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Abstract

In semi-supervised learning, unlabeled samples can be
utilized through augmentation and consistency regulariza-
tion. However, we observed certain samples, even undergo-
ing strong augmentation, are still correctly classified with
high confidence, resulting in a loss close to zero. It indi-
cates that these samples have been already learned well
and do not provide any additional optimization benefits
to the model. We refer to these samples as “naive sam-
ples”. Unfortunately, existing SSL models overlook the
characteristics of naive samples, and they just apply the
same learning strategy to all samples. To further optimize
the SSL model, we emphasize the importance of giving at-
tention to naive samples and augmenting them in a more
diverse manner. Sample adaptive augmentation (SAA) is
proposed for this stated purpose and consists of two mod-
ules: 1) sample selection module; 2) sample augmentation
module. Specifically, the sample selection module picks
out naive samples based on historical training informa-
tion at each epoch, then the naive samples will be aug-
mented in a more diverse manner in the sample augmen-
tation module. Thanks to the extreme ease of implementa-
tion of the above modules, SAA is advantageous for being
simple and lightweight. We add SAA on top of FixMatch
and FlexMatch respectively, and experiments demonstrate
SAA can significantly improve the models. For example,
SAA helped improve the accuracy of FixMatch from 92.50%
to 94.76% and that of FlexMatch from 95.01% to 95.31%
on CIFAR-10 with 40 labels. The code is available at
https://github.com/GuanGui-nju/SAA.
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(a) An example of naive sample.
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(b) Model performance during training.

Figure 1: (a) shows an example of naive sample. Its aug-
mented versions are correctly classified with high confi-
dence, resulting in the loss close to 0. (b) shows the model
performance during FixMatch training. Performance im-
provements are slow or even stagnant for a period of time.

1. Introduction

For the sake of reducing the cost of manual labeling,
semi-supervised learning (SSL), which focuses on how to
learn from unlabeled data, is a longstanding yet significant
research topic in vision applications. Recently, data aug-
mentation techniques and consistency regularization have
been proven to be effective ways of utilizing unlabeled data.
For example, FixMatch [39] encourages consistency in pre-
dictions between the weakly and strongly augmented ver-
sions, and it achieves an accuracy of 92.50% on the CIFAR-
10 task with only 40 labels.

However, not all unlabeled samples are effectively uti-
lized even with strong augmentation. In Figure 1a, if the
strongly augmented versions are correctly classified with
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high confidence, leading to a loss close to zero, it indicates
that the sample has already been learned well and cannot
further improve the model’s performance. In other words,
the sample was not effectively utilized to benefit model
training, and we call this sample “naive sample”. When
the training process contains a large number of naive sam-
ples, it can cause slow or even stagnant model performance
improvements, as shown in Figure 1b.

Unfortunately, existing SSL models [34] overlook the
critical point of whether all samples are effectively utilized.
Typically, these models apply the same fixed strong aug-
mentation strategy to all samples, resulting in some strongly
augmented versions that do not benefit the model train.

We emphasize that the key to alleviating this problem
lies in how to further explore the value of the naive samples
through new learning strategies. A natural idea that reminds
us is to develop sample adaptive augmentation (SAA) to
identify naive samples and increase their diversity after
augmentation. Our proposed SAA is simple yet effective,
which consists of two modules: 1) sample selection mod-
ule and 2) sample augmentation module. The former is re-
sponsible for picking out naive samples in each epoch, and
the latter applies a more diverse augmentation strategy for
naive samples. Specifically, in the sample selection module,
we first update the historical loss of the samples with expo-
nential moving average (EMA) in each epoch, then these
samples will be divided into two parts. The part of the sam-
ples with a smaller historical loss is considered to be the
naive sample. Since historical loss captures the impact of
the sample on model training, this approach allows us to
identify samples that are not effectively utilized and would
benefit from more diverse augmentation. While in the sam-
ple augmentation module, the more diverse augmented ver-
sion of naive sample will be obtained by regrouping mul-
tiple strong augmented images, and the remaining samples
are applied with the original strong augmentation.

Our proposed SAA is simple to implement, requiring
only a few lines of code to add our proposed modules to the
FixMatch or FlexMatch in PyTorch. It is also lightweight in
terms of memory and computation, i.e., SAA only needs to
add two additional vectors and update them in each epoch,
making it an efficient solution for improving SSL models.

