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Abstract

There has been a longstanding belief that generation
can facilitate a true understanding of visual data. In line
with this, we revisit generatively pre-training visual repre-
sentations in light of recent interest in denoising diffusion
models. While directly pre-training with diffusion models
does not produce strong representations, we condition diffu-
sion models on masked input and formulate diffusion mod-
els as masked autoencoders (DiffMAE). Our approach is
capable of (i) serving as a strong initialization for down-
stream recognition tasks, (ii) conducting high-quality im-
age inpainting, and (iii) being effortlessly extended to video
where it produces state-of-the-art classification accuracy.
We further perform a comprehensive study on the pros and
cons of design choices and build connections between dif-
fusion models and masked autoencoders. Project page.

1. Introduction
“What I cannot create, I do not understand.”

—— Richard P. Feynman, 1988

For many years, there has been a desire to achieve a deeper
understanding of visual data through the process of gener-
ation. Early approaches, such as deep belief networks [38]
and denoising autoencoders [85], employed generative pre-
training to initialize deep networks for downstream recogni-
tion tasks. As generative models can create new samples by
approximating the data distribution, it stands to reason that
such modeling should simultaneously arrive at a semantic
understanding of the raw visual data, as required for recog-
nition tasks, following Feynman.

In line with this philosophy, generative language mod-
els, e.g., Generative Pre-trained Transformers or GPTs [4],
obtain a broad understanding of language and an immense
knowledge base, excelling as both a few-shot learner and a
pre-trained base model. Nevertheless, recent explorations
in vision generative pre-training fall out of favor. For ex-
ample, GAN-based BiGAN [18, 19] and auto-regressive
iGPT [8] noticeably fall short of their concurrent con-
trastive algorithms despite of using 10X more parame-
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Figure 1. Inference process of Diff MAE, which iteratively un-
folds from random Gaussian noise to the sampled output. During
training, the model learns to denoise the input at different noise
levels (from top row to the bottom) and simultaneously performs
self-supervised pre-training for downstream recognition.

ters. The challenge stems, in part, from the divergent fo-
cus: While recognition models primarily focus on the high-
level low-frequency structure of images, generation mod-
els must also allocate capacity for low-level high-frequency
details [70]. Given this discrepancy, it remains an open
question whether and how generative pre-training can ef-
fectively compete with other self-supervised algorithms on
downstream recognition tasks despite its intuitive appeal.

In recent years, the field of image generation has been
dominated by denoising diffusion models [77, 40]. These
models employ a straightforward process of iteratively re-
fining noisy samples. As a result, the generated images are
of impressively high quality, and even better, can generate
an extensive range of diverse samples [60, 69, 74]. In light
of this progress, we revisit the potential of generative pre-
training in the context of diffusion models.

To begin with, we directly fine-tune a pre-trained diffu-
sion model [16] on ImageNet classification [14]. Despite its
strong performance for unconditional image generation, the
pre-trained diffusion model only yields a marginal improve-
ment in classification when compared to training the same
architecture from scratch (Sec. 3), and is outperformed by
concurrent self-supervised pre-training algorithms such as
Masked Autoencoders (MAE) [34].


https://weichen582.github.io/diffmae.html

MAE demonstrates strong recognition performance by
learning to regress pixels of masked patches given the other
visible patches. Inspired by MAE, we incorporate masking
into diffusion models and cast Diffusion Models as Masked
Autoencoders (DiffMAE). We formulate the masked pre-
diction task as a conditional generative objective, i.e., to ap-
proximate the pixel distribution of the masked region con-
ditioned on the visible region. We learn models with our
diffusion approach, within the MAE framework, introduc-
ing no extra training cost. During pre-training, our model
is trained to denoise the input at different noise levels and
learns a strong representation for recognition and genera-
tion. We evaluate the pre-trained model by fine-tuning on
downstream recognition tasks, as well as image inpainting
for which the model generates samples by iteratively un-
folding from random Gaussian noise, illustrated in Fig. 1.

The diffusion nature of Diff MAE allows it to generate
intricate visual details, e.g., of objects (Fig. 2). In contrast,
MAE is known to produce blurry reconstructions that lack
high-frequency components. Further, Diff MAE maintains
strong performance on image and video recognition tasks.

We make the following observations in this work:

(i) DifftMAE is a strong pre-training approach for fine-
tuning on downstream recognition tasks, obtaining compa-
rable performance to leading self-supervised learning algo-
rithms that focus solely on recognition. When combined
with CLIP [67] features, our Diff MAE is even able to out-
perform recent work that combines MAE and CLIP.

(i) DiffMAE is able to generate high quality images
conditioning on masked input. Specifically, Diff MAE gen-
erations outperform leading inpainting methods quantita-
tively and also appear more semantically meaningful.

(iii) DiffMAE can be extended to the video domain ef-
fortlessly, providing high-quality inpainting and state-of-
the-art recognition accuracy, outperforming recent works.

(iv) We reveal a connection between MAE and diffusion
models, as MAE effectively performs the first inference step
of diffusion. In other words, we believe the success of MAE
aligns with the philosophy of generation for recognition.

We further perform a comprehensive empirical study to
elucidate the pros and cons of the design choices on down-
stream recogntion and inpainting generation tasks.

2. Related Work

Self-supervised learning aims to learn from unlabeled vi-
sual data by a pre-text task that is constructed by im-
age/patch operations (e.g., [17, 61, 88, 94, 29, 5]) and
spatial-temporal operations (e.g., [31, 58, 28, 62, 86]). Con-
trastive methods [22] capitalize on augmentation invariance
of images and videos [90, 35, 9, 6, 33, 7, 10, 66, 27].

