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Abstract

Many Vision-and-Language Navigation (VLN) tasks
have been proposed in recent years, from room-based to
object-based and indoor to outdoor. The REVERIE (Re-
mote Embodied Referring Expression) is interesting since
it only provides high-level instructions to the agent, which
are closer to human commands in practice. Nevertheless,
this poses more challenges than other VLN tasks since it
requires agents to infer a navigation plan only based on
a short instruction. Large Language Models (LLMs) show
great potential in robot action planning by providing proper
prompts. Still, this strategy has not been explored under the
REVERIE settings. There are several new challenges. For
example, the LLM should be environment-aware so that the
navigation plan can be adjusted based on the current visual
observation. Moreover, the LLM planned actions should be
adaptable to the much larger and more complex REVERIE
environment. This paper proposes a March-in-Chat (MiC)
model that can talk to the LLM on the fly and plan dynam-
ically based on a newly proposed Room-and-Object Aware
Scene Perceiver (ROASP). Our MiC model outperforms
the previous state-of-the-art by large margins by SPL and
RGSPL metrics on the REVERIE benchmark. The source
code is available at https://github.com/YanyuanQiao/MiC

1. Introduction

Vision-and-Language Navigation (VLN), which lies at
the intersection of computer vision, natural language pro-
cessing and robotics, has aroused great attention from re-
search communities in the past few years. Given instruc-
tions in natural language, the VLN agent should navigate
to the target location based on the dynamic observations
in the 3D simulated environments. Since VLN has great
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A small picture

The target object is: ____

I am in hallway, I can see sofa,

table,…

What should I do?

Walk through the hallway

LLM

REVERIE Instruction: 

Clean the small picture in front of the large mirror.

LLM

Figure 1: Our March-in-Chat (MiC) model is talking to a
Large Language Model (LLM) to generate navigation plans
on the fly, with the REVERIE instruction and the dynamic
room-and-object information as inputs.

potential in real-world applications such as domestic as-
sistant robots, a large amount of specific VLN tasks have
been proposed, including R2R [4] and RxR [21] that ask
the agent to navigate from one room to another in a photo-
realistic environment according to the fine-grained instruc-
tion, NDH [36] provides detailed dialogues which imply the
instruction, TouchDown [7] extends the task into an outdoor
environment, REVERIE [27] and SOON [39] that addition-
ally require the agent’s ability of remote object grounding
and ALFRED [33] that asks the agent to interact with the
target object in a single room of the synthetic environment.

Most of these VLN tasks provide detailed step-by-step
instructions to the agent, such as “Go up the stairs and then
walk the length of the couch. Walk past the dining area
and into the kitchen. Stop in front of the refrigerator.” in
R2R. Although detailed instructions can help the agent bet-
ter achieve the navigation goal in the simulated environ-
ments, it has a big gap towards real applications where hu-
man beings tend to give coarse-grained high-level instruc-
tions such as “Go to the refrigerator on the second floor”.
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Contrary to other tasks, the Remote Embodied Referring
Expression (REVERIE) task is more likely to empower the
real-world applications of VLN, of which the instructions
are closer to those in practice, such as “Empty the wash-
ing machine on level one”. Such high-level instruction is
more challenging for VLN agents since it requires them to
be more competent in perceiving the surrounding environ-
ment and the navigation progress and correspondingly mak-
ing reasonable plans for the next steps.

Recently, Large Language Models (LLMs) that internal-
ize a wealth of commonsense knowledge show great po-
tential in action planning for some embodied tasks with
the help of suitable in-context learning. However, previous
works mainly utilize LLMs to plan atomic actions of object
manipulation in a very limited space with simple scenes.
These predefined atomic actions can be easily planned well
by the LLMs planners with a unified template. Different
from these embodied tasks, REVERIE requires large-area
exploration from one room to another, which is complex in
the layout of rooms and scenes with diverse objects.

In this work, to adapt LLMs as the planner for REVERIE
with the ability of comprehensive scene perception, we pro-
pose a novel model named March in Chat (MiC), which
enables the LLM as an environment-aware instruction plan-
ner through on-the-fly dialogues between the agent and the
LLM as Fig. 1 shows. Specifically, the agent is initially
situated at the starting position given a high-level coarse-
grained REVERIE instruction. First, a Goal-Oriented Static
Planning (GOSP) module queries the LLM to point out
the target object and infer where the thing may be by us-
ing the rich world knowledge internalized in the LLM.
Secondly, the agent’s Room-and-Object Aware Scene Per-
ceiver (ROASP) describes the current observation and asks
the LLM to generate step-by-step fine-grained planning for
the next navigation steps. Then, if the ROASP finds the
room has changed, the LLM is queried again by the Scene-
Oriented Dynamic Planning (SODP) module to generate a
new fine-grained step-by-step planning, which will be con-
catenated with all previous responses from the LLM. The
agent will march under the guidance of such interactive
prompting until the task is finished.

