable Diffusion,
achieving a 1.0 improvement in FID and similarly CLIP-
Score, indicating that dual-task learning helps in image
generation tasks. Additionally, DiffDis’s zero-shot image
generation performance on the MSCOCO dataset surpasses
OFA, which has been fine-tuned on the MSCOCO dataset.
Note that OFA is also a hybrid model to combine discrim-
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Figure 4. Qualitative comparisons of Stable diffusion and our
DiffDis on MSCOCO zero-shot text-to-image generation.

inative tasks and generative tasks. Figure [] illustrates the
synthetic samples under the text condition generated by dif-
ferent models on MSCOCO.

4.3. Ablation Study

The Effect of Dual-task Learning. Table[]presents a com-
parison between dual-task learning and single-task learn-
ing. In this experiment, UNet is trained from scratch, and
the text encoder is frozen, which is the same as stable
diffusion pre-training. Compared to single-task learning,
dual-task learning shows a 1.65% improvement in zero-
shot ImageNet classification, a 3.9% improvement on aver-
age R@1 of Flickr30k and MSCOCO, and a 2.42 improve-
ment in FID of zero-shot MSCOCO text-to-image genera-
tion. These results demonstrate the effectiveness of unify-
ing cross-modal generative and discriminative pre-training
into a single framework under the diffusion process.

The Effect of Freezing Text Encoder. The generative task
usually applies a frozen text encoder but the discriminative
task often trains the text encoder. Table 3 demonstrates that
freezing the text encoder obtains better performance on all

Freeze 7 Enlarge LR FID| ZS-Acct Mean R@11

X 4 11.56 2572 29.37
4 X 1098  24.98 31.08
v 4 9.80 25.92 33.60

Table 5. The effect of enlarging the learning rate for train-from-
scratch parameters and freeze the text encoder 7.

¥ FID| ZS-Acct Mean R@11

1 11.90 2235 28.59
0.1 11.62 2297 29.08
0.01 11.52 2345 28.64

Table 6. Results of DiffDis with different scale factor v for text
embedding in diffusion-based image-text alignment. The model
is trained without enlarging the learning rate, freeze 7, and deep
fusion blocks.

Classifier-free Guidance Scale None 2 3 4 5
ZS-Acc (ImageNet) 23.15 2344 2345 2343 23.37
FID (MSCOCO)| 30.13 12.59 11.52 13.25 15.18

Table 7. The ablation of classifier-free guidance level [20]. By
reformulating in a diffusion framework, Classifier-free guidance
can be applied to boost both generative and discriminative tasks.

tasks, especially in the image generation task. We freeze the
text encoder in our main results.

Enlarging the Learning Rate of Train-From-Scratch Pa-
rameters. During pre-training, we utilize a learning rate
for the train-from-scratch parameters, i.e., the additional
parameters for discriminative tasks, that is 10 times larger
than the base learning rate. Specifically, we set the learn-
ing rate of le-4 for train-from-scratch parameters and the
pre-trained parameters use a learning rate of le-5. Table 3]
demonstrates that enlarging the learning rate of train-from-
scratch parameters can improve the performance on three
downstream tasks.

The Effect of Text Embedding Scale Factor . The ex-
perimental results presented in Table [f] examine the impact
of text embedding scale factor « for discriminative learn-
ing on three downstream tasks. The results show that as ~y
decreases, the performance of text-guided image generation
and zero-shot ImageNet classification improves.

The Effect of Classifier-free Guidance. Table [7] demon-
strates that classifier-free guidance can enhance both image
generation and discriminative ability. Specifically, the re-
sults indicate that the use of classifier-free guidance with a
value of 3 leads to the best performance in terms of image
synthesis and zero-shot ImageNet classification.

The Effect of Different Sampling Steps. In image gen-
eration tasks, larger steps for denoising typically result in
better performance. This section aims to analyze the impact



Steps 1 4 8 10 20 50
ZS-Acc 14.85 23.14 23.15 23.12 23.13 23.13

Table 8. The performance on zero-shot ImageNet classification
with different sampling steps. No classifier-free guidance.

