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Abstract

Multi-media communications facilitate global interac-
tion among people. However, despite researchers exploring
cross-lingual translation techniques such as machine trans-
lation and audio speech translation to overcome language
barriers, there is still a shortage of cross-lingual studies on
visual speech. This lack of research is mainly due to the ab-
sence of datasets containing visual speech and translated
text pairs. In this paper, we present AVMuST-TED, the first
dataset for Audio-Visual Multilingual Speech Translation,
derived from TED talks. Nonetheless, visual speech is not
as distinguishable as audio speech, making it difficult to de-
velop a mapping from source speech phonemes to the target
language text. To address this issue, we propose MixSpeech,
a cross-modality self-learning framework that utilizes au-
dio speech to regularize the training of visual speech tasks.
To further minimize the cross-modality gap and its impact
on knowledge transfer, we suggest adopting mixed speech,
which is created by interpolating audio and visual streams,
along with a curriculum learning strategy to adjust the mix-
ing ratio as needed. MixSpeech enhances speech transla-
tion in noisy environments, improving BLEU scores for four
languages on AVMuST-TED by +1.4 to +4.2. Moreover,
it achieves state-of-the-art performance in lip reading on
CMLR (11.1%), LRS2 (25.5%), and LRS3 (28.0%).

1. Introduction

Multi-media techniques, including Audio-Visual Speech
Recognition (AVSR) [4, 1, 2, 50], Audio-Visual Speech
Translation (AVST) [8, 35, 58], and Audio-Visual Speech
Generation (AVSG) [45, 30, 23], are commonly employed
in various online communication scenarios, such as confer-
ences, education, and healthcare. As a tool for ultra-remote
communication, many online interactions involve multiple
languages, prompting the need for addressing cross-lingual

Figure 1. Diagram of speech tasks. Audio speech and visual
speech are paired parallel speech streams which can be employed
for speech recognition and speech translation. However, only Lip-
Translation remains unexplored.

challenges. Several works have attempted to tackle these
challenges, including Machine Translation (MT) [9, 34, 14]
for text utterance, Speech Translation (ST) [55, 18] for
audio utterance, and Speech-to-Speech Translation (S2ST)
[55, 18, 16, 31, 27] for simultaneous interpretation. How-
ever, research on cross-lingual visual speech is still lim-
ited, as illustrated in Figure 1. As an essential compo-
nent of multi-media speech, visual speech can be combined
with audio to enhance the recognition and understanding of
speech content as audio-visual speech [1, 2, 51], and is the
unique resource for speech content understanding in audio-
disabled scenarios [33].

Visual speech translation has never been studied, mainly
for the lack of visual speech datasets with translated texts in
different languages. The few remaining works [54, 57, 41]
also cannot be quantitatively verified for this reason, mak-
ing them unconvincing. The available visual speech corpus
is often very scarce compared to audio speech owing to the
high demands of visual speech for model training, which re-
quires mostly-frontal and high-resolution videos with a suf-
ficiently high frame rate, such that motions around the lip
area are clearly captured [22]. In this paper, we propose the
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first Audio-Visual Multilingual Speech Translation dataset,
AVMuST-TED. During the process of acquisition, we first
screen out videos with professional translations in four dif-
ferent languages from TED talk which performs strict trans-
lation and review processes, and then determine the real
speaker’s talking head by checking whether each pair of vi-
sual speech (i.e., talking head) and audio speech matches
in the manner of [1, 2]. Incidentally, this dataset can also
be used for quantitative evaluation of other multi-modality
translation tasks, such as cross-lingua audio-visual speech
generation [48, 57].

The cascaded model comprising of a speech recogni-
tion model and a machine translation model can handle
speech translation tasks but suffers from error accumulation
due to model cascades and cannot process languages with-
out text (e.g., Minnan). Our proposed end-to-end model,
which can translate directly from source speech to target
text, addresses the above issues. However, visual speech
is less distinguishable than audio speech, making it diffi-
cult to develop a mapping from source speech phonemes
to the target language text. To address this, we introduce
MixSpeech, a method that first pretrains the decoder us-
ing high-discrimination audio speech to obtain a mapping
from speech phonemes to text and then generalizes this
mapping to the visual speech task through cross-modality
self-learning. Furthermore, since audio speech and visual
speech are two distinct modalities of speech, there is a sig-
nificant modality gap between them that hinders knowledge
transfer. To narrow this gap and improve knowledge trans-
fer, we propose mixed speech, which is created by interpo-
lating audio and visual streams, rather than relying solely
on audio speech. We also propose a curriculum-learning
[7] based strategy to adjust the mixing ratio as the training
progresses and cross-modality integration deepens.

The code and dataset are available1, the main contribu-
tions of this paper are as follows:

• We present the first lip-translation baseline and intro-
duce the Audio-Visual Multilingual Speech Transla-
tion dataset, AVMuST-TED.

• We present a cross-modality self-learning framework
that leverages distinguishable audio speech transla-
tion to regularize visual speech translation for effective
cross-modality knowledge transfer.

• We present to adopt the mixed speech, interpolated
from audio and visual speeches, and a curriculum-
learning based mixing ratio adjustment strategy to re-
duce the inter-modality gap during knowledge transfer.

• We achieve state-of-the-art performance in lip transla-
tion for four languages on AVMuST-TED, with a +1.4
to +4.2 boost in BLEU scores and in lip reading on
CMLR (11.1%), LRS2 (25.5%) and LRS3 (28.0%).