To evaluate our proposed MiC, we conduct experiments
on the REVERIE benchmark. Our MiC achieves a new
state-of-the-art performance in all metrics on REVERIE val
unseen set and REVERIE test unseen set. Mainly, MiC ob-
tains 41.97% on the primary navigation metric of SPL and
26.17% on the major object grounding metric of RGSPL on
test split, which is at least 3.09% and 3.49% higher than the
previous SoTA results. We also conduct ablation studies to
validate the contributions of different components in MiC
and the effect of scene-aware perception in dynamic plan-
ning generation. These promising results demonstrate the
effectiveness of our proposed MiC.

In summary, we make the following contributions:
• We propose a novel March-in-Chat (MiC) model,

which lets the REVERIE agent talk with an LLM on
the fly to make plans for the next few steps.

• Two planning modules, namely Goal-Oriented Static
Planning (GOSP) module, and Scene-Oriented Dy-
namic Planning (SODP) module, and one Room-and-
Object Aware Scene Perceiver (ROASP) module, are
proposed.

• Extensive quantitative and qualitative experiments are
conducted on REVERIE to validate the effectiveness
of our method.

2. Related work
Vision-and-Language Navigation Vision-and-Language
Navigation (VLN) has attracted increasing attention in re-
cent years, and many specific VLN tasks have been pro-
posed [7, 19, 24, 27, 29, 36]. Anderson et al. [4] proposes
the first VLN benchmark, Room-to-Room (R2R), which
requires an agent to navigate from one room to another
in a house, according to a detailed natural language step-
by-step instruction in a photo-realistic environment. Later,
Room-across-Room (RxR) [21] was proposed with longer
and more detailed multilingual instructions. Both these two
tasks give fine-grained instructions, which makes it easier to
navigate to the target location. NDH [36] extends the navi-
gation instruction to the dialogue form, and TouchDown [7]
extends the environments to outdoor. REVERIE [27] and
SOON [39] are proposed for remote object localization,
which requires an agent not only to navigate to the target
location, but also to specify the object to interact with. The
difference between REVERIE and SOON is that REVERIE
uses short concise instructions (e.g., “bring me the red cup
from the kitchen.”) while SOON employs long detailed in-
structions (e.g., “I want to find a cylindrical, metallic and
tall lamp, which is set in the bright living room. The lamp
is on the cabinet which is on the left of the television and
next to the window. The living room is on ...” ).

Among the aforementioned VLN tasks, the instructions
of REVERIE are closer to what we would say to an intel-
ligent domestic robot in daily life in terms of the instruc-
tion length and logic, which is usually short and concise.
However, most existing methods [2, 11, 14, 16, 26, 28] are
usually designed for the VLN tasks where detailed step-by-
step instructions are used, thus they do not perform well on
REVERIE. In this work, we specifically develop a method
for REVERIE. Inspired by the fact of LLMs that implic-
itly internalize rich knowledge in action planning, we pro-
pose to exploit LLM as a fine-grained planner to generate
detailed navigation plans from the concise instructions of
REVERIE to improve navigation success.
LLMs as Embodied Planner Benefiting from the rise of
LLMs, recent works [17, 34] have explored the use of LLMs



REVERIE instruction: Empty the washing machine on level one.

The target object is: ___Q

Q Where can I find it?

washing machineA

A laundry room

Q I am in bedroom, I can

see bed, lamp ,…

What should I do ?

Exit the bedroomA … Q I am in hallway, I can

see faucet, washing

machine,…

What should I do ?