For vision, different masked prediction targets have been
proposed. MAE [34] predicts pixel colors with an efficient
asymmetric architecture. BEiT [3, 65] and iBOT [97] pre-

dict dVAE [82, 70] or learnable tokens. MaskFeat [87] pre-
dicts HOG features. data2vec [2] learns from a momentum
teacher. The community is continuously exploring this di-
rection [20, 91, 44, 96, 53, 25].

Generative learning for recognition has a long-standing
appeal for its intuitiveness. Pioneers study the representa-
tion learned by GANs [30, 68, 18] and VAEs [46, 45]. Big-
BiGAN [19] demonstrates a model that learns competitive
recognition representation and generates high-fidelity im-
ages with GAN. This work is followed by iGPT [8], which
generates images autoregressively and was state-of-the-art
on linear probing protocols. Though this stream stagnates
afterward, we demonstrate its resurgence by exploring dif-
fusion models in this work.

Denoising diffusion models have ushered in a new era of
diverse, high-resolution conditional image generation [77,
16, 40]. Utilizing a forward Gaussian diffusion process and
a backward generation process, denoising diffusion models
iteratively refine the generated image starting from Gaus-
sian noise. This process has proven extremely powerful for
rich text-conditioned generation of both images [69, 60, 74,
72] and videos [84, 41, 39, 76].

Masked autoencoders were pioneered by stacked autoen-
coders [85] and inpainting tasks [63] using ConvNets. Since
the introduction of ViT [21], masked prediction has re-
attracted attention, partially inspired by the success of
BERT [15] in NLP. BERT performs masked language mod-
eling, scales well, and generalizes to different end tasks.

3. Fine-tuning Generative Models

pre-train architecture params. scratch pre-trained
34
iGPT [8] iGPT-L 1362M  53.2 72.6
ADM [16] | U-Netenc. 211M  82.0° 833
DDPM [40] ViT-L 304M 82.6 83.4
DiffMAE ViT-L 304M 82.6 85.8

Table 1. Fine-tuning generative models on ImageNet, a system-
level comparison. 'trained from scratch by us. Non-generative
method is included for reference and .

We start by comparing different generative pre-training
methods for downstream ImageNet classification in Tab. 1.

iGPT [8] generates images in a GPT [4] style by auto-
regressively predicting pixels. iGPT pre-training has sig-
nificantly improved its low from-scratch (random initializa-
tion) accuracy from 53.2% to 72.6%, which is still relatively
low, considering the model size (1362M) and compute cost.

To re-examine generative pre-training in light of the
recent progress on diffusion models, we fine-tune a pre-
trained ADM [16], which is a recent method for diffusion-
based image generation. In particular, we take its uncon-
ditional IN-1K model, which aligns with the criteria of
unsupervised pre-training and never uses the class labels.
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Compared to the from-scratch counterpart, initializing with
the pre-trained diffusion model provides a gain of +1.3%
top-1. However, the resulting 83.4% still lags far behind
the non-generative self-supervised algorithms such as MAE
(85.9%). Considering the differences in architecture, we
further train a ViT-L with diffusion DDPM [40]. This model
enhances the fine-tuning classification to 83.4% compared
to its from-scratch baseline of 82.6% top-1 [34], which
aligns with our observations on fine-tuning the pre-trained
ADM. Implementation details are in the Appendix.

In comparison to these approaches, a Diff MAE trained
ViT-L obtains 85.8% when fine-tuned and is described next.

4. Diffusion Masked Autoencoder

We incorporate the masked prediction paradigm into dif-
fusion models. The model approximates the pixel distribu-
tion of the masked region conditioned on the visible region.
In other words, we study Diffusion Models as a form of
Masked Autoencoders (DiffMAE), introduced next.

4.1. Conditional Diffusion Model

Given a training sample x( ~ p(xy) where subscript
denotes that the sample is original and clean, we first spa-
tially divide x into the non-overlapping masked region xg*
and the visible region . We want to model the distribution
of the masked region x{* conditioned on the visible region
xy, i.e., the distribution p(z{'|zy).

In the forward process, only the masked area (" is grad-
ually diffused, i.e., corrupted by recursively adding a small
amount of Gaussian noise 1" times to ", 5, ..., z7 fol-

t = 500 t=20 MAE  ground-truth

t =500 t=20 MAE

input t = 1000
Figure 2. Qualitative comparison of Diff MAE and MAE. ¢t = 1000 and ¢ =500 are DiffMAE’s predictions at intermediate timesteps
from ¢t =1000. .. 0. ¢ = 0 marks the final generation. MAE’s outputs are obtained from its official visualization model. The predictions at
the masked area and the ground-truth at the visible area are overlaid. Both models are ViT-L pre-trained for 1600 epochs.

lowing the Markov process below:

ple"xi2q) = N(zi"s /1 = By, BiT) (1)
where t € [1,2,...,T] denotes the timestep and 1.7 is the
variance schedule of noise, held as hyper-parameters.

Thanks to the properties of Gaussian distribution, we can
directly sample x}* without the recursive formulation by:

p(@y"|2zg") = N (@ Vaeg', (1 —a)l),  (2)
which can be reparameterized to &} =/ x]' ++/1 — aye
for e~ N(0,I). ay=1—; and @ = szl o;. The vari-
ance schedule makes sure that ap of the final timestep 7" is
sufficiently small so that p(z/"), the end of the forward pro-
cess, approximates the standard normal distribution A/(0, I)
well, which is the starting point of the reverse process.

