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Figure 1: Discarding noisy losses in test-time adaptation (TTA). Black pixels in the ground truth indicate the open-set classes
in the test set (i.e., BDD-100K [64]), which were not included in the train set (i.e., Cityscapes [10]), such as the guardrails
in the first row or the garbage truck in the second row. (a) Since TTA models generally use their predictions for the target
outputs, they are prone to utilizing noisy losses from 1) wrong predictions (pink pixels ■) and 2) open-set classes (red pixels
■). Performing TTA for a long term in such an environment degrades the performance of TTA models significantly. (b)
Our method effectively filters out such noisy losses, preventing performance degradation and alarming unexpected obstacles,
which is crucial for safety-critical applications such as autonomous driving (see Supplementary).

Abstract
Test-time adaptation (TTA) methods, which generally

rely on the model’s predictions (e.g., entropy minimization)
to adapt the source pretrained model to the unlabeled target
domain, suffer from noisy signals originating from 1) incor-
rect or 2) open-set predictions. Long-term stable adapta-
tion is hampered by such noisy signals, so training mod-
els without such error accumulation is crucial for practical
TTA. To address these issues, including open-set TTA, we
propose a simple yet effective sample selection method in-
spired by the following crucial empirical finding. While en-
tropy minimization compels the model to increase the prob-
ability of its predicted label (i.e., confidence values), we
found that noisy samples rather show decreased confidence
values. To be more specific, entropy minimization attempts
to raise the confidence values of an individual sample’s pre-
diction, but individual confidence values may rise or fall
due to the influence of signals from numerous other pre-
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dictions (i.e., wisdom of crowds). Due to this fact, noisy
signals misaligned with such ‘wisdom of crowds’, gener-
ally found in the correct signals, fail to raise the individ-
ual confidence values of wrong samples, despite attempts
to increase them. Based on such findings, we filter out the
samples whose confidence values are lower in the adapted
model than in the original model, as they are likely to be
noisy. Our method is widely applicable to existing TTA
methods and improves their long-term adaptation perfor-
mance in both image classification (e.g., 49.4% reduced
error rates with TENT) and semantic segmentation (e.g.,
11.7% gain in mIoU with TENT).

1. Introduction
Despite the recent advancements of deep learning, mod-

els still show a significant performance degradation when
confronted with large domain shifts (e.g., changes of cities
with different landscapes during autonomous driving) [8,
36, 42, 30, 12]. Among various studies, test-time adaptation
(TTA) is at the center of attention due to its practicality in
not requiring 1) the source data during the adaptation stage
and 2) ground truth labels of the target domain [61].
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Threshold Precision Recall Acc.
(a) N/A - - 53.4
(b) MSP 63.7 99.0 62.9

(c) Entropy 60.0 99.9 60.0
(d) Confidence diff. 85.5 96.9 82.7
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Figure 2: Utilizing confidence difference for selecting correct samples. Pseudo-labeling samples (i.e., selecting correct sam-
ples) by using a fixed threshold does not guarantee a reasonable level of pseudo-labeling performance, which is demonstrated
by the significantly low precision values. On the other hand, we maintain a reasonable level of both precision and recall by
using the confidence difference between θo and θa, improving the test-time adaptation performance overall.

TTA models widely utilize a self-training strategy (e.g.,
entropy minimization), which uses the model’s prediction
as the target of the loss function [61, 9, 62, 49, 15, 14, 66,
50, 69, 27]. Since TTA models rely on their own predic-
tions during the adaptation, they are inevitably prone to uti-
lizing noisy signals. In this paper, noisy signals indicate
supervisions that originated from 1) incorrect or 2) open-set
predictions. Fig. 1 shows that performing adaptation with
such noisy signals significantly degrades the TTA perfor-
mance. Specifically, the pink pixels indicate the mispre-
dicted pixels (e.g., predicting sidewalks as roads in the sec-
ond row), and the red ones are the predictions on open-set
classes that were not included in the train set (e.g., predict-
ing guardrails and the garbage truck as roads in the first
and second rows, respectively). Such an example clearly
demonstrates that TTA in real-world applications needs to
address such open-set classes since mispredicting guardrails
as roads may cause serious accidents during autonomous
driving. However, as shown in Fig. 3, previous studies fo-
cused on TTA with covariate shifts (i.e., domain shifts) only
and did not address TTA that also includes semantic shifts
(i.e., including open-set classes). Regarding its significance
and practicality, adaptation with unknown classes included
(i.e., open-set TTA) should be also addressed.

Fig. 2 shows our empirical analysis that discloses an im-
portant finding to address such an issue. While entropy
minimization enforces the model to increase the probabil-
ity value of its predicted label (i.e., confidence values), we
found that it often fails to increase them on the wrong sam-
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Figure 3: Description of open-set TTA. While previ-
ous studies assume covariate shifts (i.e., Cityscapes to
BDD-100K), they fail to address the semantic shifts (i.e.,
guardrails only shown in BDD-100K). This paper addresses
both closed-set and open-set test-time adaptation.

ples. While previous studies [62, 49] resorted to finding an
adequate confidence value or loss value to prevent error ac-
cumulation, the process of determining it is cumbersome,
and utilizing such a static threshold shows limited perfor-
mance. We train TENT [61] with different thresholds for
the analysis: (a) without thresholding, (b) selecting sam-
ples with confidence value higher or equal to 0.91, (c) se-
lecting samples with loss values smaller than the entropy
threshold proposed in EATA [49], and (d) selecting sam-
ples that achieve higher confidence value with the adapta-
tion model θa compared to that with the original model θo.
As shown, using the confidence difference between θo and
θa for selecting correct samples outperforms utilizing the
static thresholds. While b) and c) show significantly high
recall values (i.e., selecting actual correct samples well), it
rather indicates that they simply select most of the samples
and fail to filter out noisy samples considering the substan-
tially low precision values (i.e., low ratio of correct samples
among the selected ones).

The intuition behind using the confidence difference is
as follows. Although entropy minimization enforces the
model to increase the confidence value on the predicted la-
bel of an individual sample, the individual confidence value
may rise or fall, influenced by the signals that originated
from numerous other predictions (i.e., wisdom of crowds).
To be more specific, the noisy signals that do not align
with such ‘wisdom of crowds’, commonly found in the cor-
rect signals, fail to raise the individual confidence scores
of wrong samples, even with the supervision from entropy
minimization to increase them. By using such an obser-
vation, we select samples that achieve higher confidence
value using θa compared to that using θo. Since we reflect
the knowledge state of the model on each individual sam-
ple, our selection is implicitly a dynamic thresholding strat-
egy, which outperforms the previously-used static strate-
gies. Our simple yet effective sample selection method is
widely applicable to existing TTA methods and improves
their performances on both image classification and seman-
tic segmentation.