Go straight and enter

the laundry room.
A

𝒂𝟎 𝒂𝑻

…

time

Agent
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… 𝒂𝒕

Q

Goal-Oriented 
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Room-and-Object 
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Figure 2: Overview of our March-in-Chat model. The program runs along the vertical arrows from left to right, progressing
with the time flow. Our model first performs Goal-Oriented Static Planning (GOSP, Sec. 4.1.1) to reason the target object
and its possible lying room; then the Room-and-Object Aware Scene Perceiver (ROASP, Sec. 4.2) perceives what room type
the agent currently stands in and what prominent objects can be seen; these information are used by the Scene-Oriented
Dynamic Planning module (SODP, Sec. 4.1.2) to generate a detailed instruction to execute. GOSP just runs once, and we
repeat ROASP and SODP until the agent chooses to stop or reaches the maximum steps.

in task planning for various embodied tasks. Huang et al.
[17] propose to utilize the frozen LLMs (e.g., GPT-2 [31],
GPT-3 [5] and Codex [8]) to plan actions for the embodied
agent with in-context learning [5]. SayCan [1] translates a
high-level instruction into a list of candidate low-level ac-
tions with a probability, which is then multiplied by a value
function for action prediction. These two LLM planners are
static, which only generate action plans at the beginning of
a task. By contrast, Huang et al. [18] propose to introduce
the feedback of action progress, detected objects and human
assistance into the LLM planner to re-plan atomic actions.
One concurrent work by Song et al. [35] injects the detected
objects to re-generate high-level plans with a fixed program
pattern for the ALFRED [33] task.

However, these above-mentioned methods mainly con-
centrate on planning atomic actions for object manipula-
tion in a very limited space with simple scenes. By con-
trast, REVERIE has plenty of much larger and more com-
plicated environments: 90 multi-layer buildings of various
styles (e.g., office, home, gym, to name a few). To handle
the complex scenarios of REVERIE, we propose a Room-
and-Object Aware Scene Perceiver module that helps the
LLM planner dynamically interact with the environment in
the form of a natural language dialogue.

3. Problem Setup

In the REVERIE task, given a concise and high-level
instruction referring to a remote object, the agent is ex-
pected to navigate to the goal location and identify the tar-
get object in previously unseen environments. The environ-
ment is defined as an undirected graph G “ tV, Eu, where

V “ tViu
K
i“1 denotes K navigable nodes, and E denotes

connectivity edges. The agent is first placed in a starting
node with the initial state s0 and perceives a panorama Rt

as the visual observation at each time step t. The panorama
Rt is split into n single view images as Rt “ triu

n
i“1. Each

single view image ri is represented by an image feature vec-
tor and an orientation feature vector. In addition, the object
features Ot “ toiu

m
i“1 of m objects are extracted from the

panorama view using the annotated object bounding boxes
or object detectors. Then, the agent makes a sequence of
actions xa0, ...aT y to reach the target location, where each
action is achieved by choosing a navigable node from the
candidate list. The agent navigates in the environment until
the target object is grounded or the agent reaches the pre-
defined maximum trajectory length.

4. Method

As illustrated in Fig. 2, when initially situated at the
starting position and given a concise high-level instruction
such as “Empty the washing machine on level one”, the
agent first queries an LLM with the GOSP module (Sec.
4.1.1) to find out the target object “washing machine”
in the instruction and reason out the potential location
“laundry room” by using the world knowledge implied
in an LLM. Then the ROASP module (Sec. 4.2) extracts the
room type and visible objects from the current visual obser-
vation to obtain the environmental feedback. With the de-
scription of the scene perception, the LLM is queried again
by the SODP (Sec. 4.1.2) to generate the next step instruc-
tion, which is used to guide the agent to navigate to the
target object in the room. The baseline agent is based on



Target Object Recognition

Target Object Localization

Scene-Oriented Dynamic Plan

(a) Prompt template of Goal-Oriented Static Planning  (b) Prompt template of Scene-Oriented Dynamic Planning

At this step, I am in bedroom, I can see bed, 
lamp, pillow.

Example:
Step 1: go straight and out the room
Step 2: pass the white table
Step 3: move into the laundry room across the 
hall
Step 4: stop at the sink

Task: Empty the washing machine on level one.
Step 1: exit the bedroom

Task: 
Empty the washing machine on level one.

Goal: 
The target object is: washing machine

Example:
Question: Where does a microwave can usually 
appear in a house?
Answer: kitchen.
f

Question: Where does a washing machine can 
usually appear in a house?
Answer: laundry room

Figure 3: Examples of prompting templates for Goal-Oriented Static Planning (a) and Scene-Oriented Dynamic Planning
(b). Outputs are marked with green color. And the red denotes the predicted object from Target Object Recognition.

