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Abstract

Self-supervised representation learning follows a
paradigm of withholding some part of the data and
tasking the network to predict it from the remaining part.
Among many techniques, data augmentation lies at the
core for creating the information gap. Towards this end,
masking has emerged as a generic and powerful tool
where content is withheld along the sequential dimension,
e.g., spatial in images, temporal in audio, and syntactic
in language. In this paper, we explore the orthogonal
channel dimension for generic data augmentation by
exploiting precision redundancy. The data for each chan-
nel is quantized through a non-uniform quantizer, with
the quantized value sampled randomly within randomly
sampled quantization bins. From another perspective,
quantization is analogous to channel-wise masking, as it
removes the information within each bin, but preserves
the information across bins. Our approach significantly
surpasses existing generic data augmentation methods,
while showing on par performance against modality-
specific augmentations. We comprehensively evaluate
our approach on vision, audio, 3D point clouds, as well
as the DABS benchmark which is comprised of various
data modalities. The code is available at https:
//github.com/microsoft/random_quantize.

1. Introduction
We are witnessing a convergence of multi-modal AI [23,

6] where the architecture and the learning algorithm are

unified for various data modalities. This exciting direction

abandons the domain-specific knowledge for an individual

data modality, but rather pursues a solution far more gener-

alizable.

For self-supervised representation learning, masked

modeling [23] or simply masking input as an augmenta-

tion [75] has emerged as an effective approach. The in-
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Figure 1. We represent data as a matrix with a sequential di-

mension and a channel dimension. As a generic data augmenta-

tion, masking drops tokens along the sequential dimension. The

proposed randomized quantization instead withholds information

along the channel dimension. In this figure, we use 1D data of

10 sequential tokens for illustration. Data values are coded in

grayscale.

put data is represented by a 2D tensor with a sequential di-

mension and a channel dimension in a modality-agnostic

way [3]. The sequential dimension can be spatial in images,

temporal in audio, and syntactic in languages. The masking

mechanism withholds information along the sequential di-

mension, and exploits it for supervision. As a result, models

learned from the masking supervision demonstrate strong

capability for capturing correlations between sequential to-

kens [38].

The channel dimension describes the data feature at each

sequential location, for example, RGB color at a spatial lo-

cation or spectrogram frequency at a time step. Despite be-

ing generic, masking approaches have neglected to exploit

supervision along the channel dimension. While the num-

ber of channels for images is as small as three, the channels

for audio and tabular data can be as many as hundreds. For-

mulating the self-supervision from the channel dimension

holds much potential for representation learning.

In this paper, we draw a connection between the sequen-



tial masking operation and quantization by exploring quan-

tization as a novel form of masking along the channel di-

mension. The data in each channel is dynamically quan-

tized through a non-uniform quantizer, with the quantiza-

tion value randomly sampled from randomly sampled quan-

tization bins. In this way, information within each quan-

tization bin is masked out, yet information across bins is

retained. The information removed by quantization is con-

trolled by the number of bins and the size of the bins, which

has been rigorously studied in theory [62]. The larger the

distortion rate, the stronger the quantization when it is used

as an augmentation for representation learning. The ex-

treme case of using only a single bin is equivalent to drop-

ping the entire channel. We systematically study various

quantization configurations for their effects as a data aug-

mentation, for example, with respect to the number bins,

uniform or non-uniform bins, and methods to select quanti-

zation values.

We apply the randomized quantizer as the only augmen-

tation, or in conjunction with augmentations along the se-

quential dimension on state-of-the-art Siamese representa-

tion learning methods MoCo-v3 [16] and BYOL [34]. In

comparisons with domain-agnostic augmentations based on

MixUp [85], our approach achieves state-of-the-art results

by a large margin on vision, audio, 3d point cloud, and

the DABS benchmark. Compared with domain-specific

augmentations, our approach achieves competitive perfor-

mance against handcrafted augmentations on vision, and

state-of-the-art performance on audio and 3d point clouds.

Our contributions can be summarized as follows:

- We propose a simple yet effective data-agnostic aug-

mentation for contrastive learning, based on quantiza-

tion along the channel dimension.