1We used the best confidence value p after grid search of p ∈
{0.5, 0.8, 0.9, 0.95, 0.99.}
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Figure 4: As adaptation proceeds, the number of samples
with decreased confidence values increases (purple graph).
Additionally, among those samples, the ratio of wrongly
predicted samples also increases (green graph). ti indicates
the ith round during the long-term adaptation.

Our contributions are summarized as follows:
• We propose a novel sample selection method that fil-

ters out noisy samples using the confidence difference
between θa and θo based on the finding that noisy
samples, both closed-set wrong samples, and open-set
samples, generally show decreased confidence values
on the originally predicted label.

• This is the first paper to address open-set test-time
adaptation, adapting to a target domain including test
samples of unknown classes, which has not been ex-
plored in existing TTA studies despite its importance
and practicality.

• Our proposed method can be applied to various test-
time adaptation methods and improves their perfor-
mances on both image classification using CIFAR-
10/100-C and TinyImageNet-C (e.g., 49.38% reduced
error rates with TENT in open-set TTA), and semantic
segmentation (e.g., 11.69% gain in mIoU with TENT)
using real-world datasets including BDD-100K and
Mapillary.

2. Wisdom of Crowds in Entropy Minimization
2.1. Problem Setup

During the test-time adaptation, models adapt to a target
domain with N number of test samples in the test set DT ,
{xi, }Ni=1 ∈ DT , without target labels provided. Given a
pretrained model θo, we update θo to adapt to a novel tar-
get domain, where the adapted model is then defined as θa.
For a test sample x, we define ỹ = f(x; θo) ∈ RC and
ŷ = f(x; θa) ∈ RC as the softmax outputs of the origi-
nal model θo and the adapted model θa, respectively, where
C denotes the number of classes. With the predicted class
co = argmaxc f(x; θo) of the original model, we define the
probability value on the predicted label as confidence value
ỹco . Similarly, the confidence value of the adapted model
θa on the label co, predicted by the original model, is de-
fined as ŷco . The main objective of test-time adaptation is to
correctly predict ca = argmaxc f(x; θa) using the adapted
model, especially under large data distribution shifts.

# of samples AUROC – 58.29 AUROC – 89.42

Confidence differenceConfidence values

# of samples
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Figure 5: Utilizing the confidence difference distinguishes
between the correct samples (blue) and the wrong samples
(red) better (AUROC of 89.42) than using the confidence
values (AUROC of 58.29). We used the same model (i.e.,
TENT [61] adapted for 50 rounds) for the visualization.

2.2. Motivation
Decreased confidence values While entropy minimiza-
tion enforces the model to increase the confidence value
of its originally predicted label, we empirically found that
wrong samples mostly show decreased values (i.e., ŷco <
ỹco ). For the experiment, we perform test-time adaptation
using TENT [61] for 50 rounds using CIFAR-10-C to sim-
ulate a long-term adaptation. One round includes contin-
uously changing 15 corruption types, so we repeat it 50
times without resetting the model. With ti indicating the
ith round, Fig. 4 (purple graph) shows that the number of
samples achieving ŷco < ỹco , showing decreased confi-
dence values, among N number of test samples increases
as adaptation proceeds even with the entropy minimization
that enforces the model to increase its confidence value on
the originally predicted label. In fact, the green graph in
Fig. 4 shows that the ratio of wrong samples among the
samples with decreased confidence values also increases as
adaptation proceeds. The main reason for such an observa-
tion is due to the ‘wisdom of crowds’, the signals learned
from numerous other samples influencing the confidence
level of individual samples. Specifically, although the in-
dividual signal from each sample compels the model to in-
crease the confidence value of its own predicted label, this
effect may be canceled out if other dominant signals show
different patterns.

Wisdom of crowds from correct samples We empir-
ically found that models generally learn the wisdom of
crowds from the correct samples. Fig. 5 demonstrates such
a point with the histogram of 1) confidence values and 2)
confidence difference, ŷco − ỹco , using TENT [61] adapted
for 50 rounds. We observe that a substantial number of the
samples achieving ŷco − ỹco ≥ 0 are correct samples (blue).
To be more specific, utilizing the confidence difference for
distinguishing correct samples from wrong samples (red)
achieves an AUROC of 89.42, which outperforms utilizing
the confidence value of the adaptation model, achieving an
AUROC of 58.29.

Such an observation discloses two findings. First, since
samples achieving ŷco ≥ ỹco are mostly correct ones, the
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Figure 6: Overall procedure of our sample selection. We forward the mini-batch of n test images, {xi}ni=1, to the original
model θo and the adaptation model θa. Then, we compare the probability values ŷco and ỹco and select the samples achieving
ŷco ≥ ỹco . Finally, we apply the entropy minimization only to the selected samples.

dominant signals necessary for increasing the confidence
values (i.e., wisdom of crowds) are originated from the cor-
rect samples. Second, ŷco − ỹco is an adequate metric to
distinguish between correct and wrong samples.

Misaligned wrong signals We further empirically ana-
lyze why signals from wrong samples fail to increase the
confidence values of the original model. The main rea-
son is that signals originated from wrong samples misalign
with the ‘wisdom of crowds’ obtained from the correct sam-
ples. For the analysis, we compute the cosine similarity of
gradients between two samples with the same predicted la-
bel in Fig. 7. For a given predicted label i (column), we
compute sj,i, the cosine similarity of gradients obtained be-
tween samples of ground truth label j (row) and those of
predicted label i as,

sj,i =
1

M1M2

M1∑
k=1

M2∑
l=1

gj,ik · gi,il

∥gj,ik ∥∥gi,il ∥
, l ̸= k if j = i, (1)

where gj,ik indicates the gradient vector of kth sample
among M1 number of samples with the ground truth label j
and the predicted label i, gi,il indicates the gradient vector of
lth sample among M2 number of samples with the ground
truth label i and the predicted label i (i.e., correct samples),
and i, j ∈ C. In other words, given a certain predicted label,
we compare the gradients of the correct samples and those
of the samples with the same predicted label either correct
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Figure 7: Cosine similarity of gradients between samples
with the same predicted label. We observe that wrong sig-
nals (i.e., off-diagonal elements) misalign with the correct
signals (i.e., diagonal elements) that dominate the wisdom
of crowds.

or wrong. Thus, the diagonal elements are the results ob-
tained by comparing the gradients between correct samples
and the off-diagonal elements are obtained by comparing
the gradients between correct samples and the wrong sam-
ples with the same predicted label. We add the description
of how the cosine similarity of each pair is computed on the
right side of Fig. 7.