Q X
Q Q <
S
& & S Na 3
Dataset © @) < S N\
Mean 57.15 32.31 16.25 35.15 25.92

Var 3.99e-05 1.66e-05 6.27e-06 8.88e-05 9.20e-05

Table 9. The stochasticity of DiffDis on zero-shot classification.

of various generation steps on the discriminative task. The
experimental results are presented in Table [§] The results
indicate that using 8 steps leads to the best performance on
zero-shot ImageNet classification task. However, increas-
ing the number of steps beyond 8 results in longer inference
times without a significant improvement in performance.
Stochasticity of the Discriminative Evaluation. We run
10 times evaluations of zero-shot classification with differ-
ent random seeds on five classification datasets to calculate
the mean and variance of the performance. Table [9] shows
that the discriminative performance is stabled.

5. Conclusion

This paper proposes a novel framework named DiffDis,
which unifies the training of generative and discriminative
tasks under the diffusion process. Initially, we formulate
the image-text alignment into a diffusion process by adopt-
ing the text embeddings as diffusion objectives. We then
propose a dual-stream network architecture that can simul-
taneously learn to reconstruct the image and text embed-
dings. As the first work to unify the training of genera-
tive and discriminative tasks under the diffusion process,
we conducted a careful ablation study of the different key
settings of the unified model. We observed that the unified
model achieves improvement in both discriminative tasks
and generative tasks compared to the single-task model. We
hope that our work can serve as an exploration for future re-
search on unifying discriminative tasks under the diffusion
process, thereby providing more choices for future multi-
task multi-modal joint-training model frameworks.
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A. Failure Case

The performance of image generation is relatively unsat-
isfactory (shown in Fig. [5) considering the following rea-
sons. 1). Since we train the model on CC3M [47]], which
contains images of general scenes, the generation quality of
some specific domains like humans, animals is low. Train-
ing data from these domains may further improve the gen-
eration quality (upper). 2). The generation results may
contain watermarks since some images in CC3M are wa-
termarked (bottom).

A man in a wetsuit witha |
surfboard standing on a
beach

Two giraffes are walking
- and standing in the open
field

A man standing on top of | 5|55
a base on a field

A herd of elephants
walking among the grass

Figure 5. Failure cases of text-to-image generation.

B. More Implement Details

In this section, we introduce more implementation de-
tails for our DiffDis. 1) We use a cosine noise scheduler for
the text query diffusion process and a linear noise sched-
uler for the image diffusion process. 2). We assign the
timestep of 1000 to the image condition when performing
discriminative tasks. Note that 1000 is not in the range of
the timestep for image generation.

Here we give detailed experimental settings for the CLIP
models we compared in the main paper. We set the batch
size to 1024 and pre-training was conducted for 20 epochs
by using AdamW optimizer. The learning rate is le-3 and
the weight decay is 0.1. During pre-training, the images
are randomly cropped and we use the RandAugment [9] for
image augmentation. We compare our implementation with
open source clip pretraining codebase [21]. We keep the
same batch size and the number of training epochs. The
experimental results are shown in Table[T0] Our implemen-
tation is better than open source codebase. We think that the
improvement can be attributed to more extensive augmen-
tation for images.

C. More Discussion

The Effect of Different Model Targets. Diffusion model’s
output can be the original noise € or the data x( that denote
the noise prediction model and data prediction model, re-
spectively. The comparison of two types of models on three
downstream tasks is listed on Table [T1]

Codebase Model 7S-Acc

OpenCLIP [21] CLIP-ViT-B/32 14.7
OpenCLIP [21] CLIP-ViT-L/14 19.1
Our CLIP-ViT-B/32 16.7
Our CLIP-ViT-L/14  21.1

Table 10. Comparison of our implementation and open source im-
plementation [21]].

Model Target FID| ZS-Acct Mean R@11
Noise 10.78  22.62 29.38
Data 11.52 2344 28.64

Table 11. The performance of different model targets. Using fea-
ture scaling v = 1.

Noise Scheduler FID] ZS-Acct Mean R@11
Cosine 11.90 22.35 28.59
Linear 11.52  22.70 31.07

Table 12. The performance of different noise schedulers. Using
feature scaling v = 1.

Enabled Fusion FID] ZS-Acct Mean R@11

X 10.05  24.53 32.97
v 9.80 25.92 33.60

Table 13. The performance on FID score on MSCOCO image gen-
eration, zero-shot ImageNet classification and average R@1 of
MSCOCO and Flickr30k by enabling dual-stream deep fusion at-
tention block.