- We design a randomization technique by varying the

quantization value and the quantization bins, to en-

hance data augmentation.

- We demonstrate the generality and strong performance

of our channel-wise randomized quantization for vi-

sion, audio, 3D point clouds and the DABS benchmark

in a data-agnostic way.

2. Related Works
Self-supervised learning extracts labels from the data it-

self and tasks the network to learn transferable represen-

tations. Among the earliest forms of self-supervised mod-

els are auto-encoders [42] and generative models [41]. But

since the input and the output are identical, a neural net-

work may easily find shortcuts and use memorization to

solve the generation task. Advances in recent years show

that information needs to be withheld from the input to pre-

vent cheating [25]. Pretext tasks such as colorization [86],

inpainting [58], jigsaw puzzles [55] were proposed in vi-

sion, while masked modeling [23], next sentence predic-

tion [46, 45], and replaced word prediction [17] were devel-

oped in natural language processing. Speediness [7, 43] and

temporal order [73, 52] have been exploited for video rep-

resentation learning. Due to space limitations, we omit the

literature for speech [4], tabular data [1], graph-structured

data [65] and many other modalities. The optimal pretext

task for each target problem may be different. However,

there exists enormous interest in obtaining a single founda-

tion model [9] for all downstream applications.

Instead of withholding data for supervision, contrastive

models [78, 56] create new data via data augmentation and

compare features extracted using a Siamese network for su-

pervision. Siamese representation learning can be catego-

rized by whether to use explicit negatives [34], ways to de-

fine negatives [2], and various loss formulations [13, 83].

However, the main driving signal for learning lies in the

augmentations.

Data augmentation enlarges the number of data instances

by leveraging prior knowledge of the data and target prob-

lem properties. For supervised learning, data augmenta-

tion aids in reducing overfitting and regularization [84].

For self-supervised learning, the information gap created

by two augmentations provides learning supervision. Typi-

cally, the data augmentation function extracts partial infor-

mation from the data and optionally adds corruptions.

Popular image-specific augmentations include cropping,

scaling, color jittering, Gaussian blurring, cut-out [24], cut-

mix [82], and auto-augment, which searches for a data aug-

mentation policy [21]. In natural language processing, syn-

onym replacement [74], back translation [11], random word

insertion and deletion are most common. For audio and

speech, altering the pitch, changing the playback speed,

and masking either along the time axis or the frequency

axis [57] may improve performance. Additionally, aug-

menting data through a generative model [10] such as a

GAN is a viable approach.

Domain-agnostic augmentation aims to generalize

modality-specific and domain-specific augmentations into

a unified formulation. Finding such general priors in data is

challenging. One line of work follows Mixup [85], which

is initially proposed to improve empirical risk minimiza-

tion of supervised learning by linearly interpolating data

and labels. Because of its generality, later works have

explored its application on other data modalities [35], a

wide range of problems [50, 40], as well as representation

learning [66, 48, 68]. Another important line of work

generalizes masked modeling [23], which was initially pro-

posed for language modeling, to other data modalities and

domains [38, 67, 79]. The masking mechanism samples a

subset of the input data, while Mixup introduces additional

corruptions which are not observed in the original data
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Figure 2. Visualizing randomized quantization augmentation on images, 3d point clouds, and audio. The first row presents the original

signal, and the bottom three rows are augmented views. Randomized quantization alters color and enhances edges on images, spatially

samples coordinates on point clouds, and enhances frequency channels for audio.

Figure 3. Illustration of a non-uniform quantizer with five bins.

ai denotes the interval of the quantization bin and yi denotes the

reproduction value from each bin.

instance. A third line of work tries to mine inherent

regularities and structures in the data. NNCLR [26] and

MSF [47] use nearest neighbors derived from the current

representations as a novel form of augmentation for

contrastive learning. Our randomized quantization differs

from these works, and augments data along the channel

dimension.