HM3D-DUET [10], more details can be found in the sup-
plementary material.
4.1. Planning with World Knowledge from LLMs

This section illustrates how we utilize in-context learn-
ing (ICL) [5] to acquire world knowledge from the LLMs
for planning. We first briefly introduce in-context learn-
ing. Then, we elaborate the Goal-Oriented Static Planning
(GOSP) and Scene-Oriented Dynamic Planning (SODP).
Last, we show the demonstration selection process.
Preliminary: In-context Learning for Planning. In-
context learning (ICL) is a paradigm that lets LLMs directly
make predictions based on a natural language context with-
out gradient updates [5]. Specifically, under the setting of
in-context learning, an LLM is fed a “prompt” that usu-
ally contains a task description and several demonstrations,
and then the LLM generates the required outputs. Both the
prompt template and the choice of demonstration examples
have an impact on how well ICL performs. In this work, we
use two different ICL settings to generate different naviga-
tion plans, i.e. the GOSP and SODP module.

The GOSP aims to identify the target object and infer the
target location by arousing the world knowledge contained
in an LLM through appropriate prompts. A fixed demon-
stration example is used for GOSP. While the SODP aims to
generate step-by-step planning instructions after observing
the dynamic scenes from the environment, which is more
complicated than the former. To better generate plannings,
we dynamically select the most suitable demonstration ex-
amples for SODP and incorporate the environmental feed-
back as prompts for interactive planning.

4.1.1 Goal-Oriented Static Planning (GOSP)
Given a high-level concise instruction, such as “Empty the
washing machine on level one”, an LLM is first asked to
generate a goal-oriented static planning instruction: “Goal:

The target object is a washing machine. It is usually in
a laundry room”, which emphasizes the target object and
points out where the target object may lie. As shown in
Fig. 3(a), the planning generation mainly consists of two
sub-tasks: target object recognition and target object local-
ization, which can be achieved by providing specifically de-
signed prompts for the LLM. To this end, we design the
prompts for the former sub-task in the form: “Task: Empty
the washing machine on level one. Goal: The target ob-
ject is: ”. Then the LLM will generate a corresponding an-
swer: “washing machine”. By contrast, the latter sub-
task, reasoning out the target location, is more complex be-
cause it requires more suitable prompts to arouse the inter-
nalized world knowledge in the LLM. To address this prob-
lem, we utilize a fixed demonstration example for the LLM,
and design the prompts for the latter sub-task in the form:
“Example: Question: Where does a microwave can usually
appear in a house? Answer: kitchen. Question: Where does
a washing machine can usually appear in a house? An-
swer: ”. Given such prompts, the LLM will generate the
corresponding answer “laundry room”. With these an-
swers, we can easily combine them into the goal-oriented
planning format: “Goal: The target object is a washing
machine. It is usually in a laundry room”.

4.1.2 Scene-Oriented Dynamic Planning (SODP)
As is shown in Fig 3(b), the prompt for SODP consists of
three parts. The first part is based on the scene perception of
room type, such as “bedroom”, and visible objects, such
as “bed, lamp, pillow”, obtained by the Room-and-
Object Aware Scene Perceiver (ROASP, Sec. 4.2). These in-
formation are transformed into a natural language descrip-
tion of the current scene in the format of “At this step, I
am in bedroom, I can see bed, lamp, pillow”. The
second part is a demonstration of the fine-grained step-by-
step instruction, which is selected according to the strategy



R2R

Go up the stairs and then walk the length of the couch.  Walk past the dining 

area and into the kitchen.  Stop in front of the refrigerator.

FGR2R

Step 1: go up the stair

Step 2: and then walk the length of the couch 

Step 3: walk past the dining area and into the kitchen

Step 4: stop in front of the refrigerator

Figure 4: Example of instructions in R2R and FGR2R.

detailed in the next section. The last part is previous instruc-
tions, such as “Task: Empty the washing machine on level
one. Step 1: ”. All these three parts are concatenated to-
gether and then fed into an LLM to generate the fine-grained
planning instruction for the next step accordingly, such as
“Exit the bedroom”.

4.1.3 Dynamic Demonstration Selection
Recent works show that providing various demonstration
examples to LLMs benefits the in-context learning for dif-
ferent tasks [17, 22, 25]. In light of these findings, to di-
rect the LLMs in generating better fine-grained plannings,
we dynamically select the most suitable demonstration ex-
ample for each specific task in REVERIE as the prompt to
generate the environment-aware instruction, contrary to us-
ing a single fixed demonstration for all tasks.