We extended FixMatch and FlexMatch with SAA and
conducted experiments on SSL benchmarks. The results
of the experiments demonstrate that SAA can significantly
improve performance. In summary, our contribution can be
summarized as follows:

• We identify ineffectively utilized samples and em-
phasize that they should be given more attention.
Under the consistency regularization based on data
augmentation, some strongly augmented versions are
not beneficial to model training, which results in the
values of these samples not being fully exploited and

makes the model performance slow to improve. We
refer to them as “naive sample”, and emphasize that
they should be learned with a new learning strategy.

• We propose SAA to make better use of naive sam-
ple. To increase the probability that the augmented ver-
sions can benefit the model training, a simple yet effec-
tive method, sample adaptive augmentation (SAA), is
proposed for identifying the naive samples and aug-
menting them in a more diverse manner.

• We verify the validity of SAA on SSL benchmarks.
Using FixMatch and FlexMatch as the base frame-
work, we proved that our approach can achieve state-
of-the-art performance. For example, on CIFAR-10
with 40 labels, SAA helps FixMatch improve its ac-
curacy from 92.50% to 94.76%, and helps FlexMatch
improve its accuracy from 95.01% to 95.31%.

2. Related Work
2.1. Semi-Supervised Learning

Consistency regularization (CR) [2] is the main way to
exploit unlabeled data in semi-supervised learning (SSL).
The conventional implementation is to perturb the samples
and then encourage the model to maintain a consistent pre-
diction. The manner of perturbation has been studied in
a variety of ways, e.g., stochastic augmentation and drop
out [25, 35], feature perturbations [24], adversarial pertur-
bations [30], model perturbations [42]. [4, 44, 3] apply
mixup to blend the images, also a perturbation of the im-
age. With strong augmentation technique [7, 10], FixMatch
applies a consistency regularization between the weakly
augmented and strongly augmented versions, allowing the
model to learn a greater diversity of images over long iter-
ations. This approach has greatly simplified the framework
and has led to breakthroughs in semi-supervised learning
milestones. As we have previously analyzed, the framework
applies the same fixed augmentation strategy to all images,
which results in the naive samples not being fully utilized.

Due to the superiority of the FixMatch framework, a
large number of SSL works [52, 12, 48, 55, 16, 13, 54]
are now based on it for further optimization, but none of
the work considers the effectiveness of utilization of naive
samples. [12, 54] focuses on improving the quality of the
pseudo labels by learning the distribution of unlabeled data.
[55, 16] focus on learning the similarity relationship be-
tween samples or super-classes. [13, 48, 52] all emphasize
the utilization of samples with low confidence. These works
also allow the model to learn more samples within a certain
number of iterations to some extent, but still ignore the is-
sue of the validity of the augmentation, resulting in these
augmented samples still possibly unhelpful to the training
of the mode.



To the best of our knowledge, none of the SSL works
has considered the utilization of naive samples. [52] treats
each category differently and adjusts the threshold for each
category, but we are considering treating each sample dif-
ferently, with no relationship to the category.

2.2. Hard Example Mining

Our work is somewhat related to hard example mining,
with the difference that we focus on naive samples that do
not benefit model training, while they focus on hard sam-
ples that damage model training. A more common approach
used to select hard samples is to rely on loss information be-
tween the sample and the ground truth [37, 46, 29, 38]. This
is related to our approach, but the unlabeled sample is se-
lected by its consistency loss due to the lack of ground-truth.
In addition to this, distance metrics [49, 22] and false pos-
itive samples [20, 9, 11, 14] are common methods of hard
sample selection. However, most of these methods for min-
ing hard samples rely on labels, which is not practical under
SSL. Both our proposed method and the field involve the se-
lection of samples, the difference being that they focus on
the selection of hard samples that are difficult to train, while
we focus on naive sample that contributes no information of
model training.