1https://github.com/Exgc/AVMuST-TED

2. Related work

2.1. Audio-Visual Speech

Audio and visual speeches are two separate modalities
that convey speech content. Numerous works [42, 12, 1,
2, 44, 24, 26] have explored ways to extract information
from speech using these modalities. Speech recognition
[42, 6, 21] is widely used in online meetings and social ap-
plications to recognize speech content. Speech translation
[55, 62, 18] is commonly used in simultaneous interpreta-
tion applications for cross-lingual communication in cross-
border travel and meetings. Keyword spotting [5, 49, 28]
is employed in short video applications to quickly retrieve
relevant content. Additionally, in noisy scenarios, rele-
vant speech tasks [13, 20, 44, 39] rely on visual speech
to avoid interference from surrounding speech and back-
ground noise. Despite the growing interest in speech tasks
that rely on visual speech, researches [54, 57] on visual
speech translation are limited and lacks validation due to
the lack of multilingual audio-visual speech transcription
datasets. This paper proposes a baseline for visual speech
translation and introduces the first large-scale audio-visual
multilingual translation dataset, AVMuST-TED, which in-
cludes 706 hours of audio-visual speech and translation
pairs in Spanish, French, Italian, and Portuguese. AVMuST-
TED lays a solid foundation or future cross-lingual audio-
visual translation tasks, such as Cross-Lingual Talking
Head Generation [41].

2.2. Transfer learning from Audio to Visual

Many researchers [47, 50, 36] attempt to enhance the
representation of visual speech by leveraging correspond-
ing audio speech, as the two are paired parallel speech
streams. Some [47, 50, 36] use knowledge distillation to
bootstrap the training of visual speech models using au-
dio speech models, while others [67, 36] have proposed
various distillation strategies to optimize the representa-
tion of visual speech by mining the intrinsic connection
between audio and visual speeches. Some [50] also use
self-supervised learning, with audio as auxiliary supervi-
sion for visual utterances, to obtain fine-grained visual rep-
resentations. The success of these works demonstrates
the critical role of audio speech, which has a higher dis-
crimination compared to visual speech, in training visual
speech models. However, previous works face the modal-
ity shift problem during knowledge transfer because they
start directly from speeches of two different modalities, au-
dio and visual speeches, with a significant modality gap.
In this paper, we propose an cross-modality self-learning
framework MixSpeech, that uses synthetic mixed speech
to regularize visual speech translation for effective cross-
modality knowledge transfer, reducing the gap between the
two modalities during knowledge transfer.

https://github.com/Exgc/AVMuST-TED


Figure 2. Illustration of our proposed MixSpeech. We first pretrain the model with audio speech translation as shown in the dashed boxed,
and then train the visual speech translation with mixed speech regularization. The blank dashed boxes denote the modality missing speech.

2.3. Mixup for Cross-Modality Transfer

Many works [64, 19, 60, 18, 23] bridge the gap be-
tween modalities with mixup. [63] proposes mixup for data
augmentation to improve model robustness. [10] suggests
mixing at the representation-level to mine implicit associ-
ations between labeled and non-labeled sentences. Other
works [60, 56, 17, 25] also use mixing to build bridges be-
tween different modalities. Some [60, 17] use CLIP [46]
to retrieve semantically consistent images with text tokens
and synthesize mixed sentences for text-visual consistency
representation training. Others [56, 18] construct mani-
fold mixup interpolations based on semantic consistency
between audio and text to enhance understanding of audio
with textual datasets. By implementing the mixup strategy,
these studies have shown notable improvements across a
range of tasks, highlighting its potential to facilitate knowl-
edge transfer between different modalities. However, previ-
ous works use fixed hyperparameters [63] or mapping func-
tions [18] for mixing ratios, which are typically not optimal
and cannot be adapted to the training situation. In this paper,
we propose an uncertainty-based [40] curriculum learning
[7] strategy that gradually adjusts mixing ratios and apply
mixup strategy for cross-modality knowledge transfer be-
tween audio and visual speeches for the first time.

3. Method
3.1. Task Formulation

As the twin task of speech recognition, speech transla-
tion involves translating source language speech into target
language text. The speech translation model takes audio
speech utterance A={At}Tt=1 ∈ RT×D or visual speech ut-
terance V={Vt}Tt=1 ∈ RT×D as input and generates the
target language text w={wi}si=0, where At and Vt repre-
sent the t-th features in the audio and visual speeches, and
wi represents the i-th word in the target language transla-
tion with a total length of S. Note that, we stack 4 adjacent
acoustic frames together for syncing with visual speech,
both with T frames.

3.2. Overview

We propose a cross-modal self-learning framework for
visual speech translation with audio speech regularization,
named MixSpeech, as illustrated in Figure 2. This model
consists of three modules – a feature extractor for ex-
tracting speech embeddings, a speech encoder for attend-
ing to the contextual dependencies of speech, and a tar-
get language-oriented translation decoder. We utilize the
pre-trained feature extractor (AV-Encoder) and speech
encoder (Speech-Encoder) from the AV-Hubert [50]



to extract speech representations from both audio and vi-
sual speech utterances. Additionally, a randomly initial-
ized translation decoder (Trans-Decoder) is used to
autoregressively decode the speech representation into the
target language text. MixSpeech is a two-stage training
process: 1) Pretraining the translation decoder with high-
discrimination audio speech utterances to learn inter-lingual
mapping relations between source language phonemes and
target language text, as detailed in subsection 3.3. 2) Align-
ing visual speech with audio speech to transfer the inter-
lingual mapping from audio speech to visual in 3.5. The
mixed speech 3.4 is synthesized by interpolating audio
speech with visual speech in MixupSpeech, bridging the
modality gap and enhancing knowledge transfer.