We want to generate masked regions by sampling from
p(x{'|xy), which is approximated by recursively sampling
from p(z}™ |z}, x}) starting from 7 ~ N (0,I). When
the variance of noise (3; in each step ¢ is small enough,
p(x™|x}", xy) can also be also considered Gaussian dis-
tributed [77], to be approximated by a deep network. We
optimize the simple objective proposed by DDPM [40]:

Lsimple = Et wo.c | 5" — Doz, t, Ey(x()) ”2 )
This mean squared error objective is simplified from the
variational bound. Unlike DDPM using e-prediction, which
predicts the noise, our model predicts the denoised masked
region xj'. These two formulations are interchangeable,
and both are commonly adopted in diffusion models [69].
Ly is the encoder, which projects the visible image con-
tent g into the latent space. Dy is the decoder predicting
denoised input, from the noisy x;", the timestep ¢, and the
visible latent Ey ().
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Figure 3. DiffMAE with cross-self and cross decoder. The de-
coder inputs are noisy patches at randomly sampled noise levels.
The decoder outputs are the predicted pixels. The decoder blocks
are top-down connected to the encoder blocks. Cross-self decoder
has self-attention in each block, while cross decoder does not.

4.2. Architecture Design

We instantiate the above conditional diffusion model fol-
lowing the asymmetric design of MAE, introducing no ex-
tra training cost. The overall architecture is built solely on
Vision Transformers (ViT) [21], which is in contrast to the
typical choice of U-Net [73] backbones in diffusion mod-
els [40, 16, 69, 74]. In this way, we enable a straightforward
evaluation of DiffMAE’s ability on downstream recogni-
tion tasks and an apple-to-apple comparison to other self-
supervised pre-training methods.

Encoder. The encoder takes a standard ViT. Specifically,
the training images are first divided into non-overlapping
patches, among which most are selected as the visible
patches xg and the others are the masked xg'. The ViT
encoder Ey(-) only operates on the visible patches and en-
codes each of these patches into the latent space. The en-
coded E,(xf) then serves as the condition of the genera-
tion task performed by the decoder, providing hints of the
masked object. After the pre-training stage, only the en-
coder is fine-tuned to downstream tasks.

Decoder. The decoder takes in noisy masked patches x}"
as the input. The noise levels of these patches, denoted by
the timestep ¢, are integers uniformly sampled in [1, T'] dur-
ing training. As in ViT, we first project these noisy patches
to noise tokens using a linear layer. The timestep ¢ can be
specified by adding sinusoidal embeddings to the noise to-
kens together with the positional embeddings. However,
our experiments show that the addition of the ¢ embedding
or the lack thereof does not make a big difference to both
downstream recognition and inpainting generation, which
suggests that the decoder can automatically determine the
level ¢ of noisy patches when conditioned on clean patches.

We explore three different decoder configurations, which
differ in how the attention modules are applied to the visible
latents and the noise tokens:

* Joint decoder applies Transformer blocks on the concate-
nated sequence of the visible latents from the last encoder
block and the noise tokens. Each Transformer block op-
erates equally on the visible latents and the noise tokens,
with a self-attention layer followed by an MLP.

* Cross-self decoder resembles the encoder-decoder design
in the original Transformer [83]. In each decoder block,
the noise tokens first attend to the visible latents with a
cross-attention layer and then attend to each other noise
tokens with a self-attention layer. The cross-attention en-
ables the decoder to attend to the visible latents of differ-
ent encoder blocks, rather than solely to the final block
as in joint decoder. In this way, the encoder and the de-
coder can be connected in a U-shaped manner illustrated
in Fig. 3, which is typically advantageous for image gen-
eration and dense predictions such as U-Net [73].

* Cross decoder is similar to cross-self decoder, but ex-
cludes the self-attentions between the noise tokens. In
other words, each noise token independently attends to
the visible latents from the encoder in a top-down man-
ner as in Fig. 3, not being aware of the existence of other
noise tokens. With a much smaller attention map, cross
decoder is the most efficient among the three. Specifi-
cally, training with cross decoder is overall ~15% more
efficient than joint decoder, using a ViT-L encoder and an
eight-block decoder of width 512.

‘We ablate the three decoder architectures in Sec. 5.

Sampling. For inference, the encoder E4(x{) forwards the
visible patches only once while the decoder unfolds from
Gaussian noise to the sampled image for 7" times iteratively
following DDPM [40]. As illustrated in Fig. 2, the predic-
tions gradually become less blurry as the iterative unfolding
progresses, and both small-scale structures of the objects
(e.g., the mouth of the monkey) and high-frequency details
(e.g., the fur of the fox) emerge in the generated images.
After T iterations, we obtain high-quality samples at ¢ = 0.

CLIP target. To compare to recent prior works that use
CLIP [67], we also explore a version for predicting CLIP
features together with the original pixel prediction task by
simply using a second decoder. The prediction is opti-
mized by minimizing the cosine distance to the CLIP fea-
tures of the masked patches, similar to MaskFeat [87] and
MILAN [43]. As we show in Tab. 6, predicting CLIP fea-
tures not only enhances recognition ability but also brings
improved inpainting generation quality.

Video. The above model are described in the context of im-
age operations. However, it can be straightforwardly ex-
tended to the spatiotemporal domain of videos. Most opera-
tions are shared, except that there is an additional temporal
dimension. Each token now represents a space-time cube
corrupted by noise. The masking is performed by randomly



sampling space-time cubes. The prediction target are pixels
of a single time slice of each masked space-time cube.

4.3. Connection between Diffusion and MAE

We discuss the connection between diffusion models and
MAE. The two are different at first glance: They have dif-
ferent purpose (image generation vs. self-supervised pre-
training), inputs (noisy images vs. masked images), outputs
(noise vs. pixels) and architectures (U-Net vs. ViT). Con-
sider Fig. 2, at the first timestep ¢ = 1000 where the inputs
of the decoder approximate Gaussian noise, the pixel pre-
dictions of our model are visually similar to the predictions
of MAE, both capturing only the blurry and rough struc-
tures of the objects. Moreover, Diff MAE trained with only
the £ = 1000 noise level obtains a similar fine-tuning accu-
racy of around 85.0% as MAE, shown in Fig. 4. This con-
sistently observed similarity makes sense because both the
Gaussian noise in Diff MAE at £ = 1000 and the learnable
mask token in MAE contain no image signal.