Given a certain column in Fig. 7, all entropy minimiza-
tion losses enforce the model to increase the probability
value of the same predicted label. However, we found that
the signals (i.e., gradients) may differ depending on the ac-
tual ground truth labels. Specifically, the correct samples
show high cosine similarity of gradients (diagonal elements,
e.g., s2,2) compared to the ones with wrong samples (off-
diagonal elements, e.g., s0,2). Since Fig. 5 shows that the
correct signals dominate the wisdom of crowds required for
increasing the confidence value of the originally predicted
label, signals that are different from these dominant signals
can be suppressed and do not raise confidence values.

We want to clarify that the wisdom of crowds does not
guarantee a model to utilize the correct signals only. Even
with the wisdom of crowds, the model supervises itself with
wrong predictions if the noisy losses are not filtered out.
Such self-training with wrong knowledge significantly de-
teriorates the TTA performance of models, especially dur-
ing the long-term adaptation [28]. In fact, such an issue has
been widely studied in fields beyond TTA, known as the
confirmation bias [67, 2, 60, 38, 37]. To address such an is-
sue in TTA, we propose a sample selection method to filter
out noisy samples by using the wisdom of crowds.

2.3. Proposed Method

As shown in Fig. 6, we propose a simple yet effective
sample selection method using the confidence difference
between ỹco and ŷco . Our sample selection criterion is for-
mulated as

Φ(ŷco , ỹco) = 1 (ŷco ≥ ỹco) , (2)

where Φ(·) is our sample selection criterion and 1(·) is the
indicator function. Our total objective function using en-
tropy minimization is formulated as

Lmain(x; θa) = Φ(ŷco , ỹco) ·H(ŷi)− λmaxH(y). (3)



Method CIFAR-10-C CIFAR-100-C TinyImageNet-C Average
Closed Open Closed Open Closed Open Closed Open

Source [65] 18.27 18.27 46.75 46.75 76.71 76.71 47.24 47.24
BN Adapt [46] 14.49 15.73 39.26 42.67 61.90 63.00 38.55 40.47

GCE [68] 43.76 87.94 44.45 88.69 97.25 99.00 61.82 91.88
Conjugate [15] 49.57 92.25 98.97 98.79 99.38 99.46 82.64 96.83

ENT 87.06 89.26 56.35 98.76 99.43 99.50 80.95 95.84
+ Ours 17.33 (-69.73) 23.98 (-65.28) 37.69 (-18.66) 40.48 (-58.28) 58.93 (-40.50) 64.01 (-35.49) 37.98 (-42.97) 42.82 (-53.02)

TENT [61] 45.84 85.22 42.34 85.22 98.10 99.16 62.09 89.87
+ Ours 14.10 (-31.74) 15.77 (-69.45) 38.62 (-3.72) 42.57 (-42.65) 60.87 (-37.23) 63.13 (-36.03) 37.86 (-24.23) 40.49 (-49.38)

EATA [49] 29.78 82.05 49.31 98.75 59.82 63.47 46.30 81.42
+ Ours 14.07 (-15.71) 15.65 (-66.40) 38.44 (-10.87) 42.47 (-56.28) 59.80 (-0.02) 62.08 (-1.39) 37.44 (-8.86) 40.07 (-41.35)

SWR [9] 10.21 90.55 35.78 73.05 62.39 76.13 36.13 79.91
+ Ours 10.12 (-0.09) 72.58 (-17.97) 35.64 (-0.14) 45.68 (-27.37) 55.15 (-7.24) 61.91 (-14.22) 33.64 (-2.49) 60.06 (-19.85)

Table 1: Error rates of image classification after 50 rounds of adaptation (i.e., long-term test-time adaptation). We note the
performance gain by reduced error rates.

Method CIFAR-10-C CIFAR-100-C TinyImageNet-C Average
Closed Open Closed Open Closed Open Closed Open

Source [65] 18.27 18.27 46.75 46.75 76.71 76.71 47.24 47.24
BN Adapt [46] 14.49 15.73 39.26 42.67 61.90 63.00 38.55 40.47

GCE [68] 12.81 25.70 35.83 45.78 62.84 71.41 37.16 47.63
Conjugate [15] 12.84 24.96 36.67 81.19 82.83 92.66 44.11 66.27

ENT 16.30 47.54 38.74 58.16 79.69 91.74 44.91 65.81
+ Ours 13.41 (-2.89) 16.93 (-30.61) 37.55 (-1.19) 42.60 (-15.56) 63.89 (-15.80) 69.01 (-22.73) 38.28 (-6.63) 42.85 (-22.96)

TENT [61] 12.56 27.80 36.04 45.26 68.53 80.93 39.04 51.33
+ Ours 12.39 (-0.17) 14.94 (-12.86) 36.18 (+0.14) 39.62 (-5.64) 59.90 (-8.63) 63.31 (-17.62) 36.16 (-2.88) 39.29 (-12.04)

EATA [49] 12.39 25.52 36.39 54.22 59.02 61.72 35.93 47.15
+ Ours 12.35 (-0.04) 14.92 (-10.60) 36.25 (-0.14) 39.58 (-14.64) 59.30 (+0.28) 62.11 (+0.39) 35.97 (+0.04) 38.87 (-8.28)

SWR [9] 10.76 29.32 34.21 44.79 60.34 65.18 35.10 46.43
+ Ours 10.74 (-0.02) 27.52 (-1.80) 34.23 (+0.02) 41.52 (-3.27) 58.50 (-1.84) 62.94 (-2.24) 34.49 (-0.61) 44.00 (-2.43)

Table 2: Error rates of image classification after 1 round of adaptation (i.e., short-term test-time adaptation). We note the
performance gain by reduced error rates.

H(p) = ΣC
k=1p

k log pk, y = 1
NΣC

k=1ŷi, and λmax is the
scalar value for balancing the two loss values. Note that
H(y) has been widely used in previous studies [9, 42, 32,
41, 3, 5] to prevent the model from making imbalanced pre-
dictions towards a certain class.

Recent studies require the pre-deployment stage that ob-
tains the necessary information needed for each method by
using the samples from the source data before the adapta-
tion phase [9, 49, 42]. However, we want to emphasize
that our method does not require such a pre-deployment
stage as well as those samples from the source distribution.
Due to such an advantage, our method can be easily applied
to existing TTA methods without additional preparations.
Through extensive experiments, we demonstrate the wide
applicability of our method to existing TTA methods.