Quantization represents numerical values with a fixed dis-

crete set of numbers so as to reduce communication band-

width and maintain representation quality. The rounding

error was first analyzed a century ago [63], and the theory

based on variable-rate quantization [61] and Huffman cod-

ing [44] revolutionized the communications industry. We

refer readers to a survey [33] that describes this area from a

theoretical perspective.

Quantization for efficient neural networks [32] aims to

reduce neural network latency while maintaining model ac-

curacy. The advances of half-precision [5, 69] and mixed-

precision training [18, 36, 51] has accelerated model train-

ing by an order of magnitude. Works have shown that neu-

ral networks can be completely binarized [49, 76, 19] with

reasonable performance. Stochastic quantization [15, 28, 8]

is a technique for learning and compressing model weights

in a way that avoids local minima with the low-precision

weight representations.

There exist two works [12, 30] that study the use of

quantization in contrastive representation learning. In both,

quantization is applied on the intermediate features and

model weights. Though effective for model compression,

the quantization of features/weights can be viewed as un-

suitable for augmentation due to the unpredictability of the

corresponding change in the input. Our work additionally

differs from these methods [12, 30] in its randomization of

a non-uniform quantizer. This technique creates a much

more complex augmentation space than uniform quantiza-

tion, generating valid images of greater diversity.

3. Approach
This paper proposes a novel generic data augmentation

for representation learning based on quantization. We first

provide preliminaries on quantization. We then introduce

two factors to inject randomness into the quantization pro-

cedure.

3.1. Preliminaries: Quantization

A quantizer is a function which consists of a set of non-

overlapping intervals or bins S = {Si = [ai, ai+1))}, i =
0, 1, ...n − 1, and a set of reproduction values yi. n is the

number of intervals and reproduction values. Let x be a

one-dimensional input signal. The quantizer maps values

within an interval to a single scalar, defined as q(x) = yi
for x ∈ Si. Formally, it can be written as

q(x) =
∑

i

yi · 1Si(x), (1)

where the indicator function 1Si(x) = 1 if x ∈ Si and

1Si
(x) = 0 otherwise. Figure 3 gives an illustration of a

quantizer with five intervals. Quantization represents the



Figure 4. Visualization of quantized images with different numbers of bins. The images are quantized by a uniform quantizer. Fewer

than three quantization bins causes severe information reduction, while fifteen or more bins leads to negligible difference from the original

image. An intermediate number of bins (e.g., five to ten) is well-suited for image augmentation.

Figure 5. Ablation study on the number of quantization bins. The

peak performance is reached at 8 bins. Fewer bins deliver heavier

augmentations and larger bins lead to weaker augmentations.

original signal using a finite number of bits and hence intro-

duces error to signal recovery. The central research prob-

lem is to find better tradeoffs between communication band-

widths and reproduction errors.

Quantization can be categorized by uniform quantization

and non-uniform quantization. A uniform quantizer has in-

tervals and values which are evenly spaced, whereas a non-

uniform quantizer allows either intervals or values to be un-

evenly spaced. Uniform quantizers are amenable to hard-

ware deployment. However, non-uniform quantizers may

perform better depending on the probabilistic distribution

of x.

3.2. Randomized Quantization as Augmentation

We aim to exploit quantization as a data withholding

tool for representation learning. The information within

each quantization bin is withheld, while the information

across bins are retained. For data augmentation, a key as-

pect is the complexity of the augmentation space. We de-

sign a complex quantization augmentation by randomizing

the intervals and the reproduction values. Concretely, given

Si = [ai, ai+1), ai is generated by

a0, a1, ..., an−1 = sort(a′0, a
′
1, ..., a

′
n−1) (2)

random bins random values top1 acc

baseline � � 50.0

+ quantize � � 54.8

+ quantize � � 62.6

+ quantize � � 66.0

+ quantize � � 67.9

Table 1. Ablation study of the two randomness factors for ran-

domized quantization described in Eq. 3 and Eq. 4. We examine

the effect of randomized bins and random reproduction values for

each bin. These two factors increase the complexity of the aug-

mentation and significantly improve the performance.

a′i = U(min(x),max(x)), i = 0, 1, ..., n− 1, (3)

where U denotes random sampling with a uniform distri-

bution over the interval, and min(x)/max(x) refers to the

minimum/maximum of the values x per channel. The re-

production value yi is randomly sampled within the corre-

sponding interval,

yi = U(ai, ai+1). (4)

The resultant randomized quantizer is non-uniform. The

number of quantization bins n is the hyperparameter of the

augmentation.

