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Figure 1: This paper highlights multi-scenario human-centric image generation with precise pose control. Each group of
displayed images includes: (a) a generation by the pre-trained pose-less text-guided stable diffusion (SD) [35], (b) pose
skeleton images as the condition to ControlNet and our proposed HumanSD, (c) a generation by ControlNet [53], and (d)
a generation by HumanSD (ours). ControlNet and HumanSD receive both text and pose conditions. HumanSD shows its
superiorities in terms of (I) challenging poses, (II) accurate painting styles, (III) pose control capability, (IV) multi-person
scenarios, and (V) delicate details. Best viewed with zoom-in.

Abstract
Controllable human image generation (HIG) has numer-

ous real-life applications. State-of-the-art solutions, such
as ControlNet and T2I-Adapter, introduce an additional
learnable branch on top of the frozen pre-trained stable dif-
fusion (SD) model, which can enforce various conditions,
including skeleton guidance of HIG. While such a plug-
and-play approach is appealing, the inevitable and uncer-
tain conflicts between the original images produced from
the frozen SD branch and the given condition incur signifi-
cant challenges for the learnable branch, which essentially
conducts image feature editing for condition enforcement.

*Equal contribution. ‡ Work done during an internship at IDEA.
†Corresponding author.

In this work, we propose a native skeleton-guided dif-
fusion model for controllable HIG called HumanSD. In-
stead of performing image editing with dual-branch dif-
fusion, we fine-tune the original SD model using a novel
heatmap-guided denoising loss. This strategy effectively
and efficiently strengthens the given skeleton condition dur-
ing model training while mitigating the catastrophic for-
getting effects. HumanSD is fine-tuned on the assembly of
three large-scale human-centric datasets with text-image-
pose information, two of which are established in this work.
As shown in Figure 1, HumanSD outperforms ControlNet
in terms of accurate pose control and image quality, partic-
ularly when the given skeleton guidance is sophisticated.
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1. Introduction
Controllable human image generation (HIG) aims to

generate human-centric images under given conditions such
as human pose [24, 33, 46], body parsing [47, 57], and
text [19, 36, 43]. It has numerous applications (e.g., anima-
tion/game production [29] and virtual try-on [56]), attract-
ing significant attention from academia and industry.

While earlier controllable HIG solutions based on gener-
ative adversarial networks (GANs) [10,23–26,33,44,51,54]
and variational auto-encoders (VAEs) [7, 14, 34, 46] have
been successfully applied in certain applications (e.g., vir-
tual try-on), they have not gained mainstream acceptance
due to their training difficulties and poor multi-modality fu-
sion and alignment capabilities [52]. Recently, diffusion
models [12, 35, 40] have demonstrated unprecedented text-
to-image generation performance [32] and quickly become
the dominant technique in this exciting field. However, it is
difficult to provide precise position control with text infor-
mation, especially for deformable objects such as humans.

To tackle the above problem, two concurrent controllable
diffusion models were proposed in the literature: Control-
Net [53] and T2I-Adapter [27]. Both models introduce an
additional learnable diffusion branch on top of the frozen
pre-trained stable diffusion (SD) model [35]. The addi-
tional branch enables the enforcement of various conditions
such as skeleton and sketch during image generation, which
greatly improves the original SD model in terms of control-
lability, thereby gaining huge traction from the community.

However, the learnable branch in such dual-branch dif-
fusion models is essentially performing a challenging im-
age feature editing task and suffers from several limita-
tions. Consider the skeleton-guided controllable HIG prob-
lem that generates humans with specific poses. Given text
prompts containing human activities, the SD branch may
generate various images that are inconsistent with the skele-
ton guidance, e.g., humans could present at different places
with various poses. Therefore, the extra condition branch
needs to learn not only how to generate humans according
to the given skeleton guidance but also how to suppress var-
ious inconsistencies, making training more challenging and
inference less stable. Generally speaking, the larger the gap
between skeleton guidance and original images produced by
the frozen SD branch, the higher discrepancy between the
given guidance and generated human images. Moreover,
the inference cost of these dual-branch solutions largely in-
creases compared to the original SD model.

In contrast to employing an additional trainable branch
for controllable HIG, this work proposes a native skeleton-
guided diffusion model, named HumanSD. By directly fine-
tuning the SD model [35] with skeleton conditions concate-
nated to the noisy latent embeddings, as shown in Figure
2 (a), HumanSD can natively guide image generation with
the desired pose, instead of conducting a challenging image

editing task. To mitigate the catastrophic forgetting effects
caused by model overfitting during fine-tuning, we propose
a novel heatmap-guided denoising loss for diffusion mod-
els to disentangle between conditioned humans and uncon-
ditioned backgrounds in the training stage. Such a disen-
tanglement forces the fine-tuning process to concentrate on
the generation of foreground humans while minimizing un-
expected overrides of the pre-trained SD model parameters
that hurt the model’s generation and generalization abilities.

Besides the algorithm, training data is another important
factor determining model performance [38]. To improve
the HIG quality of HumanSD, we fine-tune our model on
three large-scale human-centric datasets containing high-
quality images and the corresponding 2D skeletal infor-
mation and text descriptions: GHI, LAION-Human, and
Human-Art. Specifically, GHI and LAION-Human are es-
tablished in this work. GHI has 1M multi-scenario im-
ages generated from SD with crafted prompts, and only the
top 30% with the highest image quality are selected. For
LAION-Human, it selects 1M human-centric images from
the LAION-Aesthetics [37] via filtering.

The main contributions of this work include:

• We propose a new HIG framework HumanSD with a
novel heatmap-guided denoising loss, to natively gen-
erate human images with highly precise pose control
yet no extra computational costs during inference.

• We introduce two large-scale human-centric datasets
with a standard development process, which facilitates
multi-scenario HIG tasks with large quantities, rich
data distribution, and high annotation quality.