Specifically, we choose the training set of the Fine-
Grained R2R dataset (FGR2R) [15] as the demonstration set
D, of which each sample will be used as a demonstration ex-
ample Dstep. As shown in Fig. 4, FGR2R decomposes each
low-level instruction Ilow of R2R dataset [4] into step-by-
step instructions Istep. Then, given a high-level instruction
Ihigh of REVERIE, a proper Ilow will be selected as the
demonstration example Dstep by a matching algorithm. In
particular, we use Ihigh as query Q and each low-level in-
struction Ilow as the key Ki, both of which are embedded by
the Sentence-BERT [32]. The semantic distance score be-
tween the two embeddings is calculated by the cosine simi-
larity:

spQ,Kiq “
epQq ¨ epKiq

}epQq}}epKiq}
, (1)

where ep¨q is the embedding function. If Ki has the high-
est similarity score to the given query Q, its corresponding
step-by-step instruction Istep will be selected as the demon-
stration example Dstep for the given high-level instruction
Ihigh.

4.2. Room-and-Object Aware Scene Perceiver

Though the world knowledge acquired from the static
LLMs planner could benefit the embodied task promisingly,
the static LLMs planner may generate wrong or irrelevant
plannings, which misleads the agent. To address this issue,
the LLM planner should be aware of and interact with the

dynamic observations. In [35], the names of objects ob-
tained from the ground truth or pre-trained detectors have
been added to in-context prompts. However, the agents of
these works act in a very limited space with simple scenes
and monotonous objects. By contrast, REVERIE involves
large-area exploration between different floors and rooms,
where the scenes are more complex with more diverse ob-
jects. Considering these factors, we propose a room-and-
object aware scene perceiver (ROASP) for the LLM plan-
ner, which predicts not only the room type but also the vis-
ible objects of the current location. Rather than using sep-
arate classifiers and detectors to individually predict each
position’s room types and visible object categories, we use
CLIP [30] as the proposed room-and-object aware scene
perceiver. Thanks to CLIP’s strong ability of zero-shot im-
age classification in the open world, the ROASP can well
handle these two tasks.

Specifically, we first fetch the room type labels from the
MatterPort3D [6] semantic annotations and the object type
labels are extracted from the REVERIE training dataset.
They are used to build the codebook for the room categories
Croom and the object categories Cobj, respectively. Then, at
each timestep t, the agent perceives the environment and ob-
tains the panoramic visual observation Rt “ triu

n
i“1. For

each single-view observation ri in the panorama, the image
feature fr is extracted by the CLIP Image Encoder

fr “ Ev
CLIPpriq, (2)

where Ev
CLIPp¨q represents the CLIP Image Encoder. For

each room category croom and each object category cobj ,
we respectively construct a text phrase of room Troom as “a
photo of a tcroomu” and a text phrase of object Tobj as “a
photo of a tcobju”. Then the text feature is derived through
the pretrained CLIP Text Encoder as:

froom “ Et
CLIPpTroomq, (3)

fobj “ Et
CLIPpTobjq, (4)

where Et
CLIPp¨q represents the CLIP Text Encoder. At last,

the similarity score Sroom between the image feature fr and
the text feature froom as well as the similarity score Sobj be-
tween the image feature fr and the text feature fobj are re-
spectively computed as:

Sroom “ Softmaxpfroom ¨ fT
r q, (5)

Sobj “ Softmaxpfobj ¨ fT
r q. (6)

Considering that the current environment normally be-
longs to only one type of room, though the panoramic im-
ages have multiple views, the room that the agent is cur-
rently centered in should have the largest influence on each
view. Thus, we average the predicted room type scores
Sroom from multiple views and choose the room type with



HLI

GOSP

SODP

Empty the washing machine on level one.

Goal: The target object is washing machine. It is usually in 
laundry room.

Step 1: exit the bedroom
Step 2: go down the stairs
…

GOSiP

SODiP Scene-Oriented Dynamic Planning (SODiP)

Goal-Oriented Static Planning (GOSiP)

Room-and-Object Aware Scene Perceiver (ROASeP)

Figure 5: Text inputs contains three parts: High-
level Instruction in REVERIE (HLI), Goal-Oriented Static
Planning (GOSP) and Scene-Oriented Dynamic Planning
(SODP) returned instructions.

the greatest score as the room type prediction ĉroom. For ob-
ject predictions, if the object occupies more proportion in a
view, the matching score Sobj should be higher. Thus, we
select k prominent objects with the top-k matching scores
as the auxiliary environment feedback in addition to the pre-
dicted room.

4.3. March with Interactive Prompting

When the generation of the goal-oriented planning and
the scene-oriented planning with perceptions from the envi-
ronment is finished, the agent can march towards the target
object at each timestep t under the guidance of the interac-
tive prompting. In this section, we will give a detailed de-
scription of how the interactive prompting works during the
process of navigation, which mainly consists of two parts,
i.e. the assembled instruction and the instruction update.