3.3. Data-Agnostic Augmentation

The proposed randomized quantization augmentation

can be applied to the channel dimension for any arbitrary

data modality. The physical interpretation of the augmen-

tation depends on the nature of the data modality. In Fig-

ure 2, we visualize the augmentations for images, audio and

point clouds. On images, it removes the high frequency

details but highlights object boundaries and edges. It also

alters color appearance significantly. On audio, we examine

the augmented sound acoustically and we find the augmen-

tation tends to enhance specific frequency signals, such as



100-ep 300-ep 800-ep

MoCo-v3 67.9 71.6 72.1

BYOL 67.2 71.0 71.6

Table 2. Representation learning with randomized quantization

augmentation benefits from more training epochs without early

saturation.

Augmentations MoCo-v3 BYOL

CR 10.1 9.9

CR + DACL [68] 32.7 33.2

CR + i-Mix [48] 30.3 28.7

CR + SSQL [12] 11.1 6.4

CR + Ours 42.9 43.0
RRC 50.0 49.3

RRC + DACL [68] 57.2 57.6

RRC + i-Mix [48] 55.4 49.9

RRC + SSQL [12] 42.9 49.3

RRC + Ours 67.9 67.2

Table 3. Comparisons with alternative domain-agnostic augmen-

tation techniques under the linear classification protocol on Ima-

geNet. CR is short for center crop, and RRC is short for random

resized crop. Our randomized quantization approach achieves the

best results against prior arts.

low-frequency sounds or high-frequency sounds. On point

clouds where the channel dimension represents xyz coor-

dinates, it tends to downsample local structures but high-

light the global shape. Some discrete modalities such as

language are not directly amenable to quantization, but can

be mapped to a continuous representation via a frozen data

embedding layer. In Section 5.4, we examine randomized

quantization on such input embeddings.

3.4. Siamese Representation Learning

Siamese representation learning or contrastive learning

relies heavily on the quality of the augmentations [34, 87].

We apply the proposed augmentation on Siamese represen-

tation learning. At each training iteration, we sample two

views from a data instance using randomized quantization

by itself or in conjunction with other augmentations. Loss

terms such as InfoNCE [56] and L2 are applied on the two

views. The MoCo-v3 [16] and BYOL [34] frameworks are

followed in this paper, and we refer readers to the original

papers for details.

4. Ablation Study

We choose visual representation learning for an ablation

study. Random resized cropping is taken as the baseline

augmentation, and we apply our randomized quantization

after it. Following the MoCo-v3 framework [16], we use

ResNet-50 [39] as the backbone network. The optimizer

Method MoCo-v3 BYOL

Ours 42.9 43.0

RRC 50.0 49.4

RRC + CJ 60.1 61.1

RRC + Ours 67.9 67.2

Full 68.9 68.9

Table 4. Comparisons with image-specific augmentations un-

der the linear classification protocol on ImageNet. CJ stands for

color jittering, and Full includes random resized crop, color jitter-

ing, grayscaling, Gaussian blurring and solarization. Randomized

quantization is stronger than color jittering by a large margin. It

falls behind the full handcrafted augmentations by just 1%.

is consistent with MoCo-v3, and the network is optimized

for 100 epochs. Representation learning is conducted on

the ImageNet-1K dataset [22], and linear classification ac-

curacy is reported on the validation set.

We ablate three design factors of the proposed

quantization-based augmentation which affect its ability to

mask channel-wise information.

Randomizing Bins. The performance of representation

learning depends on the complexity of the pretext tasks cre-

ated from random augmentations. In Table 1, the baseline

approach using the random resized crop augmentation ob-

tains 50.0% top-1 accuracy. Using a fixed uniform quantizer

improves the performance mildly to 54.8%. Randomizing

the locations and sizes of bins allows for uneven masking

and creates more effective pretext tasks. It improves the

performance significantly to 66.0%.