3. Experiments
3.1. Experimental Setup

Datasets For the image classification task, we use the
widely used corruption benchmark datasets: CIFAR-
10/100-C and TinyImageNet-C. We apply 15 different types
of corruptions (e.g., gaussian noise) to CIFAR-10/100 [33]
and TinyImageNet [34]. Pretrained models are trained on

the clean train set and adapted to the corrupted test set. For
the open-set setting, we use SVHN [47] for CIFAR-10/100-
C, and ImageNet-O [23] for TinyImagenet-C, where we ap-
ply the same corruption type as the original test sets. We
term the datasets as SVHN-C and ImageNet-O-C, respec-
tively. We apply the identical corruption type in order to
construct open-set samples that are drawn from the same
domain shift but with unknown classes. For the seman-
tic segmentation task under continually changing domains,
we use a model pretrained on GTAV [53], and evaluate it
with Cityscapes [10], BDD-100K [64], and Mapillary [48].
For semantic segmentation with a fixed target domain with
multiple rounds, we use the Cityscapes for the source dis-
tribution and BDD-100K [64], GTAV [53], Mapillary [48],
and SYNTHIA [54] for the target distributions. Note that
the semantic segmentation task inherently includes open-
set classes in the test set (e.g., traffic cones in BDD100K
not shown during training with Cityscapes).
Evaluation settings Following the recent TTA studies,
we evaluate TTA models under continuously changing do-
mains without resetting the model after each domain [62,
42, 49]. For the closed-set and open-set continual long-
term TTA in the image classification, we perform adaptation
for 50 rounds to simulate a long-term TTA with continu-



Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Average
Method Cityscapes BDD-100K Mapillary

Source [6] 34.74 16.15 36.97 29.29
BN Adapt [46] 40.77 25.21 39.10 35.03
TTN [42] 46.28 28.07 45.46 39.94
TENT [61] 46.73 29.59 35.69 37.34
+ Ours 46.76 (+0.03) 30.55 (+0.96) 43.42 (+7.73) 40.24 (+2.90)
SWR [9] 46.17 10.70 1.28 19.38
+ Ours 46.65 (+0.48) 32.28 (+21.58) 45.09 (+43.81) 41.34 (+21.96)

(a) Average mIoU after the adaptation of each domain.
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(b) mIoU changes during adaptation2.

Table 3: Semantic segmentation performance (mIoU) on continuously-changing target domains with 1 round of adaptation.
We evaluate with DeepLabV3Plus-ResNet-50 [6] pretrained on GTAV dataset.

Method BDD-100K Mapillary GTAV SYNTHIA Average
Round 1 Round 10 Round 1 Round 10 Round 1 Round 10 Round 1 Round 10 Round 1 Round 10

Source [6] 43.50 43.50 54.37 54.37 44.55 44.55 22.78 22.78 41.30 41.30
BN Adapt [46] 43.60 43.60 47.66 47.66 43.22 43.22 25.72 25.72 40.05 40.05

TTN [42] 48.43 48.43 57.28 57.28 46.71 46.71 26.41 26.41 44.71 44.71
TENT [61] 48.90 47.57 57.94 53.36 48.14 17.91 26.88 13.36 45.47 33.05

+ Ours 48.90 48.88 (+1.31) 57.94 56.49 (+3.13) 48.28 (+0.14) 47.98 (+30.07) 26.90 (+0.02) 25.62 (+12.26) 45.51 (+0.04) 44.74 (+11.69)
SWR [9] 49.39 49.68 59.33 59.70 47.82 48.13 28.40 1.18 46.24 39.67
+ Ours 49.88 (+0.49) 50.57 (+0.89) 58.79 (-0.54) 58.89 (-0.81) 49.17 (+1.35) 49.27 (+1.14) 27.75 (-0.65) 27.82 (+26.64) 46.40 (+0.16) 46.64 (+6.97)

Table 4: Semantic segmentation performance (mIoU) on a fixed target domain with 10 rounds of adaptation. We use
DeepLabV3Plus-ResNet-50 [6] pretrained on Cityscapes dataset.

ously changing domains. We report both TTA performances
after 1 round (i.e., short-term TTA) and 50 rounds (i.e.,
long-term TTA). Note that we evaluate predictions made
during online model adaptation, not after visiting the en-
tire test set, strictly following the established TTA settings.
For the open-set TTA, we construct the mini-batch that in-
cludes an equal number of closed-set samples (e.g., CIFAR-
10-C, shot noise) and open-set samples (e.g., SVHN-C,
shot noise). Although included in the mini-batch, we ex-
clude open-set samples from the evaluation and only eval-
uate models with closed-set samples. To the best of our
knowledge, our work is the first paper to conduct experi-
ments with the open-set TTA. We report the error rates and
mean intersection of union (mIoU) for image classification
and semantic segmentation, respectively.
Baselines We mainly compare our method with previous
methods addressing noisy labels [68] or improving pseudo-
labeling performances in TTA [15, 49]. Note that ENT de-
notes updating all parameters while TENT [61] only up-
dates affine parameters of the batch normalization layers,
both utilizing the entropy minimization loss function. Gray-
shaded digits indicate the performance gain by applying our
method to each baseline model, and bold digits indicate the
better performance between the two methods.
Implementation details For the image classification, we
use the learning rate of 1e-3 and 1e-4 for models updating
only affine parameters (TENT [61], EATA [49], GCE [68],
Conjugate [15]) and all parameters (ENT, SWR [9]), re-
spectively. We use the batch size of 200 and Adam opti-
mizer [31] for all experiments. For experiments conducting
small batch sizes in Table 8, we use the learning rate of 1e-4

and update models after 200 steps, following TTN [42]. For
the semantic segmentation, we use the learning rate of 1e-6
and batch size of 2 following TTN. Regarding using TTN
in semantic segmentation, we update the test batch statis-
tics in an online manner to further improve the segmenta-
tion performance for all experiments. Further details on our
experimental setup are included in our supplementary.

3.2. Results
Image classification As shown in Table 1, existing TTA
models show a large performance degradation during the
long-term adaptation. This is mainly due to the confirma-
tion bias, caused by the unsupervised losses that inevitably
include noisy losses. We significantly improve the long-
term performance of the existing four different TTA models
in both closed-set and open-set TTA. For example, we im-
prove the error rate of TENT [61] by an average of 24.23%
and 49.38% in the closed-set and open-set settings, respec-
tively. Note that we do not use prior knowledge of whether
the target distribution includes open-set samples or not. Ad-
ditionally, Table 2 shows that our method also generally im-
proves the short-term TTA performances.