Assembled Instruction At each timestep t, the agent
observes the environment and receives the assembled in-
structions obtained from the above-mentioned modules, and
choose an action to perform. Specifically, as shown in
Fig. 5, the assembled instructions W of the interactive
prompting mainly consist of three parts: the high-level in-
struction (HLI) WI in REVERIE, the GOSP instruction
WG and the SODP instruction WS . We concatenate these
three parts of instructions as the assembled instruction W “

rWI ,WG,WSs and use WordPieces [20] to tokenize all the
words into a sequence of tokens as the textual input for
the agent. Then, the agent will act under the guidance of
such assembled instruction. Note that the use of the origi-
nal high-level instruction WI can improve the model’s tol-
erance on the noise of intermediate planning instructions.

Instruction Update The GOSP is only conducted once
at the beginning of the task. While the SODP is conducted
depending on the feedback of environments. Specifically, at
each timestep t, if the ROASP finds the room has changed
where the predicted room ĉtroom does not equal to ĉt´1

room, the
SODP will be triggered again. Then, a new step-by-step
instruction such as “Step 2: go down the stairs” for the next
few steps will be generated by the LLM and added to the
previous assembled instruction W after the last step-by-step

instruction of “Step 1: exit the bedroom”. Then, the agent
will act under the guidance of the updated instructions W 1.

5. Experiment
5.1. Evaluation Setup

Dataset REVERIE [27] contains 10,567 panoramic im-
ages within 90 buildings (4,140 target objects divided into
489 categories) and 21,702 instructions with 18 words on
average. Each target viewpoint has 7 distinct panoramic
objects with 50 bounding boxes on average. It consists of
four splits: train, validation seen, validation unseen and test
unseen.

Evaluation Metrics The performance of agents is evalu-
ated in two ways: navigation and object grounding. For the
navigation sub-task, the metrics are Success Rate (SR), Or-
acle Success Rate (OSR), and Success weighted by Path
Length [3] (SPL), where SPL is the main metric. For the
grounding sub-task, the metrics are Remote Grounding
Success rate (RGS) and RGS weighted by Path Length
(RGSPL), where RGSPL is the main metric for this sub-
task. For all these metrics, higher is better.

TL Trajectory Length measures the average length of
all the predicted navigation trajectories in meters.

SR Success Rate measures the ratio of successful
tasks, of which the agent’s stop location is less than
3 meters away from the target location.

OSR Oracle Success Rate measures the ratio of tasks of
which one of its trajectory viewpoints can observe
the target object within 3 meters.

SPL Success weighted by Path Length trades-off SR
(Success Rate) against TL (Trajectory Length). It
measures both the accuracy and efficiency of navi-
gation.

RGS Remote Grounding Success rate measures the ra-
tio of tasks that successfully locate the target ob-
ject.

RGSPL RGS weighted by Path Length is RGS.

Implementation Details Our model is trained on a sin-
gle 3090 GPU for 30,000 iterations. We set the batch size
to 4 and the learning rate to 1ˆ10´5. The best model is
selected according to performance on the validation unseen
split. We use the same pretrained model and augmented
data as [10] for a fair comparison. For the LLMs, we use
the public GPT-2 [31] model for in-context learning. For
the scene preceptor, we keep the top 3 object predictions
for each position.

5.2. Comparison with State-of-The-Art Methods

As shown in Table 1, we compare MiC with the state-of-
the-art methods on the REVERIE benchmark. Our method



Methods
Val Unseen Test Unseen

Navigation Grounding Navigation Grounding
TL OSRÒ SRÒ SPLÒ RGSÒ RGSPLÒ TL OSRÒ SRÒ SPLÒ RGSÒ RGSPLÒ