This observation suggests a close relationship between
MAE and diffusion models, that MAE effectively performs
the first inference step (¢ = 1000) of diffusion models. On
the other hand, the other steps of diffusion models generate
more and more intricate high-frequency details, which is
lacking in the predictions of MAE. Overall, the connection
suggests that MAE can be viewed as a single-step patch-
conditioned diffusion model, and that the success of MAE
in downstream recognition tasks is in line with the philoso-
phy of generative pre-training. Correspondingly, diffusion
models, the first step of whom effectively performs MAE,
are potentially good recognition models.

5. Empirical Study

Settings. We pre-train our Diff MAE on the IN-1K [14]
training set. If not specified, the encoder is a vanilla ViT-
L [21] without any modification, and the decoder is of depth
8 and width 512. The eight cross-(self) decoder blocks
spread top-down uniformly attending to the outputs of the
24 encoder blocks of ViT-L. The data augmentation is ran-
domly resized cropping, and the masking strategy is to mask
out 75% patches randomly. All models are pre-trained for
400 epochs. For the diffusion setup, the variance follows a
linear schedule [40], and the number of timesteps T is set
to 1000. Details are in the Appendix.

From the perspective of pre-training for recognition, we
report end-to-end fine-tuning top-1 accuracy on the IN-1K
validation set. The model is both pre-trained and fine-tuned
at 2242 resolution. By default, we use our cross decoder
design, and the prediction targets are per-patch normalized.

For the task generative inpainting, we report the com-
mon LPIPS| [95], which is a learned distance metric based
on the deep feature space of AlexNet [47]. Following the
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Figure 4. Comparison of different decoder architectures across
noise levels (x-axis) by fine-tuning top-1 (%) on IN-1K val set
(y-axis). Each Diff MAE model is pre-trained with a single noise
level. All models are ViT-L pre-trained for 400 epochs.

setting of RePaint [57], we compute LPIPS] over 100 im-
ages from the IN-1K validation set, and train and evaluate
the model with image size 256%. We use cross-self decoder,
and the prediction targets are unnormalized pixels.

Decoder architecture — classification. We find that the
three decoder architectures impact fine-tuning for down-
stream classification differently across different noise lev-
els. To demonstrate this, we train the models at various
single noise levels, analyzed in Fig. 4. A smaller ¢ corre-
sponds to less noise while a larger ¢ denotes more noise. At
t = 1000, the inputs have almost no image signals but noise.
At t = 0, the inputs would be the clean image patches.

First, the fine-tuning accuracy drops for all three de-
coders when ¢ is lower. At a small noise level ¢, the disrup-
tion to image signals by noise is less severe. Consequently,
the decoder needs less conditioning on the visible latents
to predict image signals, which weakens the pre-training of
the encoder. On the other hand, the model is now tasked to
generate more low-level, high-frequency details, which are
considered to be less useful for downstream recognition.

Second, the drop rates of joint and cross-self decoder are
faster than that of cross decoder. This is because both joint
decoder and cross-self decoder have a shortcut to exploit the
image signals of the neighboring noisy patches and bypass
the visible latents of the encoder. This shortcut is amplified
especially when ¢ is small. In contrast, cross decoder, whose
inputs do not see other noisy patches, avoids this shortcut.

In summary, our experiments show that the pre-training
performance is closely related to the difficulty of the denois-
ing task. Nonetheless, the pre-training helps recognition in
all cases compared to its from-scratch counterpart of 82.6%
top-1 [34]. We make cross decoder the default option for
pre-training for downstream recognition tasks.

Decoder architecture — inpainting. Next, we discuss the
effect of different decoders on inpainting. For the cross de-
coder, the noise tokens are independent of each other and
do not see other noise tokens. Therefore, the generated im-
age is patch-wise discontinuous. Even so, these patches still
make sense semantically at their positions, show in Fig. 5.



¢ i
ground-truth input Cross cross-self
Figure 5. Generations of cross and cross-self decoders. The gen-
eration of cross decoder is patch-wise discontinuous, while cross-

self decoder generates visually continuous samples.

The generations of both joint and cross-self decoders are
continuous and visually pleasant. Comparing these two,
cross-self decoder achieves a better LPIPS score of 0.216
on the evaluation set while joint decoder obtains 0.224. We
credit the better generation of cross-self decoder to its U-
shape design following U-Net, which is commonly suitable
for dense predictions. We make cross-self decoder the de-
fault option for inpainting.

range of ¢ p top-1
1000 1.0 85.1
0~1000 1.0 84.7
250~1000 1.0 84.7
500~1000 1.0 85.1
0~1000 0.8 85.1
0~1000 0.6 85.0

Table 2. Noise schedule. We first vary the range of ¢ with different
starting points. We then modify the default linear schedule with a
hyper-parameter p as the exponent to each variance [;.

Noise variance schedule. Next, we train our model with
mixed noise levels to complete the diffusion process in
Tab. 2. We use the linear schedule following DDPM [40]
by default, where the variances 3.7} increase linearly.

We first vary the range of ¢, starting from ¢ =250 and
t =500. Similar to our observations on training with single
noise levels, the less the ¢ range includes lightly noisy sam-
ples, the better the fine-tuning accuracy is. When ¢ is mixed
from 500 to 1000, the pre-trained model is just as good as
the case of training with only £ = 1000 samples.