3.3. Pretraining with Audio Speech

For uni-modality audio speech A ∈ RT×D or visual
speech V ∈ RT×D, the uni-modality audio-visual feature
eu={eut }

T
t=1 ∈ RT×2D fed into feature extractor can be de-

fined as:

eut =

{
concat(0D,Vt), Vt 6= None,
concat(At,0D), At 6= None,

(1)

where 0D denotes the feature of missing modality, follow-
ing the practice of [50]. And then, we obtain the audio-
visual fusion feature ef ∈ RT×D with AV-Encoder. The
transformer-based Speech-Encoder allows us to obtain
the phoneme embedding ep ∈ RT×D with the contextual
speech details. A target language oriented translation de-
coder Trans-Decoder is appended to autoregressively
decode the phoneme embedding ep into the target probabili-
ties Pu, where Pu={Pu

t }St=1={p(wt|{wi}t−1i=1, e
p)}St=1 rep-

resents the probability of the t-th word being wt when the
previous t−1 predictions are {wi}t−1i=1 and s is the length of
the target language translation. During the pretraining, the
overall model is trained on audio speech with cross-entropy
loss :

LCE=−
S∑

t=1

log p(wt|{wi}t−1i=1, e
p). (2)

3.4. Audio-Visual Speech Mixing

Audio and visual speeches have a huge modality gap,
which greatly impacts knowledge transfer across modali-
ties. We attempt to employ mixed speech to bridge two
different modalities of speech. Since the pair of audio
and visual speeches is strictly temporally synchronous, we
take advantage of this property to interpolate the mixed
speech. For a pair of synchronized audio and video speech
(A,V) ∈ R2×T×D, each visual feature Vt at t-th frame
has its corresponding audio feature At, representing the
same phonetic content. We interpolate with probability φ

to obtain a mixed speech em={emt }Tt=1 ∈ RT×2D derived
partly from audio speech and partly from visual speech:

emt =

{
concat(0D,Vt), p < φ,

concat(At,0D), p ≥ φ,
(3)

where p is sampled from the uniform distribution U(0, 1)
and φ is the ratio of speech mixing. In particular, we pro-
pose a curriculum learning [7] based mixing ratio adjust-
ment method that adapts the appropriate φ as the training
progresses. The prediction uncertainty [40] indicates the
confidence of the prediction (smaller is better), and we take
it as a signal to adjust the mixing ratio:

u =
1

S

S∑
t=1

Entropy(Pt). (4)

If the discrimination of mixed speech is insufficient to
regularize visual speech translation and maintain n steps
(∆u=uv-um<kuv , where uv and um represent the uncer-
tainty of uni-modality (visual) and mixed speech, respec-
tively, and the threshold hyperparameter k is set to 0.05
with n set to 20 in our work), we gradually increase the
proportion of audio at a rate of α (φ′=αφ). We initialize
φ=0.1 to prevent excessive initial modality gap and main-
tain φ ∈ [0.1, 0.9] throughout the training process.

3.5. Cross-Modality Self-Learning for Speech

Since audio speech is more distinguished compared to
visual speech, we intend to boost visual speech translation
with the knowledge from audio speech. And the mixed
speech bridges the gap between audio speech and visual
speech, allowing us to boost cross-modality knowledge
transfer with it. With audio speech feature A ∈ RT×D

and visual speech feature V ∈ RT×D fed into the modules
with shared parameters, the uni-modality visual speech fea-
ture eu and the mixed speech feature em are decoded into
the target probabilities Pu and Pm, respectively.

After the pre-training with audio speech translation, the
model is promising enough for mixed speech containing
partial audio speech, we adopt the Jensen-Shannon Diver-
gence (JSD) [38] to regularize the probabilities of these two
different speeches:

LJSD =

S∑
t=1

JSD(Pm
t ‖Pu

t ). (5)

As this probability is across the entire training vocabu-
lary, we are able to perform fine-grained regularization to
enhance the training of visual speech. Meanwhile, we also
minimize the cross-entropy loss between two speech trans-
lations and the real translation,L=Luni

CE+λ1Lmix
CE +λ2LJSD,

where λ1 and λ2 are hyperparameters of loss weights, while
λ1=λ2=1.0 in this work.



Target Language Hours #
∑

Tokens
Dataset En Es Fr It Pt # Lang #

∑
Hrs #

∑
Sents src tgt

Audio-Only
LibriSpeech [42] 960h - - - - 1 960h 180K 5.9M 5.9M

MuST-C [15] - 504h 492h 465h 385h 8 3 617h 2 016K 38.1M 35.8M
VoxPopuli [59] 543h 441h 427h 461h - 16 5 967h 2 045K 65.0M 60.1M

Audio-Visual
LRS2 [1] 224h - - - - 1 224h 143K 2.3M 2.3M
LRS3 [2] 433h - - - - 1 433h 151K 4.2M 4.2M

AVMuST-TED (ours) - 198h 185h 165h 158h 4 706h 925K 7.3M 7.0M

Table 1. Comparison of audio-visual speech recognition/translation datasets. #Lang denotes the number of target languages. #
∑

Hrs
denotes the overall duration of speech in the dataset, #Sents and #Tokens denote the overall sentences and the overall token, respectively.

4. Experiments

4.1. Datasets

AVMuST-TED. To obtain a corpus for AVST, we
screened a set of TED and TEDx talks with multilingual
subtitles as the data source. All transcriptions and trans-
lations are performed strictly following the TED Transla-
tion Guidelines and require collaboration between at least
one translator (or transcriber) and one reviewer. The prior
lip-reading dataset acquisition pipeline is followed to crop
face-tracks, and an audio-visual alignment network, Sync-
Net, is adopted for speaker proofreading. Table 1 com-
pares AVMuST-TED with related datasets, and it is the first
audio-visual speech translation dataset containing transla-
tions from English (En) to four target languages: Spanish
(Es), French (Fr), Italian (It), and Portuguese (Pt). These
four languages have the most translated subtitles in TED,
and 1024/1536 pieces of data are randomly sampled for
each language as the test/validation set. The information
about AVMuST-TED is detailed in Appendix A.

LRS2&3 [1, 2], two commonly used publicly available
English wild audio-visual speech recognition datasets, are
adopted to demonstrate the lip-reading performance, con-
taining 224 hours of video from BBC television shows and
433 hours of video from TED and TEDx talks. The training
data in both datasets is divided into two partitions, namely
Pretrain and Train, both of which are transcribed from
videos to text at the sentence level. The only difference is
that the video clips in the Pretrain partition are not strictly
trimmed and sometimes longer than the corresponding text.
In our experiments, we employ different amounts of train-
ing data from LRS2 and LRS3, including Pretrain+Train
(224/433h) for high resource and Train (29/30h) for low re-
source.