The Effect of Different Noise Schedulers. We analyze the
influence of different noise schedulers on the text diffusion
process. The linear schedule starts from 0.00085 to 0.0120.
Table shows that the linear schedule is a better choice
than the cosine schedule.

The Effect of Dual-Stream Deep Fusion Attention Block.
To evaluate the effectiveness of the proposed dual-stream
deep fusion attention block, we disable the fusion block by
replacing it with the original attention blocks of Stable Dif-
fusion. We directly concatenate the input text query with the
image hidden output from UNet’s middle block and feed
the concatenation to the 6 blocks transformer. Table [I3]
shows the experimental results of this comparison. When
disabling the deep fusion block, the performances of three
downstream tasks are dropped. Besides, according to Table
[T4] using modality-specific FFN and sharing the attention
module in dual-stream deep fusion attention block will im-
prove the performance on generation tasks.

Time Comparison. We provide the training time, gen-
erative inference time on COCO and discriminative infer-
ence time on ImageNet in Table[T3] After unifying the dis-
criminative and generative tasks, DiffDis has a longer train-
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Figure 6. More illustrations of generated samples with proposed DiffDis on MSCOCO prompts.

Share Attn MS-FFN FID| ZS-Acct Mean R@11

4 X 1026 25.92 33.75
X 4 10.19  26.25 33.07
v v 9.80 25.92 33.60

Table 14. The effect of the modality-specific FFN (MS-FFN) and
sharing attention module in the dual-stream deep fusion attention
block. We use the setting of the last row in our model.

ing time compared to single-task training but has a shorter
training time than the sum training time of CLIP-ViT-L/14
and Stable Diffu- sion and make better or comparable per-
formance. DiffDis has a similar generative inference time
as Stable Diffusion and 1.7x discriminative inference time
compared to CLIP.

The Mask Timestep of Image Condition for the Discrim-
inative Tasks. The image condition for the discriminative
tasks needs a timestep to input. We discuss the selection
of the image condition on three downstream tasks on Table
[T6] The experimental results show that reusing the timestep

Time / Tasks Training Gen-Inference Dis-Inference ZS-Acct FID|
CLIP-ViT-L/14  1d 7h - 148s 21.1 -
Stable Diffusion  1d 8h 3530s - - 10.8
DiffDis 2d 6h 3550s 252s 259 9.8

Table 15. The training time and inference time comparison.

within the range of image generation’s timestep leads to per-
formance degradation on both image generation tasks and
discriminative tasks. The use of the ‘First’ mask timestep
(t, = 0) will degrade the performance most. Assigning an
additional timestep for the image condition for discrimina-
tive tasks achieves the best performance on all downstream
tasks.

Discussion with HybViT We clarify that the DiffDis can-
not directly compare with HybViT [56] since 1) Hyb-
ViT focuses on class-condition image generation while our
DiffDis targets text-condition image generation; 2) HybViT
performs supervised classification tasks but can not perform
zero-shot classification tasks or image-text retrieval tasks
while DiffDis can.



Position t, FID] ZS-Acct MeanR@11

First 0 1235 21.97 27.20
Last 999 12.02  21.73 27.56
Additional 1000 11.35  22.13 27.56

Table 16. Results of different mask timestep of image condition
for discriminative learning. The range of the image generation
diffusion steps is 0-999 . The additional timestep used for dis-
criminative tasks is not shared with image generation.

Backbone Pre-train Stage Fine-tune Stage
Image-Acc Text-Acc KNN-Acc Acc

CLIP-ViT-L/14 314 38.1 355 40.5

DiffDis 37.0 52.5 40.5 4.4

Table 17. Results of long-tailed recognition on Places-LT dataset
by using different backbone. We follow the official code of VL-
LTR [52].

D. Application of DiffDis

We follow VL-LTR [52] to perform long-tailed visual
recognition tasks and apply DiffDis or CLIP-ViT-L/14 (our
implementation, pre-trained on CC3M), as the backbone.
As shown in Table We evaluate the performances of
the pre-train stage and fine-tune stage on the Places-LT
dataset [32].