We then directly modify the linear schedule with a
hyper-parameter p, which exponentiates the variances [;
to Bf . When p is smaller than one, it enlarges each vari-
ance [, therefore amplifying the amount of noise at each
timestep. Consequently, the fine-tuning top-1 improves
with a smaller p from 84.7% to around 85.0%. However,
the gain on downstream classification is at the cost of a
drop in the inpainting generation. Specifically, LPIPS| ad-
versely increases from 0.216 with the default linear sched-
ule (p=1.0) to 0.228 with p=0.6. This suggests another
trade-off between pre-training for recognition and inpaint-
ing generation. We detail p formulation in the Appendix.

Prediction target. We next study the influence of predic-
tion target in Tab. 3. Both noise and pixel prediction are
commonly adopted in generative diffusion models [40, 69].

target ‘ noise pixel pixel w/ norm
top-1 | unstable 84.3 85.1

Table 3. Prediction targets of noise, pixels, and per-patch normal-
ized pixels. The noise entry is unstable in fine-tuning.

However, when evaluated for downstream classification,
only predicting the pixels can serve as the target, obtain-
ing 84.3% top-1. The noise prediction, however, can not
be stably fine-tuned for the downstream classification task.
Regarding the pixel prediction, the per-patch normaliza-
tion [34] consistently helps the fine-tuning accuracy.

84.9 84.9

85

84

45 65 75 85 90 100
masking ratio (%)
Figure 6. Masking ratio. Varying the masking ratio of random
patch masking. TFor 100% masking, we use the encoder-only ar-
chitecture instead of the asymmetric encoder-decoder architecture.

Masking ratio. We consider different masking ratios for
the random masking strategy. We report the fine-tuning ac-
curacy in Fig. 6. We observe that accuracy is stable with
masking ratios from 45% to 85% and has a drop when the
masking ratio increases to 90%. When the masking ratio is
increased to 100%, i.e., no masking at all, the fine-tuning
top-1 drops to 83.4%. This suggests the importance of vis-
ible patch conditioning for Diff MAE pre-training. On the
other hand, the recognition performance is still enhanced
compared to its from-scratch baseline of 82.6% top-1 [34].

mask ‘ random center  training masking ‘ random center

top-1]| 85.1 843 center LPIPS| | 0.142 0.125
Table 4. Center masking. The left reports the fine-tuning top-1.
The right reports LPIPS, of the two models trained with random
and center mask, respectively, but evaluated both with center mask.

Center masking. We now compare random masking with
a more common evaluation protocol for inpainting tasks,
center masking, which block-wise masks out the center
25% region of images as in Fig. 7. We first train with two
different maskings and then evaluate both models by fine-
tuning top-1. As shown in Tab. 4 (left), random 75% mask
works better for fine-tuning.

We then evaluate both random and center mask trained
models by inpainting LPIPS| with center mask in Tab. 4
(right), the common inpainting protocol. The random mask
trained model provides reasonable center block inpainting,
reporting 0.142 LPIPS| on the evaluation set. This shows
that the model still obtains block-wise inpainting ability al-
though trained with random masks. When trained with cen-
ter mask, the inpainting quality is further improved, and
LPIPS| favorably decreases to 0.125.
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Figure 7. Samples of center masking inpainting of DiffMAE.
For a 256° image, we mask out the center 1282 block.

sample original  input sample

depth | top-1 | LPIPS| width | top-1 | LPIPS]

4 85.0 0.220 256 85.0 0.239
8 85.1 0.216 512 85.1 0.216
12 85.1 0.215 1024 84.9 0.208

Table 5. Decoder size. The left table varies the depth of the de-
coder with the default width of 512. The right table varies the
width of the decoder with the default depth of eight blocks.

Decoder size. We discuss the effect of the decoder size in
Tab. 5. By default, we use eight decoder blocks, each of
which has 512 channels. We do not observe significant dif-
ferences in the fine-tuning performance when varying the
decoder depth or the width, all of which have around 85.0%
top-1. For inpainting, we observe a notable drop if the de-
coder size is reduced and a gain when the decoder size is
enlarged. With only four decoder blocks, the LPIPS| ad-
versely increases from 0.216 to 0.220. A narrower decoder
of width 256 leads to an even worse LPIPS/ of 0.239. Using
an extra wide decoder with 1024 channels, the inpainting is
largely improved to 0.208 LPIPS/.

target ‘ pixel CLIP pixel+CLIP  target ‘ pixel pixel+CLIP

top-1 ‘ 85.1 86.5 86.7 LPIPS ‘ 0226  0.216
Table 6. CLIP target. Varying the prediction target between pixel,
CLIP feature, and the combination of the two.

CLIP target. Boosting pre-training with CLIP [67], a
vision-language model trained on a 400M in-house dataset,
has been popular driven by its strong performance in down-
stream tasks. MaskFeat [87] first showed improved perfor-
mance for masked feature prediction. Then algorithms uti-
lizing CLIP either regress CLIP features [89, 43], or pre-
dict CLIP-aided tokens [65]. In this work, we use a second
cross decoder to regress CLIP features alongside the orig-
inal pixel decoder, multitasking on both masked pixel and
CLIP feature prediction. In Tab. 6 (left), we first compare
the options by fine-tuning. Solely regressing CLIP features
achieves a high accuracy 86.5%, compared to the default
pixel predicting baseline 85.1%. Multitasking on both tar-
gets further improves the accuracy to 86.7%.