2.3. Date Augmentation

Data augmentation is an effective way of expanding
the data space [36], which we roughly classify into the
following categories: 1) Single perturbation [31, 21, 10];
2) image blending based [43, 53, 50, 19]; 3) learning
based [40, 28, 15]; and 4) search based [6, 27, 7]. Common
operations for perturbing a single image include geometric
transformations, color transformations, noise injection [31],
random erasing [56], kernel flters [21], cutout [10]. [43, 53]
direct mixing of the contents of two images, [50] mixes
image patches, and [8, 19] Mix the content and style. For
learning based strategy, adversarial training [40, 47] and
GAN-based [28, 15] train the network to obtain augmented
images. [6, 27] find the best combination in the perturba-
tion space using a search strategy.

However, single perturbation and image blending-based
methods are limited to enhancing the diversity of images.
For learning and search-based methods, although they yield
augmented images that facilitate model training, their time
consumption is huge and therefore this is not suitable for
training time-consuming CR-based SSL models. [7] com-
bines random transformations to remove the search process,
and is favored by the SSL model. [17] cuts the image and
augments the patches, which enhances image diversity and
has been validated to be effective on several tasks. Our aug-
mentation is related to [17], but we augmented on the im-
age, not on patches. We will further discuss it in the exper-
imental section.

3. Preliminary and Background
3.1. Problem Setting

In semi-supervised learning, we denote labeled set X =
{(x1, y1), (x2, y2), . . . , (xM , yM )}, where yi is the label of
the i-th labeled sample xi. We also denote unlabeled set
U = {u1, u2, . . . , uN}, where ui denotes i-th unlabeled
sample, and typically |X | ≪ |U|. In the implementation,
the samples are provided on a per batch basis in each iter-
ation, with a batch of labeled data X and batches of unla-
beled data U . How to use this unlabeled data for learning
is the focus of SSL research. Generally, in consistency reg-
ularization (CR) based SSL models, unlabeled data gener-
ate different versions by perturbation, and then the model is
encouraged to be consistent in its representations or predic-
tions of these versions.

3.2. Preliminary for CR-based SSL Models

Strong augmentation is a good means of applying con-
sistency regularization, and FixMatch [39] is representative
of this idea. Many recent semi-supervised works [52, 48,
26, 55, 16] have also used FixMatch as a basis for further
optimization, and to clearly introduce our approach, we also
use FixMatch as a base framework.

We first review FixMatch, whose fundamental idea is
that produce pseudo labels on weakly-augmented versions
and use them as training targets for their corresponding
strongly augmented versions. Of them, the weak augmen-
tation α(·) includes standard flip and shift operations, while
the strong augmentation strategyA(·) consists of RandAug-
ment [7] and CutOut [10].

Let pwi and psi represent the model’s prediction on α(ui)
and A(ui), respectively. Then this consistency regulariza-
tion based unsupervised loss for unlabeled samples is,

Lunsup =
1

|U|

|U|∑
i=1

1(max(pwi ) ≥ τc)H(pwi , p
s
i ). (1)

where H(p1, p2) denotes the standard cross entropy be-
tween p1 and p2, and τc is a pre-defined threshold to re-
tain only high-confidence pseudo-labels. As discussed in
FixMatch [39], τc is commonly set as a large value to al-
leviate the confirmation bias [1] in SSL. Let pi denotes the
model’s prediction of α(xi), then the supervised loss for la-
beled samples is,

Lsup =
1

|X |

|X |∑
i=1

H(qi, yi). (2)

Finally, the total losses can be expressed as,

L = Lsup + λLunsup. (3)

where λ is the weight of Lunsup.
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(a) Sample selection module in SAA.
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(b) Sample augmentation module in SAA.

Figure 2: Overview of our method SAA. The core insight of SAA is that dynamically adjusts augmentation for samples,
thus allowing naive samples to be used more effectively. In detail, SAA consists of two modules: sample selection module
and sample augmentation module. (a). Each sample ui corresponds to a marker Fi and historical loss Hi. In each epoch,
samples’ consistency losses are recorded and their historical losses Hi are updated with EMA. Then based on the historical
losses, we divide these samples into two parts by OTSU. The part of the samples with a smaller historical loss are naive
samples, and their markers are set to 1, then the rest of the markers are set to 0. (b). Sample ui is augmented in different
ways depending on the marker Fi, i.e., if Fi = 0, it is strongly augmented once, if Fi = 1, it is strongly augmented twice,
and the two augmented images are regrouped into one image. The regrouping may be in two parts top-bottom or two parts
left-right, which is chosen randomly with a probability of 0.5.