Randomizing reproduction values. Quantization is also

affected by how each bin is represented. Commonly, the

values within a bin’s range are represented by the midpoint.

As an alternative, we also consider taking a random value

in the range. Intuitively, random reproduction values lead

to bias in the quantization error, making them no longer

zero-mean and bringing a stronger augmentation effect. It

is found to benefit representation learning, yielding an in-

crease of 1.9 points upon randomizing the bins in Table 1.

Number of quantization bins. Figure 5 illustrates the ef-

fect of various numbers of quantization bins. Intuitively,

fewer bins leads to a stronger masking effect and higher

cross-view variation. We vary the number of bins and find

strong performance with 5-10 bins, peaking at 8 bins. This

observation is similar to spatial masking in MAE [38] where

an optimal masking ratio is found. In Figure 4, we visual-

ize quantized images with different numbers of bins. To

make the visualization consistent and comparable, we use

the uniform quantizer in this case. It can be observed that

too much information is withheld when using too few bins,

and too many bins withholds too little information.

Training epochs. We further study training the augmenta-

tions with more epochs. In Table 2, the performance im-
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Figure 6. Visual comparisons between color jittering and ran-

domized quantization. Randomized quantization exhibits greater

change in visual appearance and stronger edge enhancement.

proves from 67.9% with 100 epochs to 71.6% with 300

epochs and 72.1% with 800 epochs. With this complex aug-

mentation, the network benefits from longer training.

5. Experiments on Various Modalities

We examine pre-training with the proposed augmenta-

tion across a variety of modalities including 1) vision (Sec-

tion 5.1); 2) 3D point clouds (Section 5.2); 3) audio (Sec-

tion 5.3); and 4) the DABS benchmark [66] (Section 5.4)

comprised of data from multiple domains. The hyper-

parameter n indicating the number of bins is tuned for

each modality. We leave the description of corresponding

datasets, settings and evaluation metrics to each section.

5.1. Images

We compare the proposed randomized quantization aug-

mentation against domain-agnostic augmentation baselines,

as well as domain-specific augmentations designed for im-

ages. The number of quantization bins is chosen as n = 8.

The experimental protocol follows the ablation study.

Comparisons with domain-agnostic augmentations. Re-

cent works on domain-agnostic augmentation are predomi-

nantly adapted from Mixup [85]. For example, i-Mix [48]

linearly interpolates input data, and their corresponding vir-

tual labels are generated from the current batch. Similarly,

DACL [68] interpolates input but uses it as a way of adding

noise to the original data. We also consider a baseline

SSQL [12] which jointly performs quantization and con-

trastive learning for lower bit-width deployment.

In Table 3, we compare our approach to these methods

on two spatial operations: center crop (CR) and random re-

size crop (RRC). Center crop amounts to no augmentation,

and random resized crop is frequently used in vision ap-

plications. Our evaluation is based on two Siamese repre-

sentation learning frameworks MoCo-v3 and BYOL, since

BYOL is said to have different behavior on augmentations.

Randomized quantization performs the best against

Mixup-based augmentations. As a standalone augmenta-

tion, randomized quantization obtains an accuracy of 42.9%

with MoCo-v3, which outperforms DACL and i-Mix by a

Method Backbone Epochs Top1 accuracy

MSF w/w R-50 200 66.3

Ours R-50 100 67.9

Ours R-50 300 71.6

Table 5. Comparison with weakly-augmented SSL baseline MSF.

1% 2% 5% 10% 20% 100%

FoldingNet (lin) 56.4 66.9 75.6 81.2 83.6 88.4

MID-FC (lin) 61.5 73.1 80.2 84.2 86.9 90.3

Ours (lin) 66.7 74.3 80.0 84.5 87.2 90.5
Scratch 58.5 71.2 80.1 85.4 88.7 92.9

MID-FC (ft) 67.3 76.5 83.6 88.4 90.2 93.0
Ours (ft) 71.3 78.5 84.9 88.6 90.6 93.0

Table 6. Linear probing (lin) and finetuning (ft) results for the

shape classification task on the ModelNet40 dataset. Pre-training

is conducted on the ShapeNet dataset. Our augmentation improves

the classification accuracy substantially on various ratios of data,

especially on very limited (1%) data.