While previous studies focused on improving the perfor-
mance of closed-set TTA until now, our results show that
they suffer from a large performance drop when adapted
with open-set classes included. We believe that this is a
practical setting since we can not guarantee that samples
from the target distributions are always drawn from the

2Note that the performance variation of the source model in Cityscapes
is due to the order of data samples (e.g., challenging ones in the later stage),
not due to the adaptation.



Method CIFAR-10 / SVHN-C CIFAR-100 / SVHN-C
AUROC↑ FPR@TPR95↓ AUROC↑ FPR@TPR95↓

MSP [21] 51.87 92.39 60.69 87.96
Max Logit [19] 54.68 90.31 64.88 85.45

Energy [43] 54.68 90.30 64.87 85.46
Ours 88.24 40.34 83.76 64.86

(a) Negative samples including closed-set wrong samples.

Method CIFAR-10 / SVHN-C CIFAR-100 / SVHN-C
AUROC↑ FPR@TPR95↓ AUROC↑ FPR@TPR95↓

MSP [21] 50.83 93.64 56.14 90.34
Max Logit [19] 56.25 90.65 62.76 87.35

Energy [43] 56.26 90.63 62.79 87.27
Ours 83.50 54.46 82.17 73.16

(b) Negative samples excluding closed-set wrong samples.

Table 5: Utilizing the confidence difference for thresholding in open-set test time adaptation. We use TENT [61] adapted to
each target domain including open-set classes (SVHN-C) for 50 rounds.

Method CIFAR-10-C CIFAR-100-C CIFAR-10/100-C
Error Rate (%) Error Rate (%) Memory (MB) Time (ms)

ENT 88.16 77.56 1147 22.98
SWR [9] 50.38 54.42 1155 47.97

TENT [61] 65.53 63.78 556 18.38
EATA [49] 55.92 74.03 559 37.04

TENT [61] + Ours 14.94 40.60 565 26.62

Table 6: Comparisons on error rates (%), memory (MB),
and time (ms). For the time, we report the average time
after 5000 trials on NVIDIA RTX A5000.

classes learned during the training stage. Such results in-
dicate that improving the TTA performance with open-set
classes is yet to be explored in the future.
Semantic segmentation Table 3 shows the semantic seg-
mentation performance with continuously changing do-
mains. We evaluated a model pretrained on GTAV [53] with
real-domain datasets (Cityscapes [10], BDD-100K [64],
and Mapillary [48]) in order to simulate the situation where
real-world target datasets are not available with only syn-
thetic datasets provided. We observe that the performance
gain by applying our method increases as the adaptation
proceeds. For example, SWR [9] (Table 3b - red) suffers
from a large performance drop with the last target domain,
Mapillary (1.28 mIoU), while ours (Table 3b - blue) shows
a stable level of performance (45.09 mIoU). Regarding Ta-
ble 3b, we evaluate models after certain steps and show the
average mIoU up to then. While the model without adapta-
tion (i.e., source) does not suffer from the error accumula-
tion, it fails to bring performance gain. On the other hand,
our method not only brings performance gain but also cir-
cumvents error accumulation by filtering the noisy losses.

Table 4 also reports the semantic segmentation perfor-
mance with a fixed target domain over multiple rounds of
adaptation. We observe that applying our method improves
the performance of TENT [61] and SWR [9] by an average
of 11.69 mIoU and 6.97 mIoU, respectively, after 10 rounds.
As aforementioned, performing test-time adaptation in se-
mantic segmentation needs to address not only the wrong
predictions but also the inherently included open-set classes
in the target distribution. Our method again improves TTA
performance by effectively discarding such noisy pixels.
We believe such a filtering mechanism is especially im-
portant in safety-critical applications in two aspects. First,
it prevents the performance drop caused by learning with
noisy losses. Second, when confronted with unknown ob-

jects, we could alarm a device immediately, which could
be the starting point for it to take a different action (e.g.,
autonomous vehicles swerving directions to avoid running
into wild animals unexpectedly shown on roads) [26].

4. Further Analysis
4.1. Utilizing Confidence Difference as Thresholds

We show that the confidence difference is an adequate
metric to differentiate between correct samples and noisy
samples, given that a pretrained model is adapting to a novel
domain. For the evaluation, we train TENT [61] and com-
pare utilizing confidence difference as the thresholding met-
ric with existing prediction-based out-of-distribution (OoD)
methods [21, 19, 43]. By setting the correct samples as the
positive samples, we analyze two different negative sam-
ples: negative samples 1) including closed-set wrong sam-
ples and 2) excluding closed-set wrong samples. The for-
mer case shows how well a given metric differentiates be-
tween correct samples and noisy samples, including both
closed-set and open-set samples. The latter case evaluates
how well a given metric distinguishes between the correct
samples and open-set samples only. Table 5 shows that
using confidence difference outperforms the existing OoD
metrics in both cases. In addition to the superior perfor-
mance, another advantage of using the confidence differ-
ence is that we can filter the noisy samples immediately,
while the existing OoD metrics need the entire test samples
in order to choose the threshold with the best AUROC score.
Such a result indicates that confidence difference can also
be widely used to distinguish out-of-distribution samples in
future studies with adapted models.

4.2. Comparisons on Resource Costs
Along with the TTA performances, Table 6 compares the

memory usage and the time consumption of the baseline
models and our method applied to TENT [61]. For the TTA
performance, we average the long-term adaptation perfor-
mance of closed-set and open-set TTA for each dataset. For
memory usage, we use the official code of TinyTL [4] to
calculate both the model parameters and the intermediate
activation size, following the previous studies [25, 63, 59].
The time indicates the amount of time consumed for the for-
ward process and the backpropagation. Since we utilize the
outputs of θo, our method accompanies an additional for-



Method ResNet50 [18] WDR28 [65]
Closed Open Closed Open

Source 48.80 48.80 43.52 43.52
BN Adapt [46] 16.01 16.89 20.43 23.61

TENT [61] 61.69 83.62 56.00 77.72
+ Ours 15.28 (-46.41) 16.99 (-66.63) 20.16 (-35.84) 23.70 (-54.02)

SWR [9] 16.19 88.53 17.94 90.15
+ Ours 16.08 (-0.11) 71.83 (-16.70) 15.35 (-2.59) 83.76 (-6.39)

(a) Long-term adaptation

Method ResNet50 [18] WDR28 [65]
Closed Open Closed Open

Source 48.80 48.80 43.52 43.52
BN Adapt [46] 16.01 16.89 20.43 23.61

TENT [61] 14.03 22.76 18.23 32.74
+ Ours 13.82 (-0.21) 16.36 (-6.40) 18.32 (+0.09) 23.40 (-9.34)

SWR [9] 13.81 45.58 16.62 83.08
+ Ours 13.80 (-0.01) 43.35 (-2.23) 15.73 (-0.89) 75.89 (-7.19)

(b) Short-term adaptation

Table 7: Error rates of image classification on CIFAR-10-C using diverse architectures.