3.3. Characteristics and Impact of Naive Samples
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Figure 3: loss of non-naive
sample (bottom) and naive
sample (top).

Taking FixMatch as an ex-
ample, we tracked the loss of
a naive sample and a non-naive
sample separately, as shown in
Figure 3. Note that we show
the original loss without thresh-
olds to exclude the interference
of confidence thresholds on the
loss values. It can be observed
that in most epochs, the naive
sample’s cross-entropy losses are close to 0, indicating that
the learning of A(ui) does not contribute to the model’s
training progress.

With the same augmentation, the non-naive sample can
encourage model optimization in the long term, whereas
naive samples cannot. This confirms the necessity for ded-
icated attention to naive samples and the development of
new augmentation strategies that can better exploit their po-
tential value. Moreover, when there are too many naive
samples in the training process, they can interfere with
model performance improvement, as shown in Figure 1b.
These findings highlight the importance of properly identi-
fying and handling naive samples in SSL tasks.

We would highlight that there are several factors that
cause the slow performance improvement, such as the num-
ber of high confidence pseudo-labels, etc. There are also
multiple ways to solve the problem, such as adjusting the
threshold [52], finding other learnable signals [55], etc. In
this work, we concentrate on data augmentation. It should
be noted that our approach can be used together with the
above ways and thus beneficial to SSL.

4. SAA: Using Sample Adaptive Augmentation
to Aid Semi-Supervised Learning

SAA aims to address the issue of not effectively utiliz-
ing naive samples by providing them with more attention
and exploration of their value in aiding model training. To
achieve this goal, SAA designs two modules: the sample se-
lection module and the sample augmentation module. The
function of the first module is to identify naive samples
in each epoch, while the function of the second module is
to apply more diverse augmentation strategies to the naive
samples to facilitate their effective learning.

4.1. Sample Selection

We introduce two vectors H = {H1,H2, ...,HN},F =
{F1,F2, ...,FN}, where N is the number of unlabeled
samples. H records historical consistency loss informa-
tion for each unlabeled sample, and F marks whether the
unlabeled sample is a naive sample. For unlabeled sam-
ple ui, the model calculates the consistency loss lti between
its weakly- augmented version and strongly augmented ver-
sions once in t-th epoch. Then we updateHt

i with exponen-
tial moving average (EMA), which can be expressed as:

Ht
i = (1− a)Ht−1

i + αlti . (4)

Note that the parameter α introduced is not an additional
model parameter, as the model parameters are also updated
with EMA [39, 52]. Since the historical loss information
can reflect the magnitude of the impact of a strongly aug-
mented version on the model, it becomes the basis for our
decision on naive sample. OTSU [33] is a commonly used
method of threshold segmentation because of its computa-



Algorithm 1: Equip FixMatch with SAA

Input: Labeled data batch Bx = {(xi, yi)}M , unlabeled data batch Bu = {ui}N , unsupervised loss weight λ,
pre-training epochs T ′, total training epochs T , augmentation strategies α(·),A(·),A′(·), historical loss
H = {H1,H2, ...,HN}, mark F = {F1,F2, ...,FN}

1 for t← 1 to T ′ do
2 Run FixMatch; // training as FixMatch in the first T ′ epochs
3 end
4 for T ′← 1 to T do
5 Compute Lsup = 1/|Bx|

∑|Bx|
i=1 H(qi, yi); // supervised loss in FixMatch

6 for i← 1 to N do
7 Apply perturbation α(·) to ui; // weak augmentation in FixMatch
8 Apply augmentation A(·) / A′(·) to ui according to Fi; // sample augmentation in SAA
9 Compute loss li = H(argmax pm(α(ui)), pm(A(ui))); // consistency loss in FixMatch

10 end
11 Compute Lunsup = 1/|Bu|

∑|Bu|
i=1 1(max pm(α(ui)) ≥ τ)li; // unsupervised loss in FixMatch

12 Update historical lossHt
i = (1− a)Ht−1

i + αlti ; // sample selection in SAA
13 Update mark Fi = 1(Ht

i ≤ OTSU(Ht
i )); // sample selection in SAA

14 end

tional simplicity, stability, and strong self-adaptation. In-
spired by this, we calculate the historical loss threshold in
each epoch:

τs = OTSU(H1,H2, ...,HN ). (5)

OTSU adaptively divides the sample into two parts based
on the historical loss. Samples with small historical losses
are considered as naive samples since they provide less help
to the model. Then we update F by:

Fi = 1(Hi ≤ τs). (6)

It can be seen that the decision of the naive samples is
done at every epoch. In other words, whether a sample is
a naive sample is related to the model performance. We
should note that there may be multiple shifts in F in the
training process. On the one hand, if the sample is regarded
as a naive sample, we will apply a more diverse augmenta-
tion to it to avoid invalid learning. On the other hand, this
more diverse augmentation may be too perturbing for the
sample and negatively affect the model, so the augmenta-
tion strategy for these samples needs to be adjusted back to
the original strategy in a timely manner.

4.2. Sample Augmentation

We apply different augmentations to the non-naive sam-
ple and the naive sample. The former will be applied with
the original augmentationA, while the latter will be applied
with a new augmentation A′, which increases the difficulty
of the augmented version. This can be expressed as:

Augmented(ui) =

{
A(ui),Fi = 1
A′(ui),Fi = 0

(7)

We implement this more diverse augmentation A′ in a
simple way, i.e., by regrouping several A(ui) into a new
image. Formally, a new augmented image A′(ui) can be
expressed as:

A′(ui) = Concat(Cut(A(ui)1),Cut(A(ui)2)). (8)

As shown in Figure 4, we have two strongly augmented im-
ages A(ui)1 and A(ui)2. To create a new augmented im-
age A′(ui), we randomly choose one of the following two
options with equal probability: 1) Top-bottom concat: We
take the top half of A(ui)1 and the bottom half of A(ui)2
and concatenate them to create a new image. 2) Left-right
concat: We take the left half of A(ui)1 and the right half of
A(ui)2 and concatenate them to create a new image.

0.5 probability

concat concat

cut cut

Figure 4: Augmentation for naive samples.

Image regrouping is a technique to enhance image di-
versity by combining multiple augmented images into a
new image. It is a simple and effective solution that has
been shown to be effective in previous works such as ”Cut-



CIFAR-10 CIFAR-100 SVHN STL-10
Method 40 labels 250 labels 4000 labels 400 labels 2500 labels 10000 labels 40 labels 250 labels 1000 labels 1000 labels

Mean-Teacher 29.91±1.60 62.54±3.30 91.90±0.21 18.89±1.44 54.83±1.06 68.25±0.23 63.91±3.98 96.55±0.03 96.73±0.05 -
MixMatch 63.81±6.48 86.37±0.59 93.34±0.26 32.41±0.66 60.42±0.48 72.22±0.29 69.40±8.39 95.44±0.32 96.31±0.37 38.02±8.29
ReMixMatch 90.12±1.03 93.70±0.05 95.16±0.01 57.25±1.05 73.97±0.35 79.98±0.27 75.96±9.13 93.64±0.22 94.84±0.31 75.51±1.25
Dash 91.84±4.31 95.22±0.12 95.76±0.06 55.17±1.36 72.15±0.19 77.23±0.21 96.97±1.59 97.83±0.10 97.97±0.06 83.17±0.80
CoMatch 93.09±1.39 95.09±0.33 95.57±0.04 - - - - - - 79.80±0.38
SLA 94.83±0.32 95.11±0.27 95.79±0.15 58.56±1.41 72.37±0.44 77.68±0.24 94.37±2.91 95.08±1.08 95.84±0.24 -
NP-Match 95.09±0.04 95.04±0.06 95.89±0.02 61.09±0.99 73.97±0.26 78.78±0.13 - - - -
SimMatch 94.40±1.37 95.16±0.39 96.04±0.01 62.19±2.21 74.93±0.32 79.42±0.11 - - - 89.70±0.82