Human – – – – – – 21.18 86.83 81.51 53.66 77.84 51.44

Seq2Seq 11.07 8.07 4.20 2.84 2.16 1.63 10.89 6.88 3.99 3.09 2.00 1.58
RCM [37] 11.98 14.23 9.29 6.97 4.89 10.60 7.84 3.89 11.68 6.67 3.67 3.14
SMNA [23] 9.07 11.28 8.15 6.44 4.54 3.61 9.23 8.39 5.80 4.53 3.10 2.39
FAST-MATTN [27] 45.28 28.20 14.40 7.19 7.84 4.67 39.05 30.63 19.88 11.61 11.28 6.08
ORIST [26] 10.90 25.02 16.84 15.14 8.52 7.58 11.38 29.20 22.19 18.97 10.68 9.28
CKR [12] 26.26 31.44 19.14 11.84 11.45 - 22.46 30.40 22.00 14.25 11.60 -
RecBERT [16] 16.78 35.02 30.67 24.90 18.77 15.27 15.86 32.91 29.61 23.99 16.50 13.51
Airbert [13] 18.71 34.51 27.89 21.88 18.23 14.18 17.91 34.20 30.28 23.61 16.83 13.28
HAMT [9] 14.08 36.84 32.95 30.20 18.92 17.28 13.62 33.41 30.40 26.67 14.88 12.08
HOP [28] 16.46 36.24 31.78 26.11 18.85 15.73 16.38 33.06 30.17 24.34 17.69 14.34
TD-STP [38] - 39.48 34.88 27.32 21.16 16.56 - 40.26 35.89 27.51 19.88 15.40
DUET [11] 22.11 51.07 46.98 33.73 32.15 23.03 21.30 56.91 52.51 36.06 31.88 22.06
HM3D-DUET [10] - 62.14 55.89 40.85 36.58 26.76 - 62.30 55.17 38.88 32.23 22.68

MiC 20.64 62.37 56.97 43.60 37.52 28.72 18.11 62.40 55.74 41.97 35.25 26.17

Table 1: Comparison with the state-of-the-art methods on REVERIE.

Components Navigation Grounding
OSRÒ SRÒ SPLÒ RGSÒ RGSPLÒ

HLI(Baseline) 58.02 52.71 40.49 34.93 26.82
HLI+GOSP 59.92 55.28 42.46 37.13 28.24
HLI+SODP 60.72 56.26 42.94 36.80 27.81
HLI+GOSP+SODP 62.37 56.97 43.60 37.52 28.72

Table 2: Ablation of different components in MiC.

outperforms previous methods in all metrics on both valida-
tion unseen and test unseen splits. Particularly, compared
with the SoTA method HM3D-DUET [10], MiC outper-
forms HM3D-DUET by a large margin of 3.09% in terms
of the main navigation metric SPL and 3.49% of the main
object grounding metric RGSPL on the Test Unseen split.
Note that MiC shares the same pre-trained model with the
HM3D-DUET, these promising result demonstrates that our
method can effectively improve the navigation and object
grounding ability of agents.

5.3. Ablation Analysis

Contribution of different MiC Components In Table 2,
we evaluate the effect of different components in our pro-
posed MiC. HLI denotes only using the original high-level
instruction (HLI) provided by REVERIE.

Compared to the baseline HLI, GOSP improves the per-
formance of both navigation (2.57%Ò on SR, 1.97%Ò on
SPL) and object grounding (2.20%Ò on RGS, 1.42%Ò on
RGSPL) with a non-trivial margin, showing the effective-
ness of the proposed goal-oriented static planning. SODP
further surpasses GOSP in the navigation metric (0.98%Ò

on SR, 0.48%Ò on SPL) while falling a little behind in the
grounding metrics (0.33%Ò on RGS, 1.43%Ò on RGSPL).
The reason may be that the detailed step-by-step planning
occupies a large proportion compared to the target object

Methods Navigation Grounding
OSRÒ SRÒ SPLÒ RGSÒ RGSPLÒ

Baseline 58.02 52.71 40.49 34.93 26.82
Static 60.24 55.35 41.74 36.30 27.03
Dynamic 60.72 56.26 42.94 36.80 27.81

Table 3: Comparison of different plan generation settings.

Methods Relevancy Rationality

Scene-Oriented Dynamic Planning 2.06 1.93
- w/o Dynamic Demonstration 1.41 1.23
- w/o ROASP 1.64 1.55

Table 4: Human study of the prompt setting for Scene-
Oriented Dynamic Planning.

in the input texts, which can bring the noise for object
grounding while improving navigation performance. When
combining all these components, the final performance gets
further increased in all metrics, which surpasses the base-
line with a large margin (4.26%Ò on SR, 3.11%Ò on SPL,
2.59%Ò on RGS and 1.9%Ò on RGSPL). The promising re-
sults here show that these components are complementary
to each other.

The Effect of the ROASP To evaluate the effectiveness
of ROASP used for the scene-oriented dynamic planning,
we conduct another ablation study via whether incorporat-
ing the feedback from the ROASP module on REVERIE
validation unseen set. We report results in three settings:
(I) Baseline: The input assembled instruction only contains
the given high-level instruction in REVERIE. (II) Static:
The input assembled instruction contains the REVERIE
and fine-grained static instructions. The difference between
fine-grained static instruction and scene-oriented dynamic



w/o Dynamic Demonstration w/o ROASPScene-Oriented Dynamic Planning

REVERIE Instruction: Go to the bathroom with the two towels and empty the lower cabinet.