Method Learning rate Std.↓0.005 0.001 0.0005 0.0001

Source 76.71 76.71 76.71 76.71 0
TENT [61] 99.51 89.91 75.02 63.83 15.79

+ Ours 64.14 60.04 59.59 58.76 2.40

(a) Robustness to learning rates

Method Batch size Std.↓64 32 16 8

Source 76.71 76.71 76.71 76.71 0
TENT [61] 67.54 72.62 81.21 94.75 11.90

+ Ours 60.32 62.14 65.88 73.83 5.99

(b) Robustness to batch sizes

Table 8: Error rates of image classification on TinyImageNet-C with diverse learning rates and batch sizes. Std. is the
abbreviation of the standard deviation.

ward process. However, as shown, such an additional for-
ward process is negligible compared to the state-of-the-art
models. For example, our method applied to TENT brings
a significant performance gain with only half the memory
and time compared to SWR [9]. Further details on resource
costs, along with the results on semantic segmentation, are
included in our supplementary.

4.3. Applicability on Various Models
Since our method focuses on improving the pseudo-

labeling quality of entropy minimization, it does not rely
on model architectures. Table 7 shows that applying our
method consistently outperforms the baseline models with
ResNet50 [18] and WideResNet28 [65] that were used in
previous TTA studies [9, 42]. Such results demonstrate that
our method is widely applicable to various architectures.

4.4. Robustness to Hyper-parameters
In real-world applications, we may not know an adequate

learning rate before encountering test samples or may not
use an optimal batch size due to memory constraints. In
such a case, we need an approach with a stable performance
regardless of such hyper-parameters. Table 8 shows that our
method is more robust to such hyper-parameters compared
to TENT [61], which is highly dependent on them. Such
results demonstrate the scalability of our method when we
do not know the optimal hyper-parameters.

5. Related Work
Test-Time Adaptation The main differences between TTA
studies and other studies addressing domain shifts such as
domain generalization [70, 40, 29, 16, 45, 56] or unsuper-
vised domain adaptation (UDA) [52, 7, 41, 44, 39] is that
TTA studies do not utilize 1) the source data during the
adaptation stage and 2) ground truth labels on the target dis-
tribution [61, 62, 49, 15, 9, 42]. Recent studies [62, 42, 13]
show that TTA models suffer from a large performance

degradation with continually changing domains and a long-
term adaptation. To tackle such a challenging problem, this
paper mainly evaluates long-term adaptation with continu-
ally changing domains.
Noisy Signals in Test-Time Adaptation As aforemen-
tioned, one of the key challenges in TTA is that the model
is prone to utilizing wrong predictions. Preventing the
model from learning with noisy supervision has been stud-
ied widely beyond TTA [68, 52, 24, 17, 1, 35, 51]. However,
the main difference between TTA and these studies is that
TTA studies assume that we cannot revisit the sample after
performing adaptation with it. Such an assumption limits
from proposing methods that require knowledge of the full
data distributions [57, 1] or consistency of predictions for a
given sample [52, 58]. Without such knowledge, we use the
difference of confidence scores between θo and θa by using
the wisdom of crowds to improve pseudo labeling.

6. Conclusion
This paper proposed a simple yet effective data sample

selection that is widely applicable to existing various test-
time adaptation methods. Based on the observation that sig-
nals from wrong samples fail to increase the confidence val-
ues of the predicted labels even with entropy minimization,
we only select the samples that achieve higher confidence
values with the adaptation model compared to those with
the original model. This is mainly due to the wisdom of
crowds, the dominant signals generally found in the correct
samples influencing signals of other samples. Our method
improved TTA performance on the existing TTA methods
on both image classification and semantic segmentation.
Additionally, we proposed a novel evaluation setting, an
open-set TTA, which was overlooked until now even with
its importance and practicality. We hope our work inspires
future researchers to conduct more practical TTA research
that improves both closed-set and open-set TTA.
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A. Further Analysis on Semantic Segmentation

Fig. 8 shows how filtering out noisy samples is important
in semantic segmentation. As mentioned in the main paper,
discarding noisy samples is crucial in two aspects: we can
1) prevent significant performance degradation caused by
noisy samples and 2) immediately identify unknown objects
that could be highly dangerous if not detected. For exam-
ple, TENT [61] predicts the motorcycle (wrong prediction)
or the guardrails (open-set predictions) as roads in the first
and the second rows, respectively. When applying TTA in
real-world applications (e.g., autonomous driving), such an
issue could lead to a serious accident. However, our method
effectively identifies them immediately (black pixels in the
fourth column), which can prevent such accidents.

Table 9 shows that open-set samples degrade the perfor-
mance of TTA models in semantic segmentation. For the
analysis, we compare the performance of TENT [61] and
that of TENT trained without the backpropagation of the
open-set pixels. We use the ground truth labels and filter
out the open-set pixels. As shown, TENT achieves better
performance without the backpropagation of the open-set
pixels compared to the original performance. Such a result
again demonstrates that addressing open-set samples is cru-
cial for practical TTA. Note that our approach still outper-
forms TENT adapted with open-set samples filtered out af-
ter a long-term adaptation (e.g., Mapillary). This is mainly
due to the fact that our method discards the wrong predic-
tions well in addition to the open-set samples.

B. Comparisons on ImageNet-C

In Table 10, we also verify the effectiveness of our
method on a large-scale dataset, ImageNet-C [20]. Due
to the fact that experimentation on ImageNet-C is time
consuming, we simulate the long-term adaptation with 10
rounds instead of the 50 rounds used in the main paper.
We evaluate under continuously changing target domains
without resetting the model between each domain. We
use the batch size of 64 and the learning rate of 0.00025
with the SGD optimizer [55], following the previous stud-
ies [61, 42, 9]. We observe that our method again con-
sistently improves the TTA performance on existing base-
line models in closed-set and open-set settings with short-
term and long-term adaptation. Regarding SWR [9], we ob-

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Average
Method Cityscapes BDD-100K Mapillary

TENT [61] 46.73 29.59 35.69 37.34
TENT w/o open-set [61] 47.04 31.12 38.66 38.94
+ Ours 46.76 (+0.03) 30.55 (+0.96) 43.42 (+7.73) 40.24 (+2.90)

Table 9: Effect of removing open-set samples in semantic
segmentation. We filtered out open-set pixels using ground-
truth labels for TENT. We observe performance gain com-
pared to the original performance of TENT.

serve a significant performance drop of SWR when utilizing
the adapted model of the previous iteration for the regular-
ization. Therefore, we use the source pretrained original
model, θo, for the regularization. Other hyper-parameters
are set as the default values.

