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Abstract

Semi-Supervised Learning (SSL) under class distribu-
tion mismatch aims to tackle a challenging problem wherein
unlabeled data contain lots of unknown categories unseen
in the labeled ones. In such mismatch scenarios, tradi-
tional SSL suffers severe performance damage due to the
harmful invasion of the instances with unknown categories
into the target classifier. In this study, by strict mathemat-
ical reasoning, we reveal that the SSL error under class
distribution mismatch is composed of pseudo-labeling er-
ror and invasion error, both of which jointly bound the
SSL population risk. To alleviate the SSL error, we pro-
pose a robust SSL framework called Weight-Aware Distil-
lation (WAD) that, by weights, selectively transfers knowl-
edge beneficial to the target task from unsupervised con-
trastive representation to the target classifier. Specifically,
WAD captures adaptive weights and high-quality pseudo-
labels to target instances by exploring point mutual infor-
mation (PMI) in representation space to maximize the role
of unlabeled data and filter unknown categories. Theo-
retically, we prove that WAD has a tight upper bound of
population risk under class distribution mismatch. Exper-
imentally, extensive results demonstrate that WAD outper-
forms five state-of-the-art SSL approaches and one stan-
dard baseline on two benchmark datasets, CIFAR10 and
CIFAR100, and an artificial cross-dataset. The code is
available at https://github.com/RUC-DWBI-ML/
research/tree/main/WAD-master.

1. Introduction
Deep neural networks (DNNs) have achieved remark-

able success in fully-supervised learning tasks. However,
sufficient labeled data are usually unavailable in real ap-
plications due to the expensive annotation cost or even
domain-specific knowledge required [8, 11, 12, 13]. Semi-
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Figure 1. Example of class distribution mismatch. The unlabeled
data contains categories that are unseen in labeled ones.

supervised learning (SSL), as a powerful weakly-supervised
technique, provides an effective way to improve DNNs by
exploiting massive unlabeled data, and then it weakens the
demand for human annotation [9, 14, 24, 34]. Generally,
traditional SSL approaches assume that the labeled and un-
labeled instances share the same class distribution, i.e., they
come from identical categories. However, in real scenarios,
this assumption hardly holds as unlabeled data inevitably
contains lots of categories unseen in labeled ones. For
instance, if unlabeled data are collected from the internet
using keywords “cat” and “dog” (target categories), they
may contain instances unrelated to these categories, such
as “deer,” “horse,” or “airplane”(unknown categories), as
shown in Figure 1. Similar scenarios occur in medical di-
agnoses [11, 15] and house annotations of remote-sensing
images [12, 13]. SSL in such mismatch scenarios is called
SSL under class distribution mismatch [12, 15].

Under class distribution mismatch, some SSL ap-
proaches [8, 11, 15, 19, 37] have been proposed. Usually,
most of them exploit pseudo-labeling or consistency regu-
larization to expand the labeled pool, as well as filter in-
stances with unknown categories by weights, just as shown
in Figure 2. UASD [11] and T2T [19] filter out the instances
with unknown categories by leveraging a hard weight, i.e., a
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Figure 2. The paradigm of SSL under class distribution mismatch.

threshold, on the accumulated network’s output or the out-
of-distribution score. Although these two approaches re-
duce the invasion of unknown categories, it is inevitable to
keep off amounts of unlabeled instances with target cate-
gories. Instead of hard weights, Guo et al. [15] assign a soft
weight to the unlabeled instances according to the consis-
tent empirical risk loss. In such case, many instances with
unknown categories tend to have consistent outputs and get
high weights, just as shown in Appendix 4.3, and then they
may invade the target classifier and impair its performance.

Moreover, the existing SSL approaches with consistency
regularization and pseudo-labeling heavily rely on the per-
formance of the target classifier. Both [15] and [19] anno-
tate pseudo labels by leveraging the prediction of the target
classifier in training. Once the target classifier trained on
limited labeled instances is biased by some instances with
unknown categories, the subsequently updated target classi-
fier may allow more unknown instances to invade. Accord-
ingly, it is promising to propose a novel SSL approach that
captures pseudo labels from representations produced by all
available data rather than an immature classifier.