Beyond the improvement on fine-tuning, we observe in
Tab. 6 (right) that combining CLIP targets can also improve
inpainting. The LPIPS] decreases from 0.226 to 0.216
when multitasking with CLIP regression. This suggests that
a better semantic understanding, in this case by learning
from CLIP, can notably help image inpainting quality.

pre-train w/ CLIP  ViT-B ViT-L ViT-H
from-scratch [34] X 82.3 82.6 83.1
MoCo v3 [11] X 83.2 84.1 -
DINO [7] X 82.8 - -
iBOT [97] X 84.0 84.8 -
BEIT [3] X 83.2 85.2 -
MaskFeat [87] X 84.0 85.7 -
MAE [34] X 83.6 85.9 86.9
DiffMAE X 83.9 85.8 86.9
MVP [89] v 84.4 86.3 -
MILAN [43] v 854 86.7 -
BEiTv2' [65] v 85.5 87.3 -
DiffMAE v 84.9 86.9 88.0

Table 7. Comparison to prior works on IN-1K fine-tuning. All
entries are pre-trained on IN-1K train split at image size 2247
When using CLIP, all ViT-B and ViT-L utilize CLIP ViT-B/16 and
ViT-H uses CLIP ViT-L/14. TBEiTv2’s ViT use layer scale [81]
and relative positional embedding [75].

Discussion. We have thoroughly studied the design aspects
of DiffMAE in terms of downstream classification and gen-
erative inpainting performance. Our experiments show that,
for many aspects, pre-training for downstream classification
and generative inpainting do not share the optimal setting,
e.g., the decoder architecture and the noise variance sched-
ule. For other aspects, settings favoring inpainting quality
do not impact pre-training ability, e.g., decoder size. Inter-
estingly, using CLIP benefits both downstream classifica-
tion and generative inpainting. We use cross decoder, per-
patch normalization, and noisy variance schedule for fine-
tuning evaluation, and we use cross-self decoder with 1024
width, the default linear schedule, but not per-patch nor-
malization for inpainting evaluation. While the inpainting-
oriented model can still improve from-scratch recognition
accuracy, we still would find it desirable to have an identi-
cal setting that is optimal for both tasks.

6. Comparison to Prior Work

ImageNet fine-tuning. We compare DiffMAE to prior
works in fine-tuning for IN-1K classification in Tab. 7.

The first section presents methods that are solely trained
on IN-1K training set without access to CLIP models. We
pre-train DiffMAE for 1600 epochs here while 400 were
used for ablations in Sec. 5. We observe that fine-tuning
DiffMAE significantly boosts the scratch accuracy for all
ViT-B (+1.6%), ViT-L (+3.2%) and ViT-H (+3.8%) models.
This suggests that Diff MAE can provide strong represen-
tations for recognition compared to prior generative mod-
els (cf. Tab. 1), and is scalable to large models. Compared
to prior self-supervised learning works, it outperforms con-
trastive methods like MoCo v3 and DINO and is compara-
ble masked autoencoders, while being able to generatively
inpaint images with high quality at the same time.
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DiffMAE
Figure 8. Visualizations on inpainting of three different algo-
rithms. Generations of Diff MAE have finer details than MAE and
are more semantically meaningful than RePaint.

The second section presents representative works that
use CLIP to enhance representation learning. We pre-train
our DiffMAE for 800 epochs multitasking in masked pixel
and CLIP feature prediction. For ViT-B and ViT-L mod-
els, all entries utilize CLIP ViT-B/16. For ViT-H, we use
CLIP ViT-L/14. The CLIP models are pre-trained on in-
house WIT400M [67] and lift accuracy for both Diff MAE
and other works. Combined with CLIP, Diff MAE obtains
a strong IN-1K top-1 of 88% with ViT-H, while ViT-B lags
behind because of its insufficient capacity for multitasking.

arch. pre-train AP>* APk
Swin-L Sup., IN-21K 52.4 46.2
ViT-L MAE, IN-1K 55.6 49.2

ViT-L DiffMAE, IN-1K 553 49.0
Table 8. Comparisons on COCO instance segmentation.

COCO instance segmentation. We conduct COCO [51]
instance segmentation with ViTDet [49] using Mask R-
CNN [36] in Tab. 8. Our results are pre-trained on IN-1K
and slightly lower than those of MAE, while being much
stronger than e.g. supervised Swin-L trained on IN-21K.

Video classification. We compare DiffMAE to prior work
on K400 fine-tuning for video classification in Tab. 9.

The first section presents results that use no in-house
data. Our model largely improves from the from-scratch
models and achieves comparable results to other algo-
rithms, which use masked autoencoding methodology for
pre-training. In the second section, we present the results
that use extra in-house data. Especially, we compare to
EVL [52] and X-CLIP [59], both using CLIP ViT-L/14
model, which is trained on the in-house text-image dataset
WIT400M [67]. DiffMAE obtains 87.4% top-1 with a regu-
lar ViT-L/14 model, outperforming these works. This num-
ber is further improved to a high 88.1% with a larger input
size 2802 and a longer temporal duration of 32 frames.

ImageNet inpainting. We first qualitatively compare Re-
Paint [57], MAE, and our DiffMAE on 75% random mask

model pre-train extra data [top-1|top-5|input size| FLOPs param
SlowFast [26] |scratch - 79.8193.9]64x224%[234x3x 10| 60
X3D-XL [24] [scratch - 79.1[93.916x3122|48x3x 10 11
MVIT-B [23] [scratch - 81.2/95.1 [64x224%|455x3%3 37
MViTv2-B [50]|scratch - 82.9195.7 [32x224%|255x 1x5 | 51
MViTv2-L [50]|MaskFeat [87] - 84.3196.3 [16x224%[377x1x 10| 218
ViT-L [21] MAE [25] - 84.8196.2 [16x224%|598x3x7 | 304
VIiT-L[21] DiffMAE - 84.5/96.3 16x2242|598x3x7 | 304