C. Comparisons with CoTTA
We also compare our method with CoTTA [62], another

seminal work in the continual test-time adaptation. Ta-
ble 11 compares the performances of image classification
and semantic segmentation and the resource costs between
CoTTA and our method applied to TENT [61]. As shown,
although our method utilizes a significantly smaller amount
of memory usage and time consumption, we achieve bet-
ter performance in both image classification and semantic
segmentation. We describe the results in detail.

C.1. Image Classification

We observe that CoTTA [62] shows performance vari-
ations depending on the hyper-parameter pth, which is a
threshold to decide whether to use ensembled predictions or
a single prediction in CoTTA. However, we found it chal-
lenging to find adequate pth for CoTTA with the model ar-
chitecture used in our work (i.e., WideResNet40 [65] for
both CIFAR-10-C and CIFAR-100-C). Although the sup-
plementary of CoTTA illustrates how to find pth, we could
not obtain identical values by using the architecture used
in CoTTA even with the description. Therefore, we report
the comparisons between CoTTA and our method with the
following experimental setups: a) architectures used in the
CoTTA paper (i.e., WideResNet28 [65] for CIFAR-10-C
and ResNeXt-29 for CIFAR-100-C) with their default pth
values, b) architectures used in our main paper with their
default pth values, c) architectures used in our main paper
with pth values we found by following the description of the
supplementary of CoTTA. Table 11a shows that our method
outperforms CoTTA in all three cases even with a substan-
tially smaller amount of memory usage and time consump-
tion. For the experiments, we use the official repository of
CoTTA2.

C.2. Semantic Segmentation

Regarding semantic segmentation, we evaluate CoTTA
with continuously changing target domains with a model
pretrained on GTAV, as done in the main paper. While
TENT [61] and our method show performance gains by us-
ing TTN [42], CoTTA achieves better performance by uti-
lizing batch normalization with the test statistics (i.e., TBN)
than by using TTN. Therefore, we report the performance
of CoTTA using the TBN and the results of TENT and
ours using TTN. In Table 11b, we again observe that our

2https://github.com/qinenergy/cotta

https://github.com/qinenergy/cotta


OursInput Images Ground Truth TENT

: Open-set classes : Predicted as noisy pixels
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Figure 8: Identifying wrong predictions and open-set samples in test-time adaptation (TTA). During the long-term adaptation,
previous models not only show a large performance degradation but also predict the open-set samples as one of the pre-defined
classes learned during the training phase. By filtering out noisy ones, both wrong and open-set samples, we can (a) prevent
performance degradation and (b) identify unexpected obstacles to prevent accidents immediately. Red boxes indicate the
regions of pixels that include misclassified predictions or open-set classes. In the fourth column, on top of the prediction of
the model trained through our method, we color pixels that are filtered out by our method as black.

Method ImageNet-C AverageClosed Open

Source [65] 81.99 81.99 81.99
BN Adapt [46] 68.49 69.65 69.07

TENT [61] 99.71 99.72 99.72
+ Ours 65.62 (-34.09) 67.78 (-31.94) 66.70 (-33.02)

SWR [9] 65.20 68.40 66.80
+ Ours 64.35 (-0.85) 66.33 (-2.07) 65.34 (-1.46)

(a) Error rates after 10 rounds of adaptation.

Method ImageNet-C AverageClosed Open

Source [65] 81.99 81.99 81.99
BN Adapt [46] 68.49 69.65 69.07

TENT [61] 95.79 97.53 96.66
+ Ours 60.82 (-34.97) 64.33 (-33.20) 62.58 (-34.08)

SWR [9] 66.59 69.02 67.81
+ Ours 65.29 (-1.30) 66.86 (-2.16) 66.08 (-1.73)

(b) Error rates after 1 round of adaptation.

Table 10: Comparisons on ImageNet-C. We note the performance gain by reduced error rates.

method outperforms CoTTA with real-domain shifts in se-
mantic segmentation.

Additionally, we compare the memory usage and time
consumption of our method applied to TENT and other
baseline models on semantic segmentation in Table 12. As
shown, our method accompanies a negligible amount of re-
source cost. For example, while our method outperforms
CoTTA, we accompany a substantially smaller amount of
resource cost compared to CoTTA.

D. Further Details on Experimental Setup
D.1. Datasets

Image classification For constructing SVHN-C and
Imagenet-O-C, we apply corruption types used for CIFAR-
10/100-C and TinyImagnet-C by using the official code3 of
Hendrycks [20]. Since the image sizes of Imagenet-O [23]

3https://github.com/hendrycks/robustness

and TinyImageNet [34] are different, we resize the resolu-
tion of Imagenet-O images to 64×64. Among the 5 severity
levels, we use corruption level 5, the most corrupted ver-
sion. Fig. 9 shows the example images of the datasets used
in our work.

Semantic segmentation For the experiments with continu-
ously changing domains, we use the train sets of each target
domain in order to conduct experiments with a long-term
adaptation without using multiple rounds. Note that each
target domain includes a different number of images. For
example, Cityscapes, BDD-100K, and Mapillary include
2975, 7000, and 18000 images, respectively. Due to this
fact, for showing the mIoU changes in Table 3b of the main
paper, we evaluate models an equal number of times (i.e.,
20 times) for each target domain, not after certain steps.
For the experiment with a fixed target domain over multiple
rounds, we use the validation sets of each target domain.

https://github.com/hendrycks/robustness


Method CIFAR-10-C CIFAR-100-C Memory
(MB)

Time
(ms)(a) (b) (c) (a) (b) (c) (MB) (ms)

TENT [61] 56.00 45.84 45.84 45.20 42.34 42.34 556 18.38
CoTTA [62] 31.28 75.97 83.19 41.40 94.52 97.43 36442 379.49

TENT + Ours 20.16 14.10 14.10 33.39 38.62 38.62 565 26.62

(a) Image classification

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Average
Method Cityscapes BDD-100K Mapillary

TENT [61] 46.73 29.59 35.69 37.34
CoTTA [62] 41.03 26.42 40.03 33.23
TENT+ Ours 46.76 (+0.03) 30.55 (+0.96) 43.42 (+7.73) 40.24 (+2.90)

(b) Semantic Segmentation

Table 11: Comparison between our method and CoTTA [62]. We show the results of our method applied to TENT. We
perform better than CoTTA even with a substantially smaller amount of memory usage and time consumption.