In this study, by strict theoretical analyses, we decou-
ple the SSL error under class distribution mismatch into
pseudo-labeling error and invasion error (seen in Subsec-
tion 3.2). According to this discovery, a robust SSL frame-
work called weight-aware distillation (WAD) is then pro-
posed to distill pseudo labels and weights from the represen-
tation space to the target classifier. Unlike the conventional
distillation approaches [7, 17, 28] that simply train the stu-
dent model using the prediction probability of the teacher
model, WAD is a weight-aware distillation framework that
adapts to mismatch problems. Specifically, we learn the
representations from labeled and unlabeled data by unsuper-
vised contrastive coding, as the teacher model. Then WAD
captures adaptive weights as well as high-quality pseudo
labels from the teacher model by leveraging point mutual
information(PMI), and thus, the target classifier could se-
lectively utilize the instances from target categories while
filtering the ones with unknown categories.

Our main contributions are listed as follows.

i) We theoretically analyze the population risk in an SSL
manner and reveal that the SSL error under class dis-
tribution mismatch is jointly controlled by pseudo-
labeling error and invasion error.

ii) We propose a distillation-based SSL framework,
WAD, that captures weights as well as pseudo labels
from robust representations to the target classifier to
filter unknown categories and make full use of targeted
unlabeled instances as well.

iii) Theoretically, we verify that the population risk of
WAD is tightly bounded. Experimentally, WAD out-
performs five state-of-the-art SSL approaches and one
standard baseline on several datasets.

2. Related Work
This section reviews the SSL approaches under class dis-

tribution match and mismatch. For contrastive learning,
please refer to Appendix 1.
Semi-Supervised Learning. The traditional SSL strate-
gies include entropy minimization, consistency regulariza-
tion, and pseudo-label. Entropy minimization [14] incorpo-
rates unlabeled data in supervised learning by minimizing
the entropy of the unlabeled instance’s prediction. The con-
sistency regularization [24, 31, 34] techniques mainly make
the prediction on two views of one instance consistent. Π-
Model [31] focuses on reducing the distance of prediction
between one instance and its stochastic perturbation. Un-
like the Π-Model, temporal ensembling [24] adopts the en-
semble of predictions as the target to achieve more stable
performance, while Virtual Adversarial Training (VAT) [27]
explores adversarial disturbances of the unlabeled instances
on the prediction of the target classifier. Pseudo-Labeled
based approaches [3, 4, 26, 33] annotate some unlabeled
instances with pseudo labels to expand the labeled data.
By leveraging the class probability of the unlabeled data,
a pseudo-labeling method is proposed [26]. Furthermore,
FixMatch [33] uses the weakly augmented unlabeled in-
stances to create a pseudo label and enforce consistent pre-
diction against its strong augmented version.

These traditional SSL approaches perform well when the
class distribution is matched, but they suffer severe perfor-
mance degradation under class distribution mismatch.
Semi-Supervised Learning under Class Distribution
Mismatch. To tackle class distribution mismatch, several
studies [11, 15, 19, 37] adopt the traditional SSL strate-
gies with the assistance of soft or hard weights. UASD [11]
leverages a threshold to the accumulated network’s output
to eliminate the instances with unknown categories, fol-
lowed by pseudo-labeling highly confident ones. Similarly,
T2T [19] adopts a hard weight on the out-of-distribution
score to conduct filtering and leverages consistency con-
straints to expand the labeled pool. Furtherly, CCSSL [37]
filters out unknown instances by taking both hard and soft
weights into consideration. These approaches with hard
weights may eliminate too many instances from target cat-
egories. Instead of hard weights, DS3L [15] assigns soft
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Figure 3. The selective distillation in WAD. Traditional distillation methods force the output of the student model (si) to align with that of
the teacher model (ti), resulting in a wrong decision boundary. However, WAD selectively distills benefit knowledge to student and filter
the negatives, such as s2 and s3, by weights to rectify the decision boundary and solve the problem of class distribution mismatch.

weights to unlabeled instances according to the consistent
empirical risk loss. However, SSL with pseudo labeling or
consistency regularization heavily rely on the performance
of the target classifier, and thus they are susceptible to being
invaded by instances with unknown categories.