• To demonstrate the effectiveness and efficiency of Hu-
manSD, we apply a series of evaluation metrics cov-
ering image quality, pose accuracy, text-image consis-
tency, and inference speed to compare our model with
previous works in a fair experimental setting.

With the above, HumanSD outperforms state-of-the-art
solutions such as ControlNet regarding pose control and hu-
man image generation quality, particularly when the given
skeleton guidance is sophisticated.

2. Related Work

2.1. Pose-Guided Human Image Generation

During the past two decades, pose-guided controllable
HIG [7,23–26,33,34,44,46,51,54] has gained lots of atten-
tion in academia and industry due to the pose’s validity in
motion description [17, 18, 45, 48–50]. With source images
and pose conditions (e.g., skeletal images or body parsing),
pose-guided HIG models output photorealistic images with
source images’ appearance and desired poses. These algo-
rithms are mainly based on GANs [10,23–26,33,44,51,54]
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Figure 2: Overview. (a) shows the proposed framework HumanSD with a novel heatmap-guided denoising loss. Given the
pose condition, our model inputs the corresponding skeletal image into the VAE encoder of a pre-trained SD to get the pose
latent embedding. The embedding is then concatenated with the noisy latent embedding generated by diffusion and inputted
into the UNet. In the training stage, the heatmap-guided denoising loss helps UNet concentrate on the specific areas humans
are located in, especially when the human generation has poor performance, by increasing its weight in the loss function. (b)
shows the recent SOTA method, ControlNet [53], which doubles an SD UNet encoder for condition extraction and freezes
the original SD branch to maintain image generation ability.

or VAEs [7, 14, 34, 46]. Exclusively focusing on natural-
scene manipulation, they fail in diverse cross-modality fea-
ture alignment due to limitations in model design, inappro-
priate condition injection strategies, and lack of diversity in
training data, which lead to unrealistic and poor results with
artificial scenario source images or arbitrary pose inputs. In
addition, these models strongly depend on the source-target
paired images that are hard to acquire and lack diversity.

Different from images, text has become a flexible, user-
friendly, and informative condition with the rise of large
vision-language models [31]. Some works involve text con-
ditions to guide HIG but are limited to small-scale vocabu-
lary pools and fail with open vocabulary [19,36,43]. Among
the very recent works, ControlNet [53], T2I-Adapter [27],
and GLIGEN [15] introduce methods of adding arbitrary
conditions. ControlNet and T2I-Adapter add additional
trainable modules to pre-trained text-to-image diffusion
models [35]. The target of designing general frame-
works makes them not well-targeted to humans that appear
with diverse poses, fine-grained body parts, styles, view-
points, sizes, and quantities. Moreover, their models suf-
fer from trainable-frozen branch conflicts, thus showing in-
adequate pose control ability. Superior to previous work,
HumanSD is efficient as well as high-precision in human
pose control, and specially designed for open-world multi-
scenario HIG.

2.2. Human Image Generation Datasets

Current HIG datasets such as iDesigner [9], DeepFash-
ion [22], Market1501 [55], and MSCOCO [18] mainly fo-
cus on the real-scene human generation and provide noisy
paired source-target images. These mainstream datasets
have limited scenarios (e.g., dress-up, street photography),
and are not generalizable to other scenarios such as car-
toons, oil paintings, and sculptures.

Recently, Human-Art [13] provides 50K human-centric
images in five natural and fifteen artificial scenes with pre-
cise pose and text annotations. Specially designed for
multi-scenario human-centric tasks, Human-Art is suitable
for validating the quality and diversity of existing genera-
tion methods. However, the limited data scale of Human-
Art makes it inadequate for large model training. Laion-
5B [37] is a publicly available dataset with sufficient text-
image paired data but contains many human irrelevant im-
ages. ControlNet [53] adopts the human pose estimator
OpenPose [5] on internet-scratched images to collect 200K
pose-image-text pairs, most of which are real-scene images.
Using these data pairs in training will lead to a significant
distribution bias towards real yet low-diversity scenes.

This work provides a standard development process for
large-scale multi-scenario text-image-pose datasets targeted
at skeleton-guided HIG, which addresses the absence of
suitable training and testing datasets.



3. Preliminaries and Motivation
This section introduces the details of the conflicts in re-

cent SOTA SD-based HIG methods before outlining the
motivation for designing HumanSD in section 4. These
methods, notably ControlNet and T2I-Adapter, use the La-
tent Diffusion Model (LDM [35]) as the foundation for its
high trainability and high-generation quality, which will be
introduced in Section 3.1. Then, Section 3.2 states the con-
flicts in ControlNet and T2I-Adapter. Since these two mod-
els have a similar design, we take ControlNet as an example.

3.1. Preliminaries - The Latent Diffusion Model

LDM, more known as Stable Diffusion (SD), is a diffu-
sion model [39] conducted on latent embeddings instead of
images. Images are projected into latent embeddings by a
VAE and then guided by text conditions in the latent space.
LDM has a latent-space loss function with a similar form to
vanilla diffusion models [12, 40]:

LLDM = E
t,z,ε

[∥∥ε− εθ (√ᾱtz0 +
√

1− ᾱtε, c, t
)∥∥2] (1)

where z0 is the latent embedding of a training sample x0;
εθ and ε are respectively the noise estimated by the UNet
θ and the ground truth noise injected at the corresponding
diffusion timestep t; c is the embedding of all conditions
involved in the generation; ᾱt is the same coefficient as that
in vanilla diffusion models.

3.2. Conflicts in Dual-Branch Solution

In this section, we provide more detailed theoretical
analyses on ControlNet [53] condition addition strategy.
We argue that the conflict between the behavior of the
frozen image-generation branch and the trainable condition-
injection branch results in the degradation of pose control.

As shown in Figure 3, ControlNet is a plug-and-play ap-
proach for conditional image generation. It clones an SD
branch to extract hierarchical features from the added con-
dition and freezes the original SD branch to preserve gen-
eration ability. The trainable and frozen neural network
blocks are connected with a convolution layer. The convo-
lution layer takes trainable features as input and its output
is added to the frozen features.