FixMatch† 92.50±0.67 95.10±0.04 95.81±0.05 53.17±0.51 72.64±0.17 77.60±0.09 96.24±0.98 97.54±0.04 97.98±0.02 85.27±1.15
FixMatch (w/SAA) 94.76±0.99 95.21±0.07 96.09±0.07 54.29±0.73 73.18±0.21 78.71±0.20 97.01±0.72 97.68±0.07 98.06±0.06 87.92±1.46

FlexMatch† 95.01±0.09 95.08±0.10 95.82±0.02 60.51±1.54 72.98±0.22 78.15±0.17 92.42±2.60 92.98±1.59 93.54±0.28 89.15±0.71
FlexMatch (w/SAA) 95.31±0.16 95.40±0.19 96.14±0.08 61.87±1.94 75.01±0.41 79.88±0.34 93.15±2.54 93.25±2.41 94.41±0.27 90.85±0.82
Fully-supervised 95.38±0.05 81.70±0.09 97.87±0.02 -

Table 1: Performance comparisons on CIFAR-10, CIFAR-100, SVHN, STL-10. We compare the performance with recent
SSL works [42, 3, 4, 48, 26, 41, 55, 45]. We apply SAA on the top of FixMatch [39] and FlexMatch [52], respectively. For fair
comparison, we re-ran FixMatch and FlexMatch under the exact same random seed, which is denoted by †. Fully-supervised
comparisons follows FlexMatch [52], which is conducted with all labeled date with applying weak data augmentations.
Experiments shows SAA provides a significant improvement to the SSL model. When we choose FlexMatch as the base
framework, performance reaches SOTA for most settings.

Mix” [17]. In comparison to learning-based data augmenta-
tion methods, which can also yield augmented images suit-
able for model learning, image regrouping has lower mem-
ory and computational overheads. However, in the case of
CutMix, augmentation is done on the cut images, which
may result in some loss of information about the original
image. In contrast, in our method, augmentation is ap-
plied to the whole image, which preserves more informa-
tion about the original image. This is discussed further in
the experimental section of the paper.

5. Experiments
We used FixMatch and FlexMatch as a base framework

to verify the validity of SAA on SSL benchmark datasets:
CIFAR-10, CIFAR-100 [23], SVHN [32] and STL-10 [5].
In section 5.1, we present the specific implementation de-
tails. In section 5.2, we first verify that SAA can help the
model improve test accuracy and achieve SOTA on SSL
tasks. In addition, we compare the performance for the
same number of iterations and verify that SAA can accel-
erate the model’s improvement speed.

5.1. Implementation Details

We adopt “WideResNet-28-2” [51] for CIFAR-10 and
SVHN, “WideResNet-28-8” [51] for CIFAR-100 and
“ResNet18” [18] for STL-10. For a fair comparison, we
keep the same set of parameters as FixMatch and FlexMatch
with {|BX | = 64, |BU | = 7|BX |, λ = 1}. The test model is
updated by EMA with a decay rate of 0.999. H is updated in
the same way and with the same parameters (α = 0.999).
FixMatch and FlexMatch set the number of training itera-
tions to 220, and we keep this practice as well. In order
to update the sample historical loss H and marker F in a

timely manner, we consider every 1024 iterations as one
epoch, i.e., a total of 1024 epochs are trained. As the aug-
mentation A′ is not suitable for the initial training of the
model, we apply it only after the 100th epoch, while histor-
ical loss H is recorded from the beginning. We repeat the
same experiment for five runs with different seeds to report
the mean test accuracy and variance.

5.2. Main Results

SAA improves the performance of baseline models.
As shown in Tabel 1, SAA successfully improves the test
accuracy of FixMatch and FlexMatch under all settings. For
instance, on CIFAR-10 with 40 labels, FixMatch and Flex-
Match achieved a mean accuracy of 92.50% and 95.01%,
while with SAA their average accuracy improved to 94.76%
and 95.31%. For a challenging and realistic task STL-10,
SAA helped FixMatch to improve its accuracy by 2.65%
and FlexMatch by 1.70%. FixMatch and FlexMatch outper-
form even under fully-supervised in some settings, e.g., Fix-
Match achieved mean test accuracy of 95.81% on CIFAR-
10 with 4000 labels and 97.98% on SVHN with 1000 la-
bels. We can notice that the variance of the model becomes
slightly larger after applying SAA, as the boosting effect of
SAA on the model is different under different seeds. As
shown in Figure 5a, SAA boosts FixMatch at all 5 seeds,
but it can boost by 2.51% when the seed is 1 and 1.20%
when the seed is 2.