Additionally, a model-level approach [40] is proposed
by modifying batch normalization to counter the unknown
categories. Also, ORCA [8], a novelty detection approach,
leverages uncertainty-based adaptive margins to circumvent
the bias caused by the mismatched distribution.
Knowledge Distillation. Knowledge distillation aims to
transfer knowledge from a big model (teacher model) to
a smaller one (student model) [35]. It is widely applied
to two distinct fields: model compression and knowledge
transfer. Model compression is training a small student
model to mimic the big teacher model or the ensemble of
models. Buciluǎ et al. [7] compress the ensembles of the
neural networks into a single one. While the approaches
based on transfer knowledge concentrate more on effec-
tively transferring and are mainly divided into logits-based
and representation-based distillation [39]. The logits-based
distillation approaches usually train the student model by
leveraging the output of the teacher model as the soft la-
bel [35]. Ba et al. [1] propose to push the logits, i.e., the
output before the softmax function, of the shallow neural
network to mimic the ones from a deep neural network. Fur-
therly, Hinton et al. [17] suggest training a student model
to match the combination of the softmax distribution of
the teacher model and ground truth. Representation-based
approaches enable the student model to learn information
from the intermediate layers [35]. Kim et al. [21] propose
transferring the attention map from the teacher to the stu-
dent. Park et al. [30] introduce a novel approach that trans-
fers the mutual relationship of the instances learned from
the teacher to the student, similar to our intention.

However, these approaches mentioned above aim to
transfer as much information as possible to the student
model and ignore the unknown instances under class dis-

tribution mismatch, which may severely hurt the training
of the student model. Unlike the conventional approaches,
WAD is a weight-aware distillation framework that selec-
tively transfers the knowledge to the student model, as
shown in Figure 3, to fully use the beneficial knowledge and
filter the unknown ones by weights. Specifically, WAD dis-
tills high-quality pseudo labels to the instances with target
categories and filters the instances with unknown categories
by assigning them tiny weights.

3. Method
In this section, we propose WAD, an SSL framework un-

der class distribution mismatch. Concretely, Subsection 3.1
introduces the problem statement, followed by analyses of
the SSL error in Subsection 3.2. Subsection 3.3 subse-
quently presents WAD. Finally, theoretical studies of WAD
are conducted in Subsection 3.4.

3.1. Problem Statement

In this study, we investigate the K classification prob-
lem in an SSL manner wherein limited labeled data Dl =
{(xi,l, yi,l)}mi=1 and massive unlabeled instances Du =
{xi,u}ni=1 are accessible, xi,l ∈ X , yi,l ∈ Y , Y =
{1, ...,K} and m≪ n. Under class distribution mismatch,
the unlabeled instances are not guaranteed to belong to the
K target categories in Y .

3.2. Population Risk Analysis

To make full use of the unlabeled data, we assign a
pseudo label to each unlabeled instance, denoted as ŷ, and
then build the target classifier, hT̂ : X → Y , to map the
given instance to one of the known categories in Y , where
T̂ = {xi,l, yi,l}mi=1 ∪ {xi,u, ŷi,u}ni=1, ŷi,u ∈ Y . Here, T̂ in-
dicates the instances in hand, that is, labeled instances and
unlabeled instances assigned with pseudo labels. Then, the
population risk [32] of the target classifier learned from both
labeled and unlabeled data with the pseudo label (T̂ ) is con-
trolled by the generalization gap, training error, and SSL



error, as shown in Eq.1. The generalization gap is the gap
between the population risk and the average prediction loss
across all instances with target categories (T ). Note that T
contains all the accessible instances with target categories,
including labeled and unlabeled. And every instance in T
is assumed with ground truth labels in ideal. The training
error is the average empirical loss across T̂ . The SSL er-
ror is the gap between the average empirical loss across the
instances with target categories (T ) and the average empir-
ical loss across both labeled data and unlabeled ones with
pseudo labels (T̂ ). We depict the relations among these sets
in Figure 4.