We denote the feature in the UNet of the original and
the additional SD branches as fOθ (z, cT , t) and fAθ (z, c, t),
where cT is the text condition, c = cT + cP is the ensemble
of cT and pose condition cP . Note that noise εOθ (z, cT , t)
and εAθ (z, c, t) can be viewed as the feature output by the
last UNet layer. As shown in Figure 3, fOθ (z, cT , t) can be
divided into a positive part fO+

θ (z, cT , t) and a negative part
fO−
θ (z, cT , t), based on their consistency with cP .

fOθ (z, cT , t) = fO+
θ (z, cT , t) + fO−

θ (z, cT , t) (2)

For dual-branch models with text-and-pose-guided gen-
eration, an ideal estimated feature f̄θ should satisfy:

Negative 
Features

Noisy Latent Text PoseTimestep

A digital art dipicting
a man in a red cape is 
walking in the snow

Conflicts in Previous 
Condition Addition 

Trainable UNet

Frozen UNet

Null

Figure 3: An example showing the conflicts in the behavior
of the two branches in ControlNet [53].

f̄θ = fO+
θ (z, cT , t) + f̃+θ (z, c, t), (3)

where f̃+θ (z, c, t) ensures fine-grained pose control that
cannot be guaranteed by fO+

θ (z, cT , t). We also have,
f̄θ = fOθ (z, cT , t) + fAθ (z, c, t) (4)

Thus, we can obtain the feature in the additional SD
branches as follows:

fAθ (z, c, t) = f̃+θ (z, c, t)− fO−
θ (z, cT , t) (5)

This leads to indirect noise generation during inference,
where the additional (trainable) branch has to learn how to
(1) identify the positive and negative parts of the estimated
noise given the pose condition, (2) suppress the negative
part, and (3) generate the extra positive part. The frozen SD
branch results in a permanent existence of conflicts between
the negative part and the extra positive part. In contrast, for
fine-tuning-based methods with all parameters trainable, the
models go through a smooth and stable training process, and
naturally learn to process the pose conditions and the cross-
condition balance, thus avoiding the conflict.

4. Method
To resolve the conflict in previous SD-based methods,

we introduce HumanSD, a native skeleton-guided diffusion
model for precise and efficient multi-scenario human im-
age generation. Vanilla fine-tuning faces the problem of
catastrophic amnesia and over-fitting. To address this issue,
we propose a condition addition strategy with a novel loss,
which is illustrated in Section 4.1 and Section 4.2. Lastly,
we provide a dataset construction process for multi-scenario
Human-centric Image Generation in Section 4.3.

4.1. Skeleton Condition Addition

As shown in figure 2 (a), our proposed HumanSD adds
pose condition using a skeleton image with the same size



as the input image, which provides explicit position infor-
mation. In order to align the pose conditions with the latent
embeddings of the input images, the skeleton image is then
processed with the VAE encoder. Different from text condi-
tions, we do not add pose latent embedding with attention in
each UNet block, but directly concatenate it to the noisy la-
tent embeddings. This ensures that information on the same
density level is processed at the same stage, which results
in improved structure information integration.

4.2. The Heatmap-guided Denoise Loss

Fine-tuning deep neural networks with no protection can
easily lead to catastrophic forgetting, where the perfor-
mance of previous tasks drastically degrades when learning
to perform a new task. Directly fine-tuning diffusion models
with new data and new conditions leads to the same prob-
lem (e.g., Anything Model [1], which is fine-tuned from SD
to generate anime images, is unable to produce images in
other styles). Such performance degradation partially re-
sults from the non-discriminatory learning on all pixels of
the image. This, to some extent, is reasonable for the con-
ditions with global information (e.g., general text descrip-
tions). However, for conditions with local structure infor-
mation (e.g., pose condition with specific position informa-
tion), fine-tuning the whole image results in a quality de-
cline of condition-invariant regions (e.g., background).

0 200 600 800 900Step

Noisy
Image

Noise
Difference

Estimated
Heatmap

Figure 4: An illustration explaining the calculation of Wa

in different diffusion steps.

To address this problem, we propose a heatmap-guided
denoising loss to fine-tune the diffusion model in a pro-
tection mode when adding a new structure-aware condi-
tion, which pays special attention to the training of the
newly added condition and leaves the condition-invariant
parts of the image to the pre-trained backbone, thus
reaching high performance in both generation quality and
condition-image consistency. The heatmap-guided denois-
ing loss takes effect by explicitly adding an aggregated
heatmap weight Wa to the original loss of the diffusion
model. The loss function is then modified from Equation
9 to Equation 6.

Lh = E
t,z,ε

[∥∥Wa ·
(
ε− εθ

(√
ᾱtz0 +

√
1− ᾱtε, c, t

))∥∥2] (6)

One of the most straightforward designs for Wa is to as-
sign bigger priority factors for feature pixels that are more
related to the condition. However, diffusion is a step-by-
step noise addition process, and not all steps are essential to
condition injection. Therefore, assigning a constant weight
map in all steps may disrupt the training process.

As a result, we need to (1) find out what the model re-
spectively learns at different steps and stages, and (2) de-
termine a weight function Wa(t) based on the step-wise
model behavior. The first row of Figure 4 shows the de-
coded noisy latents in different steps; the second row shows
the corresponding differences between the estimated noise
and its ground truth (determined in the diffusion process),
and the third row shows the corresponding heatmaps gen-
erated by a pre-trained human pose heatmap estimator [6]
with the noise difference as inputs. Using the heatmap as
the description of Wa, the diffusion model can learn better
with greater concentration on condition (human pose) pro-
cessing. More detailed implementation of heatmap-guided
denoising loss can be found in Figure 2 (a).

4.3. The Dataset Construction Process

Diffusion models require enormous amounts of data for
training and fine-tuning. To ensure diverse data distribution
in image scenes, human actions, and appearances, we intro-
duce a standard dataset development process and construct
2 large-scale datasets GHI and LAION-Human. Figure 5
illustrates examples and characteristics of each dataset.