We achieve the SOTA performance. With FixMatch as
the base, SAA can help to bring its performance up to near
or even beyond that of other SSL models. For example, on
CIFAR-10 with 40 labels, FixMatch (w/SAA) achieves an
accuracy of 94.76%, which is within 0.3% of NP-Match.
While on CIFAR-10 with 250 labels, FixMatch (w/SAA)
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Figure 5: All experiments are conducted on task of CIFAR-10 with 40 labels. (a) shows the performance improvement of
SAA on the model with 5 seeds. Although the magnitude of SAA’s performance improvement on the model is different under
different seeds, there is a steady improvement in general. (b) shows the performance growth during training. For the same
iterations, SAA can significantly improve the performance of the model.

achieves an accuracy of 95.21%, which outperforms current
SSL models. FlexMatch, which improves FixMatch by ad-
justing the threshold, can be further improved with the help
of SAA. For example, on CIFAR-10 with 40 labels, SAA
helped FlexMatch increase its mean accuracy to 95.31%.
For more difficult tasks, SAA helped FlexMatch increase its
mean accuracy to 75.01% and 90.85% on CIFAR-100 with
2500 labels and STL-10, which outperforms all current SSL
models. Note that for unbalanced datasets, FlexMatch’s
threshold estimates for each class can produce large devi-
ations, which is the reason for FlexMatch performs less fa-
vorably under the SVHN tasks. Since SVHN is a simple
task, a fixed high threshold in FixMatch is more advanta-
geous. When applying SAA to FixMatch, it is also possible
to further improve its performance and outperform existing
SSL models.

SAA accelerates the improvement of model perfor-
mance. Figure 5b shows the performance curve of the
model training with the same seed. For example, at the
200k-th and 400k-th iterations, SAA helps FixMatch im-
prove its performance from 86.72% and 87.26% to 91.15%
and 91.11%, respectively. FlexMatch can also improve the
performance of FixMatch for the same iterations by adjust-
ing the confidence threshold so that the model can learn
more samples. SAA, on the other hand, allows naive sam-
ples to be learned more effectively, and therefore succeeds
in further enhancing the learning of the model. For exam-
ple, FixMatch reached an accuracy of 87.26%, FlexMatch
helped FixMatch improve to 92.74%, and SAA helped Flex-
Match further improve to 94.22%. More often, we can ob-
serve that FixMatch encountered performance stagnant be-
tween approximately 200k-th and 600k-th iterations. This
is because during this period the model learns a mass of
strongly augmented versions that are non-useful for model
performance improvement, while our proposed SAA suc-
cessfully avoids this phenomenon by changing the augmen-
tation for naive samples.

#Methods of selecting samples to apply A′ CIFAR-10 STL-10

Baseline-1: Applying A to all samples 92.50±0.67 85.27±1.15
Baseline-2: Applying A′ to all samples 92.98±2.94 83.19±3.98
Baseline-3: Applying A′ to 50% samples (random) 94.05±2.00 85.98±2.98

Setting the threshold on H:
Fixed threshold (0.001) 93.82±0.95 85.98±1.00
Fixed threshold (0.002) 94.10±1.22 85.22±1.87
Fixed proportion threshold (25%) 93.10±0.89 85.38±1.20
Fixed proportion threshold (50%) 93.87±1.52 86.08±1.97
Fixed proportion threshold (75%) 93.85±2.29 84.29±2.03
OTSU threshold 94.50±1.05 87.92±1.46

Table 2: Different methods of selecting samples that ap-
plied withA′. Experiment on conducted on the base of Fix-
Match. There are three ways to set the threshold on H: 1)
fixed value; 2) percentile of sorted H; 3) automatic OTSU
division.