C.mIoU I.mIoU

1% 5% 100% 1% 5% 100%

Multi-Task (lin) - 73.9 - 68.2 80.7 -

MID-FC (lin) 66.2 76.5 82.8 72.4 80.9 84.1

Ours (lin) 70.6 76.9 82.9 77.4 81.9 84.3
MID-FC (ft) 67.6 77.8 84.3 76.2 82.1 85.5
Ours (ft) 69.5 78.4 84.4 77.8 82.3 85.5

Table 7. Linear probing (lin) and finetuning (ft) results for the

shape segmentation task on the ShapeNet Part dataset. Pre-training

is conducted on ShapeNet. Our augmentation improves the perfor-

mance substantially on various ratios.

large margin. In conjunction with random resized crop, a

10% margin is maintained. SSQL heavily relies on domain-

specific augmentations, and in many cases, it fails to im-

prove the baseline when handcrafted augmentations are re-

moved. The results using MoCo-v3 and BYOL training

objectives are similar. Overall, randomized quantization

achieves state-of-the-art results against domain-agnostic

baselines in the vision domain.

Comparisons with domain-specific augmentations. We

further compare with image-specific augmentations for vi-

sual representation learning in Table 4. We find that ran-

domized quantization is much stronger than color jittering,

which is heavily designed with prior knowledge such as

brightness, contrast, and saturation for pixels. In Figure 6,

we visualize color jittering and our augmentation. It can be

observed that our augmentation leads to stronger and more

diverse visual appearances than color jittering. Our aug-

mentation is 1% weaker than the full augmentation, which

includes random resized crop, color jittering, grayscaling,

Gaussian blurring and solarization successively.



Name Task #Classes Data size Avg duration (s)

NSynth (NS) [27] Musical instrument classification 11 305,979 4.0

UrbanSound8K (US8K) [60] Urban sound classification 10 8,732 4.0

VoxCeleb1 (VC1) [53] Speaker identification 1,211 153,514 8.2

VoxForge (VF) [from Voxforge.org] Language identification 6 176,438 5.8

Speech Commands V2 (SPCV2) [72] Command classification 35 105,829 1.0

Speech Commands V2 (SPCV2/12) [72] Command classification 12 105,829 1.0

Table 8. Downstream dataset details for audio representation learning.

Method NS US8K VC1 VF SPCV2/12 SPCV2 Average

TRILL [64] - - 17.9 88.1 74.9 - -

COLA [59] 63.4 - 29.9 71.3 71.7 62.4 -

OpenL3 [20] - 78.2 - - - - -

COALA [29] 73.1 72.7 - - - - -

COLA [59] 70.2 78.5 30.4 79.5 76.7 76.8 68.7

BYOL-A [54] 74.1 79.1 40.1 90.2 91.0 92.2 77.8

Ours 74.2 78.0 45.7 92.6 95.1 92.1 79.6

Table 9. Linear probing results for audio representation learning on six downstream datasets. Pre-training is conducted on the AudioSet

dataset. Our model outperforms BYOL-A on four of the six datasets, with an average improvement of 1.8%.

Comparison with weakly-augmented SSL baselines. We

compare the performance with MSF [47] in a weak aug-

mentation setting. MSF implicitly utilizes close nearest

neighbors as a form of augmentation. In Table 5, our

method is better, and it benefits from longer training (67.9

vs. 71.9). Additionally, we demonstrate our approach on

diverse modalities, while MSF only focuses on vision.