GHI: It is an abbreviation for Generated Human Images.
Directly sampling data from SD’s own learned distribution
is a good way to maintain SD’s generation capability with
no new data distribution introduced. In order to maximize
the exploitation of potential image possibilities in SD, we
take advantage of prompt engineering [21, 28] to design
prompts that are constructed with 18 sub-prompt parts in-
cluding image scene style, human number, human charac-
teristics, action, and background descriptions (e.g., a realis-
tic pixel art of two beautiful young girls running in the street
of pairs at midnight, in winter, 64K, a masterpiece.). We use
the pose estimator [6] trained on Human-Art to detect char-
acter poses in diverse scenes. Then filter out images with
the wrong human number, multi-arms and legs [7], and low
body integrity based on the detection results. The selection
strategy ensures GHI contains relatively clean annotations
for text and pose, and increases image quality. This leads
to a total number of 1M pose-image-text pairs that include
14 scenes (taken from Human-Art) and 6826 human actions
(taken from BABEL [30], NTU RGB+D 120 [20], HuM-
Man [4], HAA500 [8], and HAKE-HICO [16]) with one to
three humans (with proportion of 7:2:1) in each image.

LAION-Human: Similar with ControlNet [53] and T2I-
Adapter [27], we construct a dataset LAION-Human con-
taining large-scale internet images. Specifically, we collect



about 1M image-text pairs from LAION-5B [37] filtered by
the rules of high image quality and high human estimation
confidence scores. Superior to ControlNet and T2I-Adapter,
we adopt a versatile pose estimator trained on Human-Art,
which allows for selecting more diverse images such as oil
paintings and cartoons. Importantly, LAION-Human con-
tains more diverse human actions and more photorealistic
images than data used in ControlNet and T2I-Adapter.

Human-Art: Human-Art [13] contains 50k images in
20 natural and artificial scenarios with clean annotation of
pose and text, which can provide precise poses and multi-
scenario for training and quantitative evaluation. We follow
Human-Art’s setting to divide the training and testing sets.

Unless otherwise stated, we train HumanSD on the en-
semble of GHI, LAION-Human, and the training set of
Human-Art (denote as Union in following sections), and
test on the validation set of Human-Art.

000000015525_0002
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000000014836_0001

GHI,000000006149_0001 GHI,000000004829_0002

GHI 000000023477_0000
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Figure 5: Examples and characteristics of the used
datasets GHI & LAION-Human, and Human-Art [13].

5. Experiments
In this section, we validate that HumanSD outperforms

currently SOTA SD-based (Section 5.2) and GAN-based
(Section 5.3) methods on skeleton-guided HIG with 8 eval-
uation metrics explained in Section 5.1. Section 5.4 pro-
vides ablation studies on the heatmap-guided denoising
loss, training datasets, and training iterations. Please refer
to the supplementary material for implementation details.

5.1. Evaluation Metrics

To illustrate the effectiveness and efficiency of our pro-
posed HumanSD, we use eight metrics covering four as-
pects: image quality, pose accuracy, text-image consistency,
and inference time.

Image Quality: We report Fréchet Inception Distance
(FID [11]) and Kernel Inception Distance (KID [3]), which
are widely used to measure the quality of the syntheses.
Specifically, we evaluate FID and KID on each Human-
Art scenario and report the mean value, which reflects both
quality and diversity of the generation.

Pose Accuracy: We adopt distance-based Average Pre-
cision (AP) [18], Pose Cosine Similarity-based [2] AP

(CAP) and People Count Error (PCE) [7]. These metrics
measure the difference between the given pose condition
and the pose result extracted from the generated image.
Distance-based AP evaluates the keypoint-wise distances
between the ground truth and the generated pose. We also
provide AP(m) for medium-sized humans (with resolutions
ranging from 322 to 962 following MSCOCO [18]). We
calculate CAP by simply replacing the distance error with
the normalized cosine similarity error [2] in AP to evalu-
ate the position-aligned similarity between the given pose
and the generated pose. CAP eliminates the effect of ab-
solute position and concentrates on pure action similarity.
PCE measures the difference between the number of given
skeletons and the generated humans. It effectively evaluates
multi-person image generation, and partially reflects incon-
sistency [7] in single-person image generation, such as false
numbers of heads, arms, and legs.

Text-image Consistency: The CLIP [31] Similarity
(CLIPSIM [42]) evaluates text-image consistency between
the generated images and corresponding text prompts.
CLIPSIM projects text and images to the same shared space
and evaluates the similarity of their embeddings.

Inference Time: We test inference time per image on
one NVIDIA A100 80G to evaluate efficiency. Results are
averaged over 20 random runs with batch size 1.

5.2. Comparison with SD-based Methods

We compare HumanSD with the very recent SOTA
model ControlNet [53] and T2I-Adapter [27]. To ensure
fairness, we report results trained on a subset of our pro-
posed LAION-Human, including 0.2 million (0.2M) im-
ages with a data distribution similar to ControlNet and T2I-
Adapter’s training datasets in Table 1.

The superiority of HumanSD in pose controllability is
validated by its remarkable performance in pose-related
metrics. Compared with the best results among Control-
Net and T2I-Adaptor, HumanSD (0.2M) shows a 34.8%
to 109.1% performance boost on pose accuracy (e.g., AP,
AP(m), and PCE). A combination of better condition injec-
tion and the heatmap-guided denoising loss leads to such
performance enhancements. The results interpret the in-
evitable conflicts in ControlNet stated in Section 3.2. As
indicated previously, with such conflicts, ControlNet may
frequently be disrupted by the negative features that ex-
ist in the frozen branch, and fail to faithfully render the
given pose. Instead, the native generation process and the
heatmap-guided denoising loss of HumanSD simplify the
pose guidance and ensure generation quality. Figure 1 I and
Figure 1 III further demonstrate HumanSD’s expertise in
handling challenging poses.