CMLR [66], widely used dataset for Mandarin audio-
visual speech recognition, contains 61 hours audio-visual
speech utterances collected from Chinese TV stations. In

Method M BLEU ↑
En-Es En-Fr En-It En-Pt

Cascaded V 12.7 11.3 11.5 13.2
AV-Hubert [50] V 14.2 12.6 12.9 14.8
Cascaded A(+Noise) 16.0 12.9 12.6 15.5
AV-Hubert [50] A(+Noise) 17.6 14.5 14.1 17.1
MixSpeech(ours) V 18.5 15.1 14.3 17.2

Table 2. Comparison of the performances of visual speech transla-
tion on AVMuST-TED with those of the noisy audio speech trans-
lation. The results of noisy audio speech translation are the mean
value at five SNRs {-20, -10, 0, 10, 20}db.

our experiments, we adopt this dataset to demonstrate the
performance of our proposed MixSpeech in low-resource
languages such as Mandarin. Additionally, we sample a
training set containing only 12 hours of utterances in the
manner of [67] for low resource scenario.

4.2. Evaluation and Implementation Details

In this paper, we measure the performance of MixSpeech
on two speech tasks, speech recognition and speech trans-
lation. For speech recognition, word error rate (WER)
is adopted as the evaluation metric, which is defined
as WER=(S +D + I)/M , where S,D, I,M represent the
number of words replaced, deleted, inserted, and refer-
enced. As for speech translation, the case-sensitive deto-
kenized BLEU score is computed using SACREBLEU [43],
following the same evaluation methodology as in previous
speech translation works [15, 59]. The implementation de-
tails are provided in Appendix B due to page limitations.

4.3. Performance of Speech Translation

End-To-End Models VS. Cascaded Models. Table 2
presents a comparison of the lip translation performance be-
tween two representative methods: 1) an end-to-end model,



implemented based on the state-of-the-art AV-Hubert [50]
method for visual speech-related tasks, and 2) a cascaded
model, combining a speech recognition model (i.e., Lip-
Reading or ASR) with a machine translation model. In
the cascaded model, we use the speech recognition model
trained by AV-Hubert on LRS3, which achieve the best lip-
reading performance to date, and a transformer-based ma-
chine translation model trained on the paired translated text
corpus in AVMuST-TED. Comparing the lip translation per-
formance of the end-to-end model and the cascade model,
we find that the BLEU score of the end-to-end model im-
proved by +1.3 to +1.6. This result demonstrates that the
end-to-end trained model can effectively prevent the accu-
mulation of errors caused by the model cascade, and that lip
translation cannot be simply disassembled as the superposi-
tion of lip reading and machine translation.

MixSpeech VS. Prior Methods. Due to the discrimi-
nation of speech between modalities, visual speech models
are not able to translate speech content as accurately as au-
dio speech models. To address the issue of low discrimi-
nation in visual speech, we propose MixSpeech, which is a
cross-modality self-learning framework that employs mixed
speech to transfer knowledge obtained from audio speech
pre-training into the visual speech model. Our proposed
MixSpeech significantly improves the BLEU score by an-
other +1.4 to +4.3. Furthermore, the improvement from
MixSpeech is related to the discrepancy in speech trans-
lation between audio and visual modalities. For example,
En-Es exhibits a larger discrepancy of 14.7 between audio
and visual speech translation, ranging from 28.9 to 14.2,
and MixSpeech significantly improves it by +4.3. Con-
versely, Italian shows a smaller discrepancy of 10.9, ranging
from 23.8 to 12.9, and improves only by +1.4. This high-
lights that the improvement in lip translation stems from the
knowledge acquired from audio speech translation.

Visual Speech VS. Noisy Audio Speech. We also eval-
uate the performance of audio speech translation in noisy
environments, by adding noise sampled from MUSAN [52]
to the audio speech and measuring the performance at five
SNR levels {-20, -10, 0, 10, 20}db. We compare the aver-
age BLEU scores of different SNRs and present the de-
tailed performance in Appendix C.1. Our experiments show
that although noisy audio speech performs better than vi-
sual speech, the translation performance is still significantly
lower compared to noiseless audio speech. In contrast,
MixSpeech, which fully leverages the knowledge of au-
dio speech, greatly improves the visual speech translation
performance, making it more reliable in noisy scenes. We
also provide a comparison of translation with audio speech
and audio-visual speech, demonstrating that visual speech
enhances the ceiling and robustness of speech translation,
but the details are only available in the Appendix C.1 since
audio-visual speech does not require the cross-modality

# RES Method WER(Labeled Visual Utts Hrs) ↓
CMLR LRS2 LRS3

High

WAS [53] 38.9(61) 70.4(224) -
TM-seq2seq [1] - 49.8(698) 59.9(698)

CSSMCM [66] 32.5(61) - -
Conv-seq2seq [65] - 51.7(698) 60.1(698)

CTC+KD [3] - 51.3(224) 58.9(433)

LIBS [67] 31.3(61) 65.3(698) -
CTCH [37] 22.0(61) - -
Master [47] - 49.2(698) 59.0(698)

Sub-Word [44] - 28.9(698) 40.6(698)

†AV-Hubert [50] 12.7(61) 28.7(224) 28.6(433)

MixSpeech(ours) 11.1(61) 25.5(224) 28.0(433)

Low
LIBS [67] 50.5(12) - -
†AV-Hubert [50] 25.8(12) 31.4(29) 32.5(30)

MixSpeech(ours) 18.5(12) 26.9(29) 28.6(30)

Table 3. Comparison of lip reading methods under different re-
source conditions. # RES represents the amount of resources.
(Hours) highlighted in blue are used for low resources. † For better
comparison, we reproduce AV-Hubert on CMLR and LRS2.

knowledge transfer proposed in this paper.