6. Discussion

The more diverse augmentation is not applicable to
all samples. Our approach differs from [17] in that we only
apply the more diverse augmentation to a subset of sam-
ples (i.e., the naive samples). We experimentally validated
this, as shown in Table 2 with Baseline-1 and Baseline-2.
It can be clearly seen that applying diverse augmentation to
all samples can lead to instability and reduce performance
on some tasks. This indicates that some images have too
much semantic information corrupted under augmentation
A′, leading to an accumulation of errors. To further explore
this, we applied A′ to a randomly selected sample of 50%
at each epoch and the mean test accuracy of the model was
slightly improved, but still unstable. This further gives us
the sense that more diverse augmentation is necessary, but
can only be used on the naive samples to work better.

Adaptively dividing naive samples. To identify the
naive samples, we use the historical consistency loss of the
sample. We tested this approach on CIFAR-10 and STL-10
with different threshold settings. As shown in Table 2, both
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Figure 6: (a) shows the proportion of naive sample divided by OTSU with model training. We recorded the proportion of
naive samples on CIFAR-10 with 40 labels, SVHN with 40 labels and STL-10. The pictures on the left and right are FixMatch
(w/SAA) and FlexMatch (w/SAA) respectively. (b) shows the consistency loss of two naive samples. The pictures on the left
and right are FixMatch and FixMatch (w/SAA) respectively.

the fixed threshold and fixed scale approaches have a boost-
ing effect on the model, although the effect is unstable and
varies for different datasets. For example, the fixed thresh-
old τs = 0.002 outperforms better on CIFAR-10 task, while
τs = 0.001 outperforms better on STL-10 task, so the fixed
threshold will be a more tricky hyperparameter for different
datasets. Compared with the first two approaches, OTSU
is not only better adapted to cross-dataset tasks, but can
also be tuned as the model is trained. Figure 6a shows the
proportion of naive sample divided by the OTSU method
at different iterations. We can find that naive samples are
not only related to task difficulty, but also to model perfor-
mance. For simpler datasets, the proportion of naive sam-
ples is greater, and as model performance increases, more
samples are also treated as naive samples.
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Figure 7: Model warm-up. Experi-
ments are conducted on CIFAR-10
with 40 labels.

SAA prefers warm-
up models. We anaylze
the model warm-up on of
CIFAR-10 with 40 labels.
The results in Figure 7 show
that model warm-up with
100k iterations (10% of total
iterations) performs the best.
This is because more diverse
augmented images are more
difficult to recognize, which
can damage the initial training of the model. Therefore,
SAA performs better on warm-up models. However,
warming up the model too soon would reduce the action
time of the SAA.

SAA allows the augmented versions can further op-
timize the model. Figure 6b compares the training loss
of naive samples with and without SAA in FixMatch. The
plot shows that without SAA, the loss of naive samples re-
mains close to 0 most of the time after the 100th epoch,
indicating that strongly augmented versions are not help-
ful for model training. However, with SAA, the number of
times that strongly augmented versions aid model training

significantly increases due to the dynamic adjustment of the
augmentation strategy for these samples.
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Figure 8: Different more
diverse augmentation. Ex-
periments are conducted on
CIFAR-10 with 40 labels and
STL-10.

Augment on image, not on
patches. Previous work [17]
proposed to first cut an image
into crops and then apply aug-
mentation on them, while we
instead apply augmentation on
the whole image and then cut
it into crops. We conducted
experiments to compare these
two methods, and the results are
shown in Figure 8. Our aug-
mentation method performs bet-
ter on both CIFAR-10 and STL-
10 tasks. We attribute this to the fact that augmenting the
whole image preserves more semantic information, which
is safer for training SSL models.

Limitations. Since the augmentation we use is unlearn-
able, there is no guarantee that every augmented version is
capable of contributing to model learning. Thus, the SAA
serves to increase the likelihood that the augmented ver-
sions are useful to the model. In addition to this, if the
model is already making good use of the sample, further
augmentation may not be necessary or may even be detri-
mental to the model’s performance, then the role of SAA is
diminished.

7. Conclusion
In this paper, we first discuss the characteristics of naive

samples and their impact on model training and highlight
that these samples should receive attention to uncover more
value. We propose SAA to achieve this goal, which identi-
fies naive samples in real-time and dynamically adjusts their
augmentation strategy so that they can contribute to model
training. Our experimental results show that SAA signifi-
cantly improves the performance of SSL methods, such as
FixMatch and FlexMatch, on various datasets.
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