Specifically, since text prompts barely indicate the posi-
tion (corresponding to the metric AP) and the size (corre-



Metrics Image Quality Pose Accuracy Text-image Consistency Inference Time
Models FID ↓ KID (×10) ↓ AP ↑ AP(m) ↑ CAP ↑ PCE ↓ CLIPSIM ↑ Second per Image ↓

Stable Diffusion 41.55 2.99 0.09 0.00 49.05 1.76 33.86 3.88
T2I-Adapter [27] 29.07 2.67 18.20 11.93 55.98 2.73 33.29 5.28
ControlNet [53] 27.24 2.60 18.45 11.71 57.18 2.47 33.16 6.37
HumanSD (0.2M) 26.28 2.56 31.85 72.6%↑ 24.95109.1%↑ 59.113.3%↑ 1.6134.8%↓ 32.98 3.89

Table 1: Quantitative comparisons between HumanSD and other SD-based models (fair comparison). HumanSD is
trained for around 300 GPU hours (95K iterations) on 0.2M text-image-pose pairs randomly selected from LAION-Human,
similar to T2I-Adapter and ControlNet. Results demonstrate HumanSD’s effectiveness and efficiency.

sponding to the metric AP(m)) of each person-to-generate,
there undoubtedly exists a large behavior gap between the
text-guided frozen branch and the pose-aware trainable
branch in ControlNet and T2I-Adapter. This is validated
by the almost zero scores of SD on AP and AP(m). Ac-
cordingly, ControlNet and T2I-Adapter undoubtedly face
severe conflicts related to such properties. Unfortunately,
the conflicts aggravate with the increasing complexity of the
conditions or the scenarios (e.g., see Figure 1 IV). This is
validated by their even worse performance on multi-person
generation than SD reflected by PCE.

Moreover, HumanSD infers much faster compared to
ControlNet and T2I-Adapter thanks to its single branch de-
sign. Although T2I-Adapter uses a more efficient trainable
branch than ControlNet, introducing an additional condition
learning branch is still time-consuming. The compression
of its condition learning branch also leads to quality decline
compared with ControlNet, as shown in Table 1.

The disruption in ControlNet may be trivial for CAP,
as the pose information given by the text prompts and the
skeletal images are likely to be similar (e.g., the pose indi-
cated by the text ’standing’ may be very similar to the actual
skeleton of a person standing). Therefore, SD can reach a
certain level of CAP even without pose conditions, and the
improvement of HumanSD on CAP is relatively small.

For image quality, the three models show similar FID
and KID, indicating that they all manage to preserve SD’s
basic abilities of image generation and text comprehension.
HumanSD achieves such performance by concentrating on
specific human regions in fine-tuning, while ControlNet and
T2I-Adapter achieve this via their frozen SD branches. SD
has relatively the worst style-wise FID and KID scores, in-
dicating the disqualification of text information in guiding
high-quality and diverse human-centric image generation.

However, both HumanSD and ControlNet show a perfor-
mance decline in text-image consistency. Such negligible
yet existent degradation lies in the potential inconsistency
between the text and the pose conditions. This implies that
both HumanSD and ControlNet assign higher priority to the
pose over the text in the generation.

5.3. Comparison with GAN-based Methods

This section shows the incapability of previous GAN-
based HIG methods on precise and diverse pose control.
We compare Neural Texture Extraction and Distribution
(NTED [33]) and Text-Induced Pose Synthesis (TIPS [36]),
which are both textless pose-guided real-scene image gen-
eration methods. For NTED and TIPS, we use images
randomly selected from DeepFashion [22] as source im-
age inputs and the skeleton maps from the validation set
of Human-Art as pose conditions. For HumanSD, we use
text and images from the validation set of Human-Art.

As shown in Figure 6, NTED and TIPS easily fail given
unconventional pose conditions. Specifically, NTED and
TIPS have an AP score of 2.79 and 17.65 with untrained
poses as input. Thus, we can conclude that previous GAN-
based HIG methods are not qualified for open-scenario
poses. This reflects the significance of HumanSD with pre-
cise pose control and multi-scenario generation ability.

Pose

NTED

TIPS

Ours

Figure 6: Examples generated by previous methods
NTED and TIPS given unconventional pose conditions.

5.4. Ablation Study
In this section, we demonstrate that apart from the bet-

ter condition injection that allows for a more native gen-
eration and avoids conflicts, the proposed heatmap-guided
denoising loss also contributes to the better performance
of HumanSD. Also, we explore how the proposed training
datasets and the number of training iterations influence the
final results. Unless otherwise stated, the model is trained
on Union for around 300 GPU hours (9.5w iterations).



Impact of the heatmap-guided denoising loss. As
shown in Table 2, adding the heatmap-guided denois-
ing loss helps the back-propagation focus on optimizing
weights more related to human generation. This further
leads to more precise human pose guidance and thus boosts
the AP score from 30.63 to 32.66. Meanwhile, focusing on
the human generation improves the background’s preserva-
tion. It thus safeguards the non-human-associated image
information to be more related to text descriptions, which
increases CLIPSIM from 32.55 to 32.98.

Model AP ↑ PCE ↓ CLIPSIM ↑
w/ proposed loss 32.66 1.56 32.99
w/o proposed loss 30.63 1.57 32.55

Table 2: Ablation on the loss function.
Figure 7 shows qualitative visualizations of the impact

of the heatmap-guided denoising loss. The heatmap-guided
denoising loss contributes to more precise pose controlla-
bility (II(c), II(f)), better human detail fidelity (I(c), II(c)),
improved text-image consistency (I(c), II(f)), and enhanced
background quality (I(c), I(f), II(c), II(f)). Notably, Hu-
manSD also generates remarkable results on humanoid fig-
ures like robots and animals (I(f)).