4.4. Performance of Speech Recognition

As shown in Table 3, we compare the performance of
MixSpeech on another visual speech task, lip reading (i.e.,
Visual Speech Recognition), to highlight the mixspeech
from more perspectives. MixSpeech obtain state-of-the-art
performance on three datasets, two for English (25.5% on
LRS2 and 28.0% on LRS3) and one for Chinese (11.1%
on CMLR), demonstrating that this cross-modality self-
learning framework can be applied for different languages
to capture the intrinsic association between audio and vi-
sual speeches and thus effectively improve the understand-
ing of visual speech. Since visual speech is relatively
low-resource, we verify whether MixSpeech can effectively
improve the performance of visual speech tasks in low-
resource with audio speech. Compared with previous meth-
ods, MixSpeech boosts the WER of lip-reading by -3.9%
to -7.3%, highlighting the critical role of high-resource au-
dio speech in low-resource visual speech tasks. Specifi-
cally, on LRS2 and LRS3, the performance of Mixspeech
in the low-resource scenario (26.9%/28.6% WER obtained
with only 29h/30h visual utterances) outperforms the per-
formances of prior methods in the high-resource scenario
(28.7%/28.6% obtained with 224h/433h or even more vi-
sual utterances). Even though with only limited labeled vi-
sual corpus, our proposed MixSpeech performs no less than
works with more. It is the bridge between two modalities
of speech, which helps visual speech to access the knowl-



edge stored in high-resource and high-discrimination audio
speech without barriers.

4.5. Can MixSpeech bridge cross-modality speech?

Our proposed MixSpeech builds a bridge between cross-
modality speech through cross-modality self-learning, with
the properly mixes speech. The details are as follows:

Cross-Modality Self-Learning for Knowledge Trans-
fer. The experiments in Figure 3 provide a positive an-
swer to the question of whether MixSpeech can contribute
to achieving knowledge transfer between audio and visual
speeches. We evaluate the performance of visual speech
translation with different regularization strategies: no au-
dio speech regularization (i.e., φ = 0), mixed speech reg-
ularization with different mixing ratios (i.e., φ ∈ (0, 1),
audio speech regularization (i.e., φ = 1), and mixing ratio
adjustable mixed speech regularization (i.e., dashed lines).
It is evident that the cross-modality self-learning framework
significantly enhances visual speech translation, as all per-
formances with audio speech regularization are noticeably
better than those without self-learning (φ = 0), demonstrat-
ing the effectiveness of our proposed MixSpeech.

Narrow the Cross-Modality Distance with Properly
Mixed Speech. Moreover, the introduction of mixed speech
facilitates smoother cross-modality knowledge transfer by
narrowing the modality gap between speeches. Some seg-
ments in the mixed speech come from the visual speech,
making it much closer to visual speech in terms of modal-
ity distance than audio speech. When regularizing with
mixed speech in En-Es, the translation performance of vi-
sual speech improves further by +0.3 to +0.8 compared to
audio speech regularization alone. Among them, bootstrap-

Figure 3. BLEU scores of MixSpeech with different speech regu-
larization on En-Es and En-Fr. φ = 0: no audio speech regulariza-
tion, φ ∈ (0, 1): mixed speech regularization, φ = 1: only audio
speech regularization. The dashed lines represent the adjustable
mixing ratio strategy based on curriculum learning.

ping with mixed speech of mixing ratio φ = 0.5 achieves
the highest BLEU score of 18.3. This demonstrates that a
reasonably mixed ratio ensures that it is neither overly bi-
ased towards visual speech, leading to a lack of knowledge
of audio speech, nor overly biased towards audio speech,
leading to excessive cross-modality distances that affect
knowledge transfer. The adjustable mixing ratio strategy
based on curriculum learning further increases the applica-
bility of mixed speech to cross-modality self-learning train-
ing, thereby boosting visual speech translation performance
again.

ID Method BLEU ↑
Lmon
CE Lmix

CE LJSD En-Es En-Fr En-It En-Pt

#1 4 14.2 12.6 12.9 14.8
#2 4 4 17.5 14.3 13.6 16.5
#3 4 4 18.1 14.8 14.1 16.9
#4 4 4 4 18.5 15.1 14.3 17.2

Table 4. BLEU of different module combinations in MixSpeech.

4.6. What role does each part play in MixSpeech?

The effectiveness of MixSpeech, which is a cross-
modality self-learning framework designed to improve vi-
sual translation performance, has been demonstrated. In
this study, we investigate the role of each component in de-
tail and present relevant experiments in Table 4:

Bridging the cross-modality gaps. We observe a signif-
icant improvement in the lip translation performance with
the inclusion of LJSD (ID: #3, #4) for regularizing the
probabilities of visual speech and mixed speech, compared
to without (ID: #1, #2). Specifically, experiment #3 with
LJSD outperform experiment #2 with Lmix

CE by +0.6 in lip
translation performance on En-Es. This demonstrates that
LJSD is the main contributor to achieving cross-modality
knowledge transfer by building a bridge between the two
speeches and performing fine-grained regularization across
the probability of each word.

Maintaining knowledge of audio speech . It is also im-
portant to note that during the regularization process, the
representation of audio speech is also affected by visual
speech, which can interfere with the knowledge of audio
speech and ultimately harm the lip translation performance
of MixSpeech. As evidenced by experiment #2, the lip
translation performance on En-Es decrease by -0.4 com-
pared to experiment #3 when Lmix

CE is not applied. To ad-
dress this issue, Lmix

CE is introduced to enhance the training
ceiling of the cross-modality self-learning framework. By
maintaining the translation performance of mixed speech
and preventing the excessive disturbance to audio speech
knowledge, Lmix

CE helps to improve the overall performance
of MixSpeech.