E(x,y)∼D[l(x, y;hT̂ )]

≤
∣∣∣∣E(x,y)∼D[l(x, y;hT̂ )]−

1

|T |
∑

(x,y)∈T

l(x, y;hT̂ )

∣∣∣∣︸ ︷︷ ︸
generalization gap

+

∣∣∣∣ 1

|T̂ |

∑
(x,y)∈T̂

l(x, y;hT̂ )

∣∣∣∣︸ ︷︷ ︸
training error

+

∣∣∣∣ 1

|T |
∑

(x,y)∈T

l(x, y;hT̂ )−
1

|T̂ |

∑
(x,y)∈T̂

l(x, y;hT̂ )

∣∣∣∣︸ ︷︷ ︸
SSL error

,

(1)

whereD is the data distribution of the instances that belong
to target categories in the realistic world, i.e., D = X × Y .
l(·, ·;hT̂ ) : X × Y → R denotes the loss function of the
classifier hT̂ learned from T̂ .

Theoretical analyses [36] have confirmed that the gener-
alization gap of DNNs can be bounded, and empirical ev-
idence suggests that the training error of DNNs can be re-
duced almost to zero [32]. Thus, the essential component
concerning population risk is the SSL error. Under class
distribution mismatch, in addition to the wrongly annotated
instances with target categories, the ones with unknown cat-
egories also contribute to the SSL error as they invade the
training of the target classifier as outliers. Accordingly, we
decouple the SSL error into pseudo-labeling and invasion
error, as shown in Eq.2. For a detailed derivation process,
please refer to Appendix 5.2.∣∣∣∣ 1

|T |
∑

(x,y)∈T

l(x, y;hT̂ )−
1

|T̂ |

∑
(x,y)∈T̂

l(x, y;hT̂ )

∣∣∣∣
≤

∣∣∣∣ 1

|T |
∑

(x,y)∈T

l(x, y;hT̂ )−
1

|T̂ |

∑
(x,y)∈T̂\U

l(x, y;hT̂ )

∣∣∣∣︸ ︷︷ ︸
Pseudo−labeling error

+

∣∣∣∣ 1

|T̂ |

∑
(x,y)∈U

l(x, y;hT̂ )

∣∣∣∣︸ ︷︷ ︸
Invasion error

(2)

target categories unknown categoriestarget categories

Labeled data Unlabeled data

: Instances with ground truth labels : Instances with pseudo labels
: Instances with pseudo or ground-truth labels

Figure 4. The relations among data sets Dl, Du, T , U , T̂ . Note
that T̂ ̸= T ∪ U due to the instances with target categories in Du

are assigned with pseudo labels while not the ground truth ones in
T .

where U indicates the unlabeled instances with unknown
categories and T̂ = T̂\U ∪ U .

In Eq.2, the pseudo-labeling error is contributed by the
wrongly annotated instances with target categories, as it is
the gap of the average empirical loss caused by the inconsis-
tency of the ground truth and pseudo labels. Thus, the qual-
ity of pseudo-labels assigned to unlabeled instances within
the target distribution determines this error, and accurate
pseudo-labeling may alleviate it. By contrast, the invasion
error is the average empirical loss across the instances with
unknown categories that is caused by the negative effect of
those untargeted instances. By Eq.1& Eq.2, we find that
the population risk of the target model is jointly controlled
by pseudo-labeling error and invasion error. Accordingly, to
mitigate the SSL error, we need to filter those instances with
unknown categories and accurately annotate the unlabeled
instances with target categories as well.

3.3. Weight-aware Distillation Framework

With the aim of mitigating the pseudo-labeling and in-
vasion errors, we design an SSL framework named WAD,
which delivers the knowledge of pseudo labels and weights
from robust representations to the target classifier.