ViT-L/14 [21] |EVL [52] WIT400M| 86.9 | 97.4 [ 16x224%[1348x 1 x3| n/a
ViT-L/14 [21] |[X-CLIP [59] |WIT400M|87.1|97.6| 8x224|658x4x3 | n/a
ViT-L/14 [21] |DiffMAE  |[WIT400M|87.4|97.5 16x224%828x3x 10| 304
ViT-L/14 [21] |EVL [52] WIT400M| 87.7 | 97.8 [32x336%|6065x 1 x3| n/a
VIiT-L/14 [21] |[X-CLIP [59] |WIT400M|87.7 |97.4 |16x336°|3086x4x3| n/a
ViT-L/14 [21] |DifftMAE WIT400M | 88.1 | 97.8 32x 2802|2588 x4 x3| 304
Table 9. Comparison with previous works on Kinetics-400. We
report the inference cost with a single “view” (temporal clip with
spatial crop) x the number of views (FLOPs X vieWpace X VieWtime ).
Magnitudes are Giga (10%) for FLOPs and Mega (10°) for Param.

method arch. random center
DSI [64] VQ-VAE2 [71] 0.300 0.153
RePaint [57] ADM [16] 0.303 0.160
DiffMAE ViT-L 0.208 0.125
DiffMAE ViT-H 0.205 0.121

Table 10. Comparison to prior works on IN-1K inpainting with
LPIPS| for 75% random mask and 25% center mask settings. All
entries are trained and evaluated at image size 256°.

inpainting in Fig. 8. RePaint employs a pre-trained uncondi-
tional diffusion model, specifically ADM [16], as the gener-
ative prior to perform free-form inpainting. We notice that
the generations of RePaint, though with visually pleasant
details, often need more precise semantic meaning. In con-
trast, MAE generates blurry samples. DiffMAE generates
visually detailed and semantically meaningful images.

We finally quantitatively compare the inpainting perfor-
mance in Tab. 10. Both DSI and RePaint are algorithms
specially designed for inpainting. We evaluate at image
size 2562 following both works. We first compare the al-
gorithms in the 75% random mask setting where DSI and
RePaint’s results are obtained by us with their official mod-
els. We then compare the three algorithms with the 25%
center mask protocol, which is commonly used by inpaint-
ing algorithms. DiffMAE largely improves LPIPS] on both
random 75% mask and center block mask protocols, setting
a new state-of-the-art for ImageNet inpainting. We include
more generative inpainting examples in the Appendix.

7. Conclusion

We present Diffusion Masked Autoencoders (Diff MAE),
a self-supervised framework designed for recognizing and
generating images and videos. We accomplish this by inte-
grating masking into diffusion models, thereby transform-
ing conditional diffusion models into masked autoencoders.
By re-evaluating the philosophy of generation and viewing
it as a tool for genuinely comprehending visual data, we
contribute to the current trend in generative models. Ul-
timately, we aspire for our research to spark further explo-
ration of integrated methods for recognition and generation.



Appendix

In the Appendix, we first provide implementation details
in Appendix A, and then provide more qualitative results in
Appendix B.

A. Implementation Details
A.1. ImageNet Experiments

Noise schedule with p. We introduce a hyper-parameter p
to control the noise level of training inputs. Specifically,
we use p to exponentiate each variance f3; to 37, enlarging
these noise variance. Recall that the training samples can
be reparameterized to x}* = /ax] + /1 — due, where
oay=1—f; and oy = szl «;. In Fig. 9, we plot how the
values of the data coefficient &; progress with different p.
p=1.0 represents the default linear schedule introduced in
DDPM [40], where the forward process variances [3; in-
crease linearly from 10~% to 0.02. With p =0.8 and p = 0.6,
the data coefficients a; are lower at each timestep ¢, and the
amount of noise is therefore amplified.

1.0
— p=1.0
0.8 1 p
— =038
0.6 1 — p=0.6
e
0.4 1
0.2
0.0

0 200 400 600 800 1000

noise level t
Figure 9. & throughout the diffusion process with different p.

Architecture. We use the standard ViT architecture [21] in
base, large and huge sizes for the encoder. The encoder
is followed by Layer Normalization [1]. There is a linear
projection layer after the layer normalization to match the
dimension of the encoder to that of the decoder. We add si-
nusoidal positional embeddings to both the encoder and de-
coder inputs for pre-training. We do not use either relative
positional embedding [75] or layer scale [12]. The encoder
and the decoder use two different linear projections to han-
dle the clean and the noised (masked) inputs, respectively.

During fine-tuning, we extract features from the encoder.
We use global average pooling to gather the patch features,
followed by a layer normalization and a linear classification
head. Both layer normalization and the linear head are ran-
domly initialized. Particularly, the linear head is initialized
with a very small standard deviation 2-5 which enhances
stability of fine-tuning.

Training recipes. The default settings for pre-training and
fine-tuning are in Tab. 11. We use a different base learning
rate and layer decay when fine-tuning CLIP-aided models.

config ImageNet Kinetics
optimizer AdamW [56]
optimizer momentum 81, £2=0.9,0.95
weight decay 0.05
learning rate schedule cosine decay [55]
warmup epochs [32] 40
augmentation hflip, RandomResizedCrop
drop path [48] 0.0
base Ir 1.5e-4 8.0e-4
batch size 4096 512
epochs 1600 400
gradient clipping - 0.02
repeated aug. [42] - 4
(a) Pre-training setting.

ImageNet Kinetics
config ViT-B  ViT-L ViT-H ViT-L
optimizer AdamW [56]
optimizer momentum 51, $2=0.9,0.999
weight decay 0.05
learning rate schedule cosine decay [55]
warmup epochs [32] 5
augmentation RandAug (9, 0.5) [13]
mixup [93] 0.8
cutmix [92] 1.0
label smoothing [79] 0.1
end Ir 1.0e-6
batch size 1024 128
base Ir 5.0e-4 1.0e-3 1.0e-3 3.2e-3
layer decay [12] 0.65 0.7 0.75 0.75
base Ir (w/ CLIP) 2.0e-4 8.0e-4
layer decay (w/ CLIP) | 0.65 0.75 0.8 0.8
training epochs 100 50 50 50
drop path [48] 0.1 0.1 0.3 0.2
drop out [78] - 0.5
repeated aug. [42] - 2

(b) Fine-tuning setting.