5.2. 3D Point Clouds

We explore self-supervised representation learning on

point clouds, represented by a disordered set of xyz coordi-

nates. The pretraining is conducted on the ShapeNet [14]

dataset consisting of 57,449 3D shapes. Octree-based

Sparse CNN [70] is used as the backbone network, which

takes 3D point clouds as input and extracts point features

as well as shape features. We follow the MID-Net [71]

model as the baseline, which is trained by a point-wise and

instance-wise contrastive loss. The model is trained by a

SGD optimizer with a batch size of 32 and a weight decay

of 5e-4. The initial learning rate is 0.03 and decreases by

a factor of 10 after 200 and 300 epochs, and the training

process terminates after 400 epochs. We apply the random-

ized quantization augmentation after the base augmenta-

tions used in MID-Net. Unlike images and audio which are

snapped to grids, strong quantization of point cloud coordi-

nates drastically degrades 3d point data. We thus choose to

use a larger number of bins, n=30, in order to maintain more

information. In practice, since the 3d points are sparsified

by quantization, we observe a substantial training speedup

as a side benefit. For evaluation, we experiment on two

downstream tasks: shape classification and segmentation.

Shape classification is conducted on ModelNet40 [77]

which is composed of 13,834 3D models from 40 cate-

gories. For each shape, we extract a global feature with the

pre-trained backbone then train a linear classifier, or fine-

tune the network, and report the average classification ac-

curacy in Table 6. We do comparison with FoldingNet [80]

and MID-FC [71]. With our augmentation, we improve the

classification accuracy over the baseline MID-FC [71] sub-

stantially, especially when the training data is limited as

shown in Table 6. For example, with 1% of the training

data, we improve the classification accuracy by 5.2 and 4.0

points on linear probing and finetuning, respectively.

Shape segmentation is conducted on ShapeNet Part [81]

with 16,881 3D point clouds from 16 categories. For each

shape, we extract point-wise features with the pre-trained

backbone then train a segmentation head composed of two

fully connected layers, or finetune the network, and report

the mean IoU across all categories (C.mIoU) and the mean

IoU across all instances (I.mIoU) in Table 7. We do com-

parison with two unsupervised pretraining methods: MID-

FC [71] and Multi-Task [37]. Our results are consistently

better than the baselines across different ratios of training

data. And similarly to ModelNet40 classification, we ob-

serve significant improvements with limited (1% and 5%)

training data. For example, with 1% of the training data,

our method improves the segmentation performance by 4.4

and 1.9 IoU on linear probing and finetuning, respectively.

5.3. Audio

We apply randomized quantization to audio represen-

tation learning. We use AudioSet [31] as the pretraining



Method Natural Images Text Speech Sensors Chest x-rays Images & Text Average

Scratch 10.1 42.3 24.9 69.8 68.1 57.5 45.5

e-Mix 27.9 44.1 41.8 79.5 72.4 48.9 52.4

Ours 32.1 44.7 44.5 84.9 73.4 54.5 55.6

Table 10. Evaluation of the representation performance over six modalities in the DABS benchmark. Representations are trained on

a single primary dataset for each modality and evaluated on a number of downstream datasets. The performance for each modality is

averaged across the downstream datasets and shown in the table.

dataset, with 1,963,807 audio samples of 527 classes. The

pretrained representation is evaluated on six downstream

audio classification datasets, summarized in Table 8.

We largely follow the experimental settings of BYOL-

A [54] and treat it as our baseline.

We convert audio clips into the commonly used log-

scaled spectrogram representation. Random resized crop

is used to extract a 64 × 96 frequency-temporal segment

for training. We replaced the Mixup augmentation used in

BYOL-A with our randomized quantization, with the num-

ber of bins set to 5. We follow prior works [54] by using

a lightweight 2D convolutional network as the backbone.

We train the network using the Adam optimizer with a base

learning rate of 3e-4 and a batch size of 256 for 100 epochs.

Table 9 summarizes the results on the six downstream

classification tasks. Compared against BYOL-A with the

Mixup augmentation, our randomized quantization outper-

forms it in four out of the six tasks. Our approach is par-

ticularly stronger by a margin of 5.6% on the VoxCeleb1

dataset, which is the hardest classification task with 1211

classes among all six tasks. Our improvements tend to be

smaller for tasks with fewer classes. On average, the pro-

posed augmentation surpasses the current state-the-of-art

BYOL-A by a margin of 1.8%.