En-Es En Transcription: and always as a child I had this fantasy that somebody would come and rescue me
MixSpeech: and always as a child I had this fantasy that somebody would come and rescue me

Es Ground Truth: y de niña siempre tenı́a la fantası́a de que alguien vendrı́a a salvar me de
MixSpeech: y de (desde) niña niño siempre tenı́a la esta fantası́a de que alguien vendrı́a a salvar me (rescató) de

En-Fr En Transcription: and solutions create new problems which have to be solved in their turn
MixSpeech: and solutions to create new problems which have to be solved in their turn this year

Fr Ground Truth: et les solutions créent de nouveaux problèmes devant être résolus à leur tour
MixSpeech: et les (des) solutions pour créer de nouveaux problèmes devant qui doivent être résolus à leur tour

En-It En Transcription: one of the last 10,000 years, and the other certainly of the last 25 years
MixSpeech: one of the last 10,000 years, and the other certainly assistance of the last 25 years

It Ground Truth: uno presente negli ultimi diecimila anni e l’altro certamente negli ultimi 25 anni
MixSpeech: uno presente negli ultimi diecimila (10000) anni e l’altro certamente negli ultimi 25 anni

En-Pt En Transcription: has around 2,000 people descending on MIT’s campus
MixSpeech: has around 2,000 people descending on MIT’s campus

Pt Ground Truth: congregam cerca de 2000 pessoas no campus do mit
MixSpeech: congregam de cerca de 2000 pessoas a estudar no campus do mit

Table 5. Qualitative performance of Visual Speech Recognition and Translation on AVMuST-TED. Red Strikeout Words: mistranslated
words with opposite meaning, (Blue Words in parentheses): mistranslated words with similar meaning, Gray Words: the absent words.

4.7. Qualitative results

We present several examples of lip translation in Ta-
ble 5 to qualitatively evaluate the translation quality of
MixSpeech. The translation results are very close to the
ground truth, and the semantics are consistent. We ob-
serve two types of words that differ in translation: syn-
onyms and context-sensitive translations. Synonyms that
have different spellings but the same meaning, such as
salvar and rescató in Spanish, both meaning ‘rescue’,
and diecimila and 10000 in Italian, both meaning ‘ten
thousand’, are commonly found in translation tasks and can
affect translation consistency. Additionally, there are trans-
lations that require context information, such as when the
speaker refers to themselves as a child, and the translation
in Spanish needs to take into account the speaker’s gender
to choose between niña for girl’ or niño for boy’ and
‘child’. The qualitative translation results of MixSpeech
demonstrate its capability to achieve reliable cross-lingua
lip translation. In Appendix C.2, we also provide transla-
tion results of noisy audio speech translation with visual
speech translation and audio speech translation with audio-
visual speech translation to highlight the importance of vi-
sual speech in speech translation.

5. Conclusion

With the advancement of online technologies, such as
online healthcare and sales, language barriers often prevent
these tools from reaching and benefiting disadvantaged ar-
eas. In light of this, we focus on visual speech, a branch
of the speech stream, and aim to translate visual speech
from source languages to other target languages for cross-
linguistic communication, specifically through lip transla-
tion. We meticulously curate the AVMuST-TED dataset,
consisting of 706 hours of speech clips with professional
translations from TED, to facilitate cross-linguistic research
on visual speech. We also introduce MixSpeech, a cross-
modality self-learning framework that utilizes mixed speech
to regularize visual speech translation and achieves state-of-
the-art performance in lip translation on AVMuST-TED and
lip reading on LRS2, LRS3, and CMLR datasets.

Moreover, our work on visual speech and AVMuST-
TED lay a solid foundation for further research on visual
speech in cross-lingual fields. There are numerous related
tasks with great potential for practical applications, such as
Cross-Lingual Talking Head Generation [41]. These tasks
hold immense promise for breaking down language barriers
and promoting communication across diverse communities.
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A. AVMuST-TED
A.1. Details of AVMuST-TED

The dataset consists of over 706 hours of video, extracted
from 4598 TED and TEDx talks in English. The visual
speech corpus is provided as face-centered video in .avi
files with a resolution of 224×224 and a frame rate of 25fps.
The audio speech corpus is provided as the single-track, 16-
bit 16kHz .wav files. Each pair of audio and video speech
has its corresponding translation into other languages. Fol-
lowing the previous workflow [1, 61, 2] of visual-speech
dataset acquisition, we fetch the complete face track from
the massive data [32] and perform audio-visual synchro-
nization testing to determine whether it is the face track of
the speaker [12]. We take the four most amount of trans-
lation pairs, En-Es, En-Fr, En-It and En-Pt, from the nu-
merous translation combinations of TED, and the detailed
statistics in four different languages at AVMuST-TED are
shown in Table 6.

Target Language Hours Sents Vocab Tokens

Spanish (Es) 198h 258K 95K 2.0M
French (Fr) 185h 244K 91K 1.9M
Italian (It) 165h 218K 95K 1.6M
Portuguese (Pt) 158h 205K 84K 1.5M

Table 6. Statistics in four different languages at AVMuST-TED.

A.2. Quality of Translated Texts

The translations in the AVMuST-TED dataset are taken
directly from the high reliability translated subtitles in TED.
TED has a very well-defined translation workflow to ensure
that the translation accurately conveys the meaning, and we
will now introduce it in detail. They recruit a total of 45,735
volunteers in 115 languages from all around the world, re-
quiring each volunteer to be fluently bilingual in both source
and target languages, fluent in the transcription language,
and knowledgeable about what expressions are appropriate
for subtitling. To ensure the quality of each assignment,
each volunteer could apply for up to three editing assign-
ments at the same time. Each volunteer can claim up to
three editing assignments at a time to ensure the quality of
each assignment. Each translation goes through three steps

Figure 4. The TED translation workflow before publication.