Table 11. Configurations on IN-1K and Kinetics-400. In terms
of learning rate (/r), we use the linear scaling rule introduced in
[32]: Ir = base_lrxbatch_size / 256. When using repeated aug-
mentation, the number of epochs and batch size count the original
samples without repeating.

A.2. Kinetics Experiments

Architecture. Given a video clip, we first divide it into
non-overlapping patches in spacetime. Positional embed-
dings are added to the embedded patches. The spacetime
patch size is 2 x 16 x 16 for ViT-L/16 and 2 x 14 x 14 for
ViT-L/14. The target of our Diff MAE is a single time slice
of the patch (16 x 16 or 14 x 14), and so are the correspond-
ing noisy inputs to the decoder [25]. Similar to the image
setting, the encoder and the decoder use two different linear
projections to handle the clean and the noisy (masked) in-
puts, respectively. We use 90% random masking sampling
on the spacetime patches [25].



config from-scratch fine-tuning
optimizer AdamW [56]
optimizer momentum b1, f2=0.9,0.999
weight decay 0.02

learning rate schedule cosine decay [55]
warmup epochs [32] 10
augmentation RandAug(9, 0.5)
mixup [93] 0.8

cutmix [92] 1.0

label smoothing [79] 0.1

batch size 512

epochs 200

base Ir 1.0e-3

layer decay [12] - 0.8
drop path [48] 0.1 0.2

Table 12. Configurations of fine-tuning ADM [16] on IN-1K.
In terms of learning rate (Ir), we use the linear scaling rule intro-
duced in [32]: Ir = base_lrx batch_size / 256. For fine-tuning, we
use ADM’s unconditional 2562 model trained on IN-1K.

We extract features from the encoder outputs for fine-
tuning. We use global average pooling to gather the patch
features, followed by a layer normalization and a linear
head. The linear head is initialized with a very small stan-
dard deviation 275, the same as the image setting. To
further enhance the results, we fine-tune the 16 x 2242
Kinetics-400 model to a longer duration 32 and a larger
resolution 2802 for a short schedule of 30 epochs without
repeated augmentation.

Training recipes. The default settings for pre-training and
fine-tuning are in Tab. 11. Note that many hyper-parameters
are shared by the image and the video models, showing that
DiffMAE is general across different domains. We search for
the best base learning rate and layer decay when fine-tuning
CLIP-aided models.

A.3. Fine-Tuning ADM

We fine-tune the pre-trained ADM [16] model to eval-
uate the recognition ability of this well-designed diffusion
model. Specifically, we take its IN-1K unconditional 2562
version and fine-tune the model at resolution 2242 on IN-1K
classification for a fair comparison to other methods.

The ADM model uses a U-Net [73] architecture for
dense prediction. It consists of ResNet [37] blocks and self-
attention layers [83]. We fine-tune the input blocks and the
middle block, which are followed by a global average pool-
ing, a layer normalization, and a linear classification head
that projects the global averaged feature to classification
logits. The layer normalization and the linear head are ran-
domly initialized. Regarding the timestep input specifying
the noise level for diffusion generation, we simply fix the
timestep to 999 for classification fine-tuning, while other
numbers that are inside the range of the noise schedule, i.e.,
from 0 to 999, give similar training curves and results. We

10

also train the same model from scratch as the baseline to
show the effectiveness of diffusion generative pre-training.

Training recipes. We include the training recipes of fine-
turning and from-scratch training of ADM in Tab. 12. We
carefully tune the optimization hyper-parameters of both the
fine-tuning and the from-scratch training. The recipes are
based on sophisticated modern training techniques [80, 54],
and we tune base learning rate, layer-wise decay [12], and
drop path rate for each case.

B. Additional Qualitative Results

We provide more qualitative results of image generation
using ImageNet-1K validation images. Figs. 10 and 11 are
samples with 75% random masking. Figs. 12 and 13 are
samples with the center block masking.

In Fig. 14, we provide visualizations on DiffMAE for
video generation on Kinetics-400 validation videos. For
a 16 x 224 x 224 video clip, we visualize the generated
frames at stride two on the temporal dimension, which
makes eight frames for each sample.

Acknowledgement. We thank Yuan-Ting Hu and Minkai
Xu for valuable discussion.
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Figure 10. Visualizations of Diff MAE generation with 75% random masking. The images are from IN-1K validation set with size
2242 We show the reverse diffusion at ¢ = 1000, 500, and 0. ¢ = 0 is the final output. The model is ViT-L. Best viewed in color with zoom.
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Figure 11. Visualizations of Diff MAE generation with 75% random masking. The images are from IN-1K validation set with size
2242 We show the reverse diffusion at ¢ = 1000, 500, and 0. ¢ = 0 is the final output. The model is ViT-L. Best viewed in color with zoom.
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Figure 12. Visualizations of Diff MAE generation with center masking. The images are from IN-1K validation set. The input images
are of size 2562, with the center 1282 block masked. The model is ViT-L. Best viewed in color with zoom.
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Figure 13. Visualizations of DiffMAE generation with center masking. The images are from IN-1K validation set. The input images
are of size 2562, with the center 1282 block masked. The model is ViT-L. Best viewed in color with zoom.
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Figure 14. Visualizations of Diff MAE generation with video. The videos are from Kinetics-400 validation set with random masking ratio
90%. We show the original video (fop), masked video (middle), and Diff MAE output (bottom) for each sample. The model is ViT-L/14.
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