Cartoon, a girl with mask on her face

Garage Kits, two men standing in a wheat field

Digital art, a robot is standing in front of a window

Movie, the man who would be king, 1975

(a) Pose (b) w/o Loss (c) w/ Loss (d) Pose (e) w/o Loss (f) w/ Loss 

Ⅰ

Ⅱ

Figure 7: Visualization of generated results w/ and w/o
the heatmap-guided denoising loss.

Impact of training datasets. To show the validity of
the proposed datasets, we provide results on three training
dataset settings. As shown in Table 3, using GHI alone
can guarantee the generation with the most accurate human
numbers and stronger text-image consistency. This is pri-
marily owing to GHI’s better data distribution alignment
with SD. However, due to the absence of real images, results
generated by the model trained with GHI show low gener-
ation quality (e.g., blurred human limbs, unrealistic human
structure), resulting in a low AP score. Training on LAION-
Human can achieve relatively more satisfactory AP results.
Compared with LAION-Human, combining all datasets to
train a model can further improve AP performance, and ob-
tain better trade-offs among PCE and CLIPSIM due to the
increase in diversity.

Impact of training iterations. Fine-tuning iterations
of HumanSD have a significant impact on generation re-

Dataset AP ↑ PCE ↓ CLIPSIM ↑
Union 32.66 1.56 32.99
GHI 23.66 1.50 33.61
LAION-Human 31.93 1.60 32.98

Table 3: Ablation on training datasets. Details of the
datasets are introduced in Section 4.3
sults. In our experiments, the performance increases and
then fluctuates at around 95K iterations (around 300 GPU
hours). Table 4 shows the training results for 50K, 95K,
and 150K iterations.

Iterations AP ↑ PCE ↓ CLIPSIM ↑
50K 25.47 1.58 32.39
95K 32.66 1.56 32.99
150K 32.17 1.55 32.51

Table 4: Ablation on fine-tuning iterations.

6. Conclusion
In this work, we have presented a new framework, named

HumanSD, based on pre-trained SD for highly precise pose
and text-conditioned human image generation. To concen-
trate on the generation of foreground humans and preserve
pre-trained SD’s generation ability, we proposed a novel
heatmap-guided denoising loss. Moreover, we introduced
large-scale human-centric datasets containing over 2M text-
image-pose pairs for multi-scenario human-centric genera-
tive learning. Finally, we compared HumanSD with pre-
vious models on a series of evaluation metrics covering
image quality, pose accuracy, and text-image consistency.
Results demonstrate the effectiveness and efficiency of our
proposed method and datasets.

Although the proposed HumanSD improves controllabil-
ity for HIG, it still encounters certain limitations. (1) Hu-
manSD still easily fails in image generation with extremely
crowded scenes and complex/rare actions. (2) Despite being
filtered, the large-scale text-image-pose pairs we trained on
may still contain social biases and violent content. (3) The
evaluation system is not yet comprehensive and complete.

In our future work, we plan to address the above limita-
tions for better controllable HIG. Finally, we hope that this
work can motivate future research with a focus on HIG for
higher controllability, richer human scenarios, more condi-
tions, and better image quality.
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Supplementary Materials
This supplementary material presents more details and

additional results not included in the main paper due to page
limitation1. The list of items included are:

• Experimental details in Sec. A.
• More Quantitative results in Sec. B.
• More Qualitative results in Sec. C.
• Future Work in Sec. D.

A. Experimental Details
We first provide details of the evaluation metrics in

Sec. A.1, the training details of HumanSD in Sec. A.3, and
detailed explanations of the heatmap-guided denoising loss
in Sec. A.4.

A.1. Evaluation Metrics

Details of the evaluation metrics are as follows:

• Image Quality:
The calculation of Fréchet Inception Distance
(FID [11]) is given by:

FID = |µ− µw|+ tr
(

Σ + Σw − 2 (ΣΣw)
1
2

)
(7)

where N (µ,Σ) is the multivariate normal distribution
estimated from Inception v3 [41] features calculated
on Human-Art andN (µw,Σw) is the multivariate nor-
mal distribution estimated from Inception v3 features
calculated on generated (fake) images. We use Incep-
tion v3 with a feature layer of 64 by default.

The calculation of Kernel Inception Distance (KID [3])
is given by:

KID = MMD(freal, ffake)
2 (8)

where MMD is the maximum mean discrepancy and
Ireal, Ifake are extracted features from Human-Art
and generated images.

The KID and FID are calculated on each scenario in
Human-Art’s validation set. Then, we average the
results of all scenarios to get the final results. Al-
though the validation set of Human-Art is relatively
small (3,750 images) for FID/KID calculation, given
constraints on pose and scenario, we believe they can
reflect the quality of generated images to some extent.

• Pose Accuracy:
A thorough explanation of the pose accuracy metrics
is provided in the main paper. We further explain
the difference between distance-based average preci-
sion (AP) and pose cosine similarity-based AP (CAP).

1Code and datasets will be publicly available for further research

(a) (b)

Figure 8: Example of calculating the AP and CAP between
(a) and (b) images and obtaining an AP of 0 but a CAP of 1.

As shown in Figure 8, humans in (a) and (b) have the
same pose but non-overlapping positions. Take the
pose of (a) as the target pose. The AP of (b) is 0,
but the CAP is 1. Thus, CAP can eliminate the in-
fluence of position and focus on the similarity between
the two poses. A combination of CAP and AP can bet-
ter demonstrate the pose controllability over the gener-
ated person’s pose and position.

• Text-image Consistency:

We employ CLIP-ViT-base-path16 to extract text and
image features, using a ViT-B/16 Transformer as the
image encoder and a masked self-attention Trans-
former as the text encoder.

A.2. Prompt Engineering of the GHI Dataset

This work emphasizes the essence of the multi-scenario
human-centric image generation task with precise pose con-
trol. The quality and scale of the training datasets are cru-
cial. To better control the quality and content of image gen-
eration, we design a set of systematic rules for generating
prompts. Prompt engineering [21, 28] is one method for
increasing the quality of text-to-image models.