En It’s a shared database

Es Es una base de datos compartida
Fr C’est une base de données partagée
It È una base dati condivisa
Pt É uma base de dados partilhada

En That object was about 10 kilometers across

Es Ese objeto tenı́a un diámetro de 10 km
Fr Cet objet mesurait dix kilomètres de largeur environ
It Quell’oggetto aveva un diametro di circa 10 chilometri
Pt Esse objeto tinha cerca de 10 km de diâmetro

En Can I correct my boss when they make a mistake?

Es ¿Puedo corregir a mi jefe cuando comete un error?
Fr Puis-je corriger mon patron quand il fait une erreur ?
It Posso correggere il mio capo quando fa un errore?
Pt Posso corrigir o meu chefe quando ele comete um erro?

En Now this turns out to be surprisingly common

Es Ahora bien, esto resulta ser sorprendentemente común
Fr Il s’avère que cela soit surprenamment commun
It Ora questo risulta essere sorprendentemente comune
Pt Isto parece ser surpreendentemente comum

Table 7. Examples of the source language transcription (En) and
target language translation (Es, Fr, It, Pt) for audio-visual speeches
(En) in AVMuST-TED.

of transcription, translation and review before publishing, as
shown in Figure 4. TED provides an original transcript for
all TED and TED-Ed content. For TEDx talks, volunteers
are able to utilize auto-generated transcriptions as a base, or
create their own from scratch. Subtitles are then translated
from the original language into the target language, using
a dynamic subtitle editor. Finally, before publication, sub-
titles are further reviewed by an experienced volunteer. In
Table 7, we present some sample translations of AVMuST-
TED.

B. Implementation Details

Audio and Visual Speeches Preprocessing. We follow
the data preprocessing process in the prior work [50, 1]
for audio and visual speeches. For visual speech, we only
extract the lip region as visual speech input, first detect-
ing 68 facial keypoints using dlib [29], and then aligning
each face with the faces of its neighboring frames. From
each visual speech utterance, we crop a 96 × 96 region-of-
interest (ROI) lip-centered talking head video, representing
the video speech. And for the audio speech, we also keep
the same processing steps as the previous works [50, 36].
We extract 26-dimensional log filterbank energy feature
from the raw waveform and stack 4 adjacent acoustic frames



Target
Language Method Modality

BLEU

SNR clean

-20 db -10 db 0 db 10 db 20 db Avg. +∞

En-Es

Cascaded A(+Noise) 1.4±0.1 5.8±0.2 21.1±0.3 25.5±0.3 26.3±0.2 16.0 26.6
AV-Hubert [50] A(+Noise) 1.5±0.2 6.7±0.2 22.3±0.4 27.7±0.2 28.6±0.3 17.6 28.9
Cascaded AV(+Noise) 6.7±0.2 15.3±0.4 24.6±0.4 26.3±0.2 26.7±0.2 19.9 26.9
AV-Hubert [50] AV(+Noise) 6.9±0.3 16.4±0.5 26.6±0.3 28.7±0.1 28.9±0.2 21.5 29.1

En-Fr

Cascaded A(+Noise) 1.3±0.2 4.5±0.3 16.6±0.4 20.9±0.3 21.3±0.1 12.9 21.7
AV-Hubert [50] A(+Noise) 1.4±0.2 5.5±0.3 18.5±0.4 23.2±0.2 23.6±0.1 14.5 23.9
Cascaded AV(+Noise) 4.6±0.1 11.4±0.5 19.4±0.3 21.5±0.2 22.0±0.2 15.8 22.3
AV-Hubert [50] AV(+Noise) 4.9±0.2 12.1±0.3 21.6±0.4 23.7±0.3 24.3±0.1 17.3 24.6

En-It

Cascaded A(+Noise) 0.9±0.3 4.0±0.3 16.1±0.2 20.7±0.1 21.2±0.2 12.6 21.5
AV-Hubert [50] A(+Noise) 1.0±0.2 5.1±0.5 18.3±0.3 22.7±0.2 23.6±0.2 14.1 23.8
Cascaded AV(+Noise) 4.8±0.3 11.8±0.4 19.5±0.3 21.4±0.2 22.1±0.1 15.9 22.3
AV-Hubert [50] AV(+Noise) 5.0±0.4 12.4±0.6 21.9±0.3 23.7±0.1 24.1±0.2 17.4 24.5

En-Pt

Cascaded A(+Noise) 1.1±0.3 5.4±0.5 20.1±0.4 24.9±0.2 26.0±0.1 15.5 26.2
AV-Hubert [50] A(+Noise) 1.2±0.2 6.3±0.4 22.2±0.3 27.4±0.3 28.4±0.1 17.1 28.6
Cascaded AV(+Noise) 5.8±0.4 13.8±0.6 23.5±0.4 25.8±0.2 26.3±0.1 19.0 26.4
AV-Hubert [50] AV(+Noise) 6.1±0.3 15.5±0.4 26.0±0.3 28.2±0.3 28.6±0.2 20.9 28.8

Table 8. BLEU scores of audio speech translation and audio-visual speech translation with different noise SNRs.

together for syncing with visual speech. we randomly crop
a region of 88× 88 from the entire ROI and perform a hor-
izontal flip with probability 0.5 for data enhancement. we
also apply noise with a probability of 0.25 to each audio
utterance from [52] as steps in the prior works [50, 1] for
audio speech enhancement.

Training Details of MixSpeech. Our work is devel-
oped on the basis of the publicly available pre-trained
model Transformer-Large of AV-Hubert [50], which has 24
Transformer-LARGE with the embedding dimension/feed-
forward dimension/attention heads of 1024/4096/16. Con-
cretely, we adopt here the Transformer-LARGE model
trained on LRS3 [2] and VoxCeleb2 [11], augmented with
noise. Correspondingly, for the translation decoder, we fol-
low the same setup as AV-Hubert, with a 9-layer transformer
decoder for easy comparison with it. During training, on
one single 3090 GPU, we train 160K steps with labeled au-
dio corpus, 80K of which are warmup steps; then we tune
40K steps with labeled visual corpus in the self-learning
framework.