3.3.1 Pseudo Label Learning

Most existing SSL approaches produce pseudo labels by
leveraging an immature target classifier, which cause catas-
trophic error once invaded by some instances with unknown
categories, just as discussed in Section 1. To solve this
problem, we distill the pseudo labels from a representa-
tion space (Teacher model) which is learned from all la-
beled and unlabeled instances by contrastive learning in an
unsupervised manner and then transfer it to the target clas-
sifier (Student model). The teacher model could produce
closely aligned representations for instances from the same
categories and maximize the mutual information among
them [2, 18, 20, 25].

Denoted the labeled and unlabeled representations
learned by the teacher model, ϕ, as Zl = {zj,l,k}mj=1 and
Zu = {zi,u}ni=1, respectively, where k ∈ Y . Inspired
by the characteristic of contrastive learning, one effective
approach for building the pseudo-label of an unlabeled in-
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Figure 5. Illustration of WAD. The pseudo labels and weights determined by point mutual information (PMI) in robust representations of
the teacher model are used to participate in training the target classifier. Then, some reliable instances selected according to LWAD are
regarded as labeled ones to update the knowledge gradually. “•” and “•” indicates the labeled and unlabeled instance respectively. “//”
means stop gradient.

stance is to identify the labeled instance with the highest
PMI and then assign the label of it to unlabeled ones. The
PMI between the unlabeled and labeled representation is
formulated as Eq.3.

PMI(zi,u, zj,l,k) = log

[
p(zj,l,k|zi,u)
p(zj,l,k)

]
(3)

Although the conditional and marginals distributions, i.e.,
p(zj,l,k|zi,u) and p(zj,l,k), cannot be directly evaluated, we
prove that PMI is proportional to the inner product in Ap-
pendix 2, as described in Eq.4.

f(zi,u, zj,l,k) ∝ PMI(zi,u, zj,l,k). (4)

where f = cos(·, ·), ∥zi∥ = 1, and ∝ stands for “propor-
tional to”.

Therefore, the pseudo label is formulated as Eq.5.

ŷi,u = argmax
k

f(zi,u, zj,l,k) (5)

Consequently, the class label of the labeled instance with
the maximum PMI is assigned to the unlabeled one.
The Eq.5 can precisely capture the PMI from the represen-
tation space to produce high-quality pseudo labels and then
mitigate pseudo-labeling error.

3.3.2 Unknown Categories Filtering

To mitigate the invasion error, the instances with unknown
categories should be filtered out. Following the Subsub-
section 3.3.1, a higher PMI between the labeled and unla-
beled instance suggests a stronger association or similar-
ity between the two instances, further indicating a higher

likelihood of the unlabeled instance belonging to the same
class distribution as the labeled one. However, some hard
instances that have similar PMI between two target cate-
gories, i.e., laid on the decision boundary of two target cat-
egories, may introduce incorrect pseudo labels and hurt the
performance of the target classifier. Hence, we also propose
a ratio among the first and second maximum PMI to eval-
uate the confidence of the pseudo labels. Then, the weight
is defined as Eq.6 to avoid the negative effect caused by the
wrong labels and unknown categories.

wi,u = g1 (p̃i,u)× g2

(
1− q̃i,u

p̃i,u

)
, (6)

wherein,
p̃i,u = max

j
f(zi,u, zj,l,k)

q̃i,u = max
v,k ̸=ŷi,u

f(zi,u, zv,l,k)

In Eq.6, g1(·) and g2(·) can be interpreted as any mono-
tonically increasing functions. The former in Eq.6 aims to
estimate the likelihood of the unlabeled instance belonging
to target categories. The higher this item, the more chances
of the instance in the target class distribution are. The latter,
g2(·), penalizes instances whose labels are ambiguous be-
tween the nearest and second-nearest target categories. The
lower this item, the larger probability of incorrect pseudo
labels is. As shown in Figure 6, the weight could filter in-
stances with unknown categories and those incorrectly an-
notated ones with target categories, while the ones from
target categories with high-quality pseudo labels are en-
couraged. Thus, by weight, WAD selectively distills the
knowledge beneficial to the target classifier from the teacher
model, and the invasion error is then mitigated.



3