In generating the GHI dataset with high-quality, diverse,
and human-centric text and the corresponding images, we
take advantage of prompt engineering to design large quan-
tities of unrepeatable prompts with a high guarantee of im-
age quality. Specifically, the prompt is composed of 18 parts
to describe three main components, like image, human, and
scene. Figure 9 includes a comprehensive description of the
whole image (e.g., the image style), human features (e.g.,
the human number, shape, and action), and the background
scene (e.g., time, weather, and camera settings). Differ-
ent parts have distinct selection probabilities and numbers,
culminating in a variety of rich and diverse prompts. To
ensure the diversity of image styles, we adopt 14 differ-
ent styles referring Human-Art [13] to cover as many im-
age styles as possible, including photo, garage kits, relief,
statue, kids drawing, mural, oil painting, sketch, stained
glass, ukiyoe, cartoon, digital art, ink painting, and water-
color. To ensure the diversity of human action, we collect
6826 different human actions referring recent popular hu-
man action datasets BABEL [30], NTU RGB+D 120 [20],
HuMMan [4], HAA500 [8], and HAKE-HICO [16].



Based on our designed prompts, the used stable diffu-
sion model can generate images of great diversity and qual-
ity. However, they may still fail to faithfully respect hu-
man structures and generate missing, redundant, replaced
body parts or wrong human numbers, which are key to the
human-centric image generation task. KPE [7] clarifies the
validity of using pose estimators to judge the correctness of
both generated body structure and human number. When
a pose estimator is fed images with an unreasonable body
structure, it typically assigns the incorrect body component
to an additional human, resulting in an inconsistent human
count. Accordingly, we use the pre-trained pose estimator
HigherHRNet to determine whether the estimated human
number equals the given number (1-3 humans with a pro-
portion of 7:2:1). We finally reserve 4 images with a correct
human number for each prompt in GHI.

rough description
< adj. >

an extremely detailed
a realistic

…
image style (14 styles)

< n. >
photo

sculpture
…

preposition
< prep. >

depicting
of
…

human number
< num. >

one single
two separate

…

human shape
< adj. >

thin
strong

…

human age and sex
< adj. > + < n. > 

young girl
old man

…

action (from 5 datasets)
< v. > 

run
climb up a ladder

…

scene
< n. > 

in the street of London
in a library with piles of books

…

time
< adv. > 

at midnight
in the morning

…

weather
< adv. > 

in a rainy day
in warm spring

…

human position
< adv. > 

facing left
facing forward

…

image style emphasize
< n. > 

by Norman Rockwell
a close up statue

…

camera composition
< n. > 

long shot
wide shot

…
view
< n. > 

ahead view
tilted

…
light
< n. > 

fluorescent lighting
strong shadows

…
emotion

< n. > 
threatening

spirited
…

magic words
< n. > 

masterpiece
HDR

…

(an extremely detailed) (photo) (depicting) (one single) 
(thin) (young girl) (runs) (in the street of London), (at 

midnight), (in a rainy day), (by Norman Rockwell), 
(long shot), (threatening), (masterpiece), (HDR)

Image Human SceneSelected Not Selected

Strategy Example

Figure 9: Components of prompts in GHI. Note that the
order of prompts has an impact on the generation results.

A.3. The Training Details of HumanSD

We train HumanSD with 4 NVIDIA A100 Tensor Core
GPUs. By default, we train each model with a batch size
of 4 for about 3 days, around 95, 000 iterations and 300
GPU hours. Different from ControlNet, which receives a
sudden convergence around the long-lasting 6100th itera-
tion, HumanSD shows a fast but smooth convergence from
the 0th iteration to the 600th iteration. Although HumanSD
can generate humans with corresponding pose conditions
after only around 600 iterations, training with more itera-
tions leads to better performance. However, training with
more than 95, 000 iterations does not improve metrics in
our experiments. The results are also shown in Table 4.

A.4. Detailed Implementation of the Heatmap-
Guided Denoising Loss

As explained in the main paper, the vanilla LDM [39]
has a loss function:

LLDM = E
t,z,ε

[∥∥ε− εθ (√ᾱtz0 +
√

1− ᾱtε, c, t
)∥∥2] (9)

To obtain a difference map to be recognized by the pose
estimator, we feed ε − εθ into the VAE decoder of Stable
Diffusion (SD) and get:

M = V AEdecoder (ε− εθ) (10)
where M is the difference map of noise difference.
We use a bottom-up pose estimator HigherHRNet [6]

pre-trained on MSCOCO [18] and Human-Art for heatmap
estimation of Difference Map. The bottom-up pose
estimator shows better performance on blurred difference
maps. Moreover, the estimation can become more inclusive
by combining MSCOCO and Human-Art in training. We
determine the heatmap by:

H = F (M) (11)
where H ∈ Rh×w×k is the heatmap matrix with height h

and width w. k is the human joint number. F is the heatmap
estimator. For ease of calculation, we then sumH across the
joint dimension to generate a single heatmap.

The larger the difference between the output noise of the
UNet εθ and ground-truth noise ε is, the more noticeable
the human figure will be in M , and the larger value H will
have at the corresponding joint positions. Therefore, to get
the heatmap mask, we set 0.1 as the empirical threshold on
H to form heatmap mask HM . Then, we pass HM back to
the VAE encoder to get the heatmap embedding.

HE = V AEencoder (HM ) (12)
where HE is the heatmap embedding.
Finally, the weighted loss is calculated as follows:

Lh = E
t,z,ε

[∥∥Wa ·
(
ε− εθ

(√
ᾱtz0 +

√
1− ᾱtε, c, t

))∥∥2] (13)

where Wa = w ·HE + 1. w is set 0.05 by default.



B. Quantitative results

This section reports more quantitative results to com-
prehensively assess pose controllability in different image
scenarios and when inputting pose conditions with different
human numbers.