C. Experiment
C.1. Speech Translation with Noise

In this section, we show the detailed performance of
speech recognition in noisy environments in Table 8. Al-
though the discrimination of audio speech is excellent and

the performance of audio speech translation is outstanding,
it is easily interfered by noise and the performance of audio
speech translation decreases rapidly with the enhancement
of noise interference. Following the previous works [1, 51],
we add noise randomly sampled from MUSAN [52] to the
audio speech and check the performance at five SNR levels
{-20, -10, 0, 10, 20}db. For each experiment, we performed
ten times, calculating the mean and the error to avoid inter-
ference from random sampling. The experimental results
show that the performance of audio-visual speech trans-
lation is better than that of speech translation with audio
speech only on all four languages in the noise-free environ-
ment (i.e., clear), demonstrating that visual speech further
boosts the ceiling of speech recognition. Meanwhile, with
the increase of noise interference (the smaller the SNR, the
stronger the noise), the performance of audio speech trans-
lation decreases rapidly, especially during the process of
SNR from 0db to -10db, the audio speech translation per-
formance decreases most quickly, and the BLEU score de-
creases by -13.0 to -15.8. In contrast, speech translation
with audio visual speech is significantly more resistant to
noise, with the BLEU score decreasing by only -9.5 to -10.5
when SNR from 0db to -10db. At the same time, in terms of
translation performance, all the audio-visual speech perfor-
mances are better than those with only audio speech at the
same SNR, and the audio-visual speech translation still per-
forms well even at SNR = -10db, improving the robustness
of the speech translation.



En-Es

En TRXN: that’s why people often confuse me with a GPS.

Es

GT: por eso la gente me confunde a menudo con un gps
A(+N): por eso la gente ayúdame a lo que me confunde a menudo con un gps alegra por favor
V: por eso la gente a menudo me confunde con un gps los chimpancés
A: por eso la gente a menudo me confunde con un (el) gps
AV: por eso la gente a menudo me confunde con un gps

En-Fr

En TRXN: you need to understand that everyone who helps you on your journey

Fr

GT: vous devez comprendre que tous ceux qui vous aident durant votre voyage
A(+N): vous devez comprendre que tous ceux qui vous avoir partagé avec un adolescent et aident (aidé) durant ...
V: vous devez il faut comprendre que tous ceux (chacun) vous aident duran (aide) à votre voyage
A: vous devez comprendre que tous ceux partout qui vous aident durant (aide dans) votre voyage (parcours)
AV: vous devez comprendre que tous ceux (chaque personne) qui vous aident durant (aide dans) votre voyage

En-It

En TRXN: and one of our litigation strategies

It

GT: e una delle nostre strategie in tribunale
A(+N): e in una delle nostre strategie in tribunale di queste acque calde
V: e una delle nostre strategie in tribunale future eliminazioni
A: e una delle nostre strategie in tribunale di contenzione
AV: e una delle nostre strategie in tribunale di (litigazione)

En-Pt

En TRXN: and both of the finalists for the Democratic nomination

Pt

GT: e ambos os finalistas para a nomeação democrática
A(+N): e ambos os finalistas tenho estado à espera de um minuto para crescer no meio duma pessoa a ...
V: e ambos (ambas) os finalistas as famı́lias democrática para a nomeação democracia
A: e ambos (os dois) finalistas para a nomeação nação democrática
AV: e ambos (os dois) finalistas para a nomeação democrática

Table 9. Qualitative performance of the four target languages on the AVMuST-TED. Among them, A(+N) for noisy audio in the SNR of
-10db, V for visual, A for audio and AV for audio-visual. Red Strikeout Words: mistranslated words with opposite meaning, (Blue Words
in parentheses): mistranslated words with similar meaning, Gray Words: the absent words. TRXN: transcript in English. GT: Ground
Truth in the target language.

C.2. More Qualitative Analysis

To further quantitatively demonstrate the enhancement
of visual speech to speech translation, we show more sam-
ples from AVMuST-TED and their outcomes with different
modality speech translation in Table 9.

Visual Speech VS Audio Speech with Noise Although
the discrimination of visual speech is not as good as au-

dio speech, it is not interfered by noise, and we choose the
translation of audio speech in the SNR of -10db to compare
with that of visual speech.

Audio-Visual Speech VS Audio Speech The robustness
of speech translation can be further enhanced with the visual
speech based on audio speech in the manner of audio-visual
speech translation.



D. Discussion
Ethical Discussion Based on audio speech translation,
visual speech for translation further enriches the applica-
tion scenarios of speech translation technology (in silent
or noise-bearing scenarios), while increasing the reliabil-
ity of speech translation with the manner of audio-visual
speech translation. As a cross-lingual translation technol-
ogy, speech translation can be applied to many online appli-
cations (e.g., online medical, online education, etc.), con-
tributing to the fairness of technology in disadvantaged ar-
eas. However, for visual speech, there could be some con-
cerns about information leakage. But in fact, as we have
mentioned before, lip reading and lip translation can only
perform with high-definition, high-frame-rate frontal face
videos that ensures clear visibility of lips and lip move-
ments. Typically, only specially recorded videos, such as
those from online meetings and public presentations, meet
the strict video conditions that guarantee the unavailability
of visual speech from videos such as surveillance for infor-
mation leakage.

Limitations Discussion In this paper, we focus on the as-
sociation between audio-visual speech and do not discuss
the effect of machine translation datasets on lip translation
yet. Many previous speech translation works have suffi-
ciently demonstrated the enhancement of machine learning
datasets for audio speech translation, and we have reasons
to believe that it can also greatly improve the performance
of lip translation, so there is no detailed discussion about it
in this paper. Correspondingly, this paper focuses on a topic
that has never appeared in other speech translation tasks,
the interaction between audio-visual speech. Our follow-up
work will address the blanks of this work.