5.4. DABS

We additionally conduct experiments on the public

benchmark DABS [66] which is designed to study domain-

agnostic self-supervised representation learning. Since

some of its domains are discrete in nature (e.g., language),

we first embed the data with a frozen layer and then aug-

ment the data embeddings for all the modalities consis-

tently. It contains six data modalities1, covering natural

RGB images, multichannel sensor data, English text, audio,

chest x-ray images, as well as captioned images. In each do-

main, pre-training is conducted on a large-scale dataset, and

the learned representations are evaluated with linear prob-

ing on various in-domain downstream datasets. The aver-

age performance for the in-domain downstream datasets is

reported. We refer the reader to the benchmark for a full

description of the pretraining datasets and in-domain evalu-

ation datasets.

1The benchmark also provides an additional multi-lingual text modal-

ity. However, it is not evaluated in the original paper. We thus omit this.

We follow a leading method e-Mix [66] with a Trans-

former architecture on this domain-agnostic benchmark.

The network is optimized with the Adam optimizer with a

learning rate of 1e-4 and weight decay of 1e-4. The training

protocol follows e-Mix, and all modalities share the same

recipe.

We apply randomized quantization on the token embed-

dings before the Transformer. Since the quantization func-

tion has zero gradients everywhere, we randomly initial-

ize the token embedding module without updating it. The

straight-through estimator can be potentially useful, but it is

not the focus of this work.

Table 10 summarizes the results for this benchmark. Our

model outperforms the baseline e-Mix on all modalities.

The improvements on natural images, speech, and sensors

are larger than 3%, while the improvements on text and

chest x-rays are relatively smaller, less than 1%. Both e-Mix

and our pretraining seem to hurt the representation quality

for captioned images. We hypothesize that the two modal-

ities of images and texts pose significant challenges for a

naive contrastive learning approach.

6. Conclusion

We propose randomized quantization as a novel data

augmentation tool for self-supervised representation learn-

ing. Quantization effectively withholds information within

the quantization bins but retains the information across

bins. It could be applied on arbitrary data along the chan-

nel dimension without domain-specific knowledge. Ran-

domized quantization significantly outperforms existing

domain-agnostic augmentations based on Mixup. It com-

pares favorably against domain-specific augmentations on

vision, and attains state-of-the-art results on audio and 3D

point clouds. We also explored randomized quantization

on input data embeddings in a neural network for a wide

range of data modalities. Experimental results on the DABS

benchmark demonstrates state-of-the-art results for speech,

text, images and multiple sensors. Randomized quanti-

zation could potentially be applied in a masked modeling

framework, where the original images are reconstructed

from quantized ones. This direction will be explored in fu-

ture work.



Broader Impacts
Although the proposed augmentation is generic in its for-

mulation, it is not guaranteed to work beyond the modali-

ties investigated in this paper. Application of the augmen-

tation for other self-supervised learning frameworks such

as masked modeling or generalization to other downstream

tasks remains under-explored.
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Estimating or propagating gradients through stochastic

neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013. 3

[9] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Alt-

man, Simran Arora, Sydney von Arx, Michael S Bernstein,

Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al.

On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258, 2021. 2

[10] Christopher Bowles, Liang Chen, Ricardo Guerrero, Paul

Bentley, Roger Gunn, Alexander Hammers, David Alexan-

der Dickie, Maria Valdés Hernández, Joanna Wardlaw, and

Daniel Rueckert. Gan augmentation: Augmenting training

data using generative adversarial networks. arXiv preprint
arXiv:1810.10863, 2018. 2

[11] Richard W Brislin. Back-translation for cross-cultural re-

search. Journal of cross-cultural psychology, 1(3):185–216,

1970. 2

[12] Yun-Hao Cao, Peiqin Sun, Yechang Huang, Jianxin Wu, and

Shuchang Zhou. Synergistic self-supervised and quantiza-

tion learning. In ECCV, 2022. 3, 5, 6

[13] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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