Comparisons on different image scenarios. As shown
in Figure 10, all methods exhibit comparable patterns in
Pose AP throughout different scenarios, with garage kits
having the highest AP and shadow play having the lowest
AP. This is partially due to the uneven distribution of the
training and fine-tuning datasets, where garage kits have a
large amount of data with multi-view and shadow play has
only a small number of images. Natural scenarios such as
cosplay also have a comparatively higher AP, which again
reflects the differential distribution of the dataset. However,
due to the complexity of pose conditions, natural scenes
such as acrobatics and dance do not show a high AP.
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Figure 10: Comparisons of the pose average precision (Y-
axis) on different scenarios (X-axis).

HumanSD consistently displays higher AP in all but the
shadow play scenario. The lack of shadow play images in
the dataset used to train T2I-Adapter, and ControlNet is
most likely to blame for this. As unaware of the shadow
play scenario, these two methods are more likely to pro-
duce images with real people (as shown in the first figure of
Figure 1 II in the main paper) as a replacement for shadow
play. By cheating the pose accuracy criteria, a falsely high
AP score is obtained. From the comparison of different im-
age scenarios, we can lead to two conclusions: (1) The wide
variation of APs across different scenarios indicates that the
potential challenges in various scenarios are different, and
that evaluating and generating multiple scenario images is
still challenging. (2) HumanSD outperforms ControlNet
and T2I-Adapter in all scenarios, especially cosplay, with
a boost of 18.2% to ControlNet and 24.1% to T2I-Adapter.

Comparisons on human numbers per image. As
shown in Figure 11, the Pose AP value tends to decline
with the increase of human number in a single image, which
shows the difficulty in generating images with multiple per-
sons. HumanSD can still retain a high pose AP as the num-
ber of humans increases, demonstrating its ability to gen-
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Figure 11: Comparisons of pose average precision (AP)
(right Y-axis with the histogram) with 1 to 19 human num-
ber per image (X-axis) in the validation set of Human-Art.
The image number statistic is shown in the left Y-axis with
the blue curve to state the total sample size.

erate the multi-human image. Moreover, HumanSD shows
a unified better AP score among images with 1-13 humans
than ControlNet and T2I-Adapter. The limited number of
images with 14-19 humans lead to fluctuation of Pose AP,
but HumanSD still shows a relatively better result.

C. Qualitative Results
More qualitative comparison of ControlNet, T2I-

Adapter, and HumanSD is shown from Figure 12 to 16,
which correspondingly shows the natural human scene with
only half body, hard poses / small human in the natural
scene, text and human orientation controllability in sketch
scene, rare scenes such as shadow play and kids drawing,
and human detail in oil painting and digital art. We gener-
ate three groups of images with different seeds for each text
and pose condition to avoid randomness and show diversity.

D. Future Work
Although HumanSD has reached a high performance,

there are still many issues waiting for exploration. Specifi-
cally, future directions include but are not limited to: (1) We
notice a significant trade-off between whole-body genera-
tion and local body part generation. For example, as shown
in Figure 16, the left image can generate high-fidelity hu-
man faces. But when we force the model to generate whole
body images in the right image, the facial detail retention
shows a huge decline, which is extremely obvious in Con-
trolNet. We leave it to future work for solutions. (2) Hu-
manSD still fails in extremely crowded scenes and com-
plex/rare actions, as shown in Figure 17. Generation models
with higher accuracy and faster speed are still in need. (3)
Similar to other generation tasks, the text and pose-guided
image generation evaluation system are not yet comprehen-
sive and complete, which entails a lot of randomnesses. (4)
augmentations for complex poses and different orientations
of humans. We have noticed that human poses that do not
frequently appear (e.g., stand upside down) tend to fail more
frequently. Appropriate augmentations may alleviate this
problem in the future.



A girl is running in the field A man standing in front of the White House

(a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours (a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours

Figure 12: Natural Human Scene - Half Body. (a) a generation by the pre-trained text-guided stable diffusion (SD) [35],
(b) pose skeleton images as the condition to ControlNet, T2I-Adapter and our proposed HumanSD, (c) a generation by
ControlNet [53], (d) a generation by T2I-Adapter [27], and (e) a generation by HumanSD (ours). ControlNet, T2I-Adapter,
and HumanSD receive both text and pose conditions. We use three different seeds (the three rows) to generate diverse images.

A girl is running in the field A man standing in front of the White House

(a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours (a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours

A realistic photo of a dancing lady

(a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours (a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours

A man looking at a big mountain

Figure 13: Natural Human Scene - Hard Poses/Small Human. The explanation of (a)-(e) can be found in Figure 12’s
caption.

A girl is running in the field A man standing in front of the White House

(a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours (a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours

A realistic photo of a dancing lady

(a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours (a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours

A man looking at a big mountain

(a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours

A sketch depicting the Iron Man with hair

(a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours

A sketch depicting a man in the office

Figure 14: Sketch Scene - Text Control/Human Orientation. The explanation of (a)-(e) can be found in Figure 12’s
caption.



A girl is running in the field A man standing in front of the White House

(a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours (a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours

(a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours

A Chinese shadow play of a woman standing

(a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours

A Kids Drawing depicting a girl

Figure 15: Shadow Play / Kids Drawing Scene - Rare Scenes. The explanation of (a)-(e) can be found in Figure 12’s
caption.

A girl is running in the field A man standing in front of the White House

(a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours (a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours

(a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours

A Chinese shadow play of a woman standing

(a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours

A Kids Drawing depicting a girl

(a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours

A extremely detailed oil painting of a beautiful  woman face

(a) SD (c) ControlNet (d) Adapter(b) Pose (e) Ours

a piece of digital art of a superwoman

Figure 16: Oil Painting / Digital Art Scene - Human Detail. The explanation of (a)-(e) can be found in Figure 12’s caption.

(a) (b) (c)

Figure 17: Failure cases on (a)/(b) extremely crowded scenes and (c) complex/rare actions.
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