Step 1: exit the bedroom
Step 2: and walk into the next bedroom in the 
hall
Step 3: go stand in the bathroom

Step 1: put the towel in the bottom drawer 
of the toilet

Step 1: exit the bathroom
Step 2: walk into the kitchen
Step 3: go stand in the kitchen doorway
Step 4: go back to the bedroom and take the towel
Step 5: exit the bedroom
Step 6: walk into the next bedroom in the hall

REVERIE Instruction: Go to the kitchen on level 2 and open the drawer.

Step 1: go upstairs
Step 2: go straight pass the couch
Step 3: make a slight left towards the refrigerator
Step 4: wait near the kitchen drawer

Step 1: open the drawer with the key in it
Step 2: remove the lock from the door
Step 3: then turn on

Step 1: go upstairs and turn left at the hall
Step 2: go back down the stairs
Step 3: go up the stairs again
Step 4: go back to the kitchen and open the fridge
Step 5: take out the fruit and put it in the juicer

w/o Dynamic Demonstration w/o ROASPScene-Oriented Dynamic Planning

Figure 6: Examples of generated instructions.

instruction is that static fine-grained instruction is gener-
ated without ROASP. More specifically, the query prompt
for the LLM to generate step-by-step planning is fixed at
each timestep, which only consists of the given high-level
instruction and the selected demonstration. (III) Dynamic:
The input assembled instruction contains the high-level in-
struction in REVERIE and scene-oriented dynamic plan-
ning instruction. As shown in Table 3, in the static setting,
the performance in all metrics is improved compared to
the baseline, indicating the effectiveness of the LLM’s rich
world knowledge in fine-grained planning. In the dynamic
setting, the performance is further improved with non-trivial
margins, showing the effectiveness of ROASP.

Qualitative Analysis of Prompt Setting To further eval-
uate the effect of dynamic demonstration and ROASP in
SODP, we perform a human evaluation about the gener-
ated plannings (see Table 4) and show the planning results
(see Fig. 6). For human evaluation, we randomly selected
100 REVERIE tasks and generate fine-grained step-by-step
instructions in setting of SODP, SODP without dynamic
demonstration, and SODP without ROASP. We asked 10
volunteers to mark the generated step-by-step instructions
in terms of their relevancy and rationality. The relevancy
score ranges from 0 (unrelated) to 3 (very related), which
takes into account whether the keywords in instructions are
related to the REVERIE task. For example, regarding the
REVERIE instruction “Go to the kitchen and turn on the
microwave”, whether there are keywords in instructions re-
lated to the kitchen scene could be rated. Rationality is rated
from 0 (bad) to 3 (perfect), considering whether the instruc-
tion conforms to the logic of navigation.

The results are presented in Table 4. It shows that our
SODP scored 2.06 on Relevancy and 1.93 on Rational-
ity, which could be considered acceptable since the high-

est score is 3 and it is challenging to generate instructions
that are consistent with tasks and actual navigation logic.
When removing the dynamic demonstration, the score of
generated instruction drops about 31.55% on Relevancy and
36.27% on Rationality, which could also be observed in
Fig. 6. Although the instruction generated without dynamic
demonstration is related to the task to some extent (e.g., “put
the towel in the bottom drawer of the toilet” has the keyword
“towel”, the instruction lacks navigation information, such
as how to reach the bathroom.) As shown in the bottom
example of Fig. 6, instruction without ROASP successfully
guided how to go to the destination location kitchen, but it
still caused confusion by going upstairs and going down-
stairs several times, and thus reducing the rationality score,
i.e. 1.64 on Relevancy and 1.55 on Rationality. More gen-
eration results can be found in the supplementary.

6. Conclusions

In this work, we propose a novel model, March-in-Chat
(MiC), for the REVEIRE task, which only provides con-
cise high-level instructions for the VLN agent. MiC en-
ables the REVERIE agent to talk with an LLM on the
fly to generate plans for the next few steps. It con-
sists of three main modules, Goal-Oriented Static Planning
(GOSP), Scene-Oriented Dynamic Planning (SODP), and
Room-and-Object Aware Scene Perceiver (ROASP) mod-
ule. We conduct extensive quantitative and qualitative ex-
periments on REVERIE and the promising results show the
effectiveness of our method.
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