(a) Closed-set (b) Open-set

Figure 9: Examples of datasets used in our work. We use
CIFAR-10-C and SVHN-C for the images. In the closet-set
TTA, all images in the mini-batch only include the covariate
shift (i.e., domain shift). On the other hand, in the open-
set TTA, half of the images in the mini-batch only include
covariate shift while the other half includes both covariate
shift and semantic shift (i.e., open-set samples).

D.2. Baselines

Conjugate [15] Conjugate pseudo labeling was recently
proposed on the observation that conjugate functions are ap-
proximate to the optimal loss function. We use the official
codes4 of Conjugate [15].
GCE [68] Generalized Cross Entropy (GCE) loss was first
introduced to address the noisy labels in image classifica-
tion. It emphasizes the learning of correct samples by im-
posing high weights on the gradients of the samples achiev-
ing low loss values, which are highly likely to be correctly
annotated. Following Conjugate [15], we use GCE as the
baseline model to show that simply applying existing noisy-
labeling studies does not guarantee preventing the error ac-
cumulation in TTA. Since the official repository of Conju-
gate includes GCE codes, noted as RPL, we use the same

4https://github.com/locuslab/tta conjugate

Method Memory (MB) Time (ms)
TENT [61] 2714 529
SWR [9] 5969 625

CoTTA [62] 20276 4499
TENT [61] + Ours 3036 685

Table 12: Comparisons on memory usage (MB), and time
consumption (ms) on semantic segmentation. We evaluate
with DeepLabV3Plus-ResNet-50 [6]. For memory usage,
we use the batch size of 2. For the time, we report the
average time after 5000 trials with the image resolution of
3×800×1455 on NVIDIA RTX A5000.

codes in our work.
EATA [49] EATA5 filters out samples that achieve loss val-
ues higher than a pre-defined static threshold and utilizes
the fisher regularization to prevent catastrophic forgetting.
For the fisher regularization, the original paper utilizes the
test set of the source distribution to obtain the weight impor-
tance w(θ). However, we believe that such an assumption is
not valid since the currently widely used corrupted test sets
apply the corruptions to the test samples of the source dis-
tribution. In other words, such an approach necessitates the
test samples to obtain the weight importance before encoun-
tering the test samples. Therefore, we use the train set of the
source distribution to obtain the weight importance. For the
fisher coefficient, we use 1 for CIFAR-10/100-C and 2000
for TinyImageNet-C, which are the default values reported
in the main paper. For applying our method to EATA, we
only replace the filtering method and utilize the fisher regu-
larization.
SWR [9] SWR proposes 1) updating domain-sensitive
weight parameters more than the insensitive ones and 2)
aligning the prototype vectors of the source and the tar-
get distributions [9]. Since SWR does not have an official
repository, we re-implemented the codes and report the re-
sults.

D.3. Implementation Details

Image classification For the image classification on
CIFAR-10/100-C, we mainly use WideResNet40 [65]
which applied the AugMix [22] during the pre-training
stage, following the previous recent TTA studies [42, 9, 59].
The pretrained model is available from RobustBench [11].
For the TinyImageNet-C, we use ResNet50 [18]. We pre-
trained ResNet50 for 50 epochs with a batch size of 256
and a learning rate of 0.01 with cosine annealing applied
using the SGD optimizer [55]. We set λmax = 0.5 for all
experiments.
Semantic segmentation For all semantic segmentation
experiments which utilize the backpropagation, we use
TTN [42] since it brings further performance gain com-
pared to using TBN. For applying our method on seman-
tic segmentation, we use a relaxed version: we select pixels
achieving ŷco − ỹco ≥ −0.2. For applying our method on
SWR, we reduce the coefficient of the mean entropy max-

5https://github.com/mr-eggplant/EATA

https://github.com/locuslab/tta_conjugate
https://github.com/mr-eggplant/EATA


Method CIFAR-10-C CIFAR-100-C TinyImageNet-C

Source [65] 18.27 46.75 76.71
BN Adapt [46] 14.49 39.26 61.90

TENT [61] 45.84 42.34 98.10
+ Ours (logit) 33.46 (-12.38) 72.08 (+29.74) 92.24 (-5.86)

+ Ours (softmax) 14.10 (-31.74) 38.62 (-3.72) 60.87 (-37.23)

Table 13: Variant of our method. We observe that utilizing
the softmax outputs outperforms utilizing the logit values.

imization loss (λmax) from 0.5 to 0.2. The main reason is
that the mean entropy maximization works as regularization
and reduces the effect of entropy minimization loss. How-
ever, since our work improves the quality of entropy min-
imization, the mean entropy maximization rather hampers
further performance gain from our method. By reducing
the coefficient of mean entropy maximization, our method
improves the semantic segmentation performance. Such an
observation again demonstrates that our method improves
the quality of the entropy minimization loss. We set other
hyper-parameters as the default values.

E. Further Details on Resource Costs
We illustrate how we compute the resource costs includ-

ing memory usage and time consumption. For memory
usage, as mentioned in the main paper, we use the offi-
cial code provided by TinyTL [4]. Note that the activa-
tion size occupies memory usage more than the parameter
size [4, 59]. For ENT, which updates all parameters, we
add the parameter size and activation size of all parame-
ters. For TENT [61], which updates the affine parameters
in the batch normalization layers, we only add the param-
eter size and activation size of the affine parameters. For
SWR [9], which updates all parameters and utilizes an ad-
ditional model for the regularization, we add the parameter
size of the whole model parameters in addition to the mem-
ory usage of ENT. For EATA [49], which also utilizes an
additional model for the fisher regularization, we only add
the parameter size of the affine parameters in addition to the
memory usage of TENT. For our method applied to TENT,
in addition to the memory usage of TENT, we add 1) the pa-
rameter size of all parameters and 2) the parameter size of
the output tensors. We add the parameter size of all param-
eters since we need the whole model parameters in order
to compute ỹ. Also, since we utilize ỹ, we add the mem-
ory of the output tensors that is negligible compared to the
parameter size of the whole model.

F. Variant of Proposed Method
To compare the prediction values between θa and θo, our

method utilizes the probability values of the softmax out-
puts. In Table 13, we also analyze our method by using the
logit values instead of the softmax values. We observe that
utilizing logit values fails to bring large performance gains

compared to using the softmax values. The main reason is
that the logit values generally increase regardless of the cor-
rect or wrong samples. However, such an issue is not found
in the softmax outputs since the values are normalized to
sum-to-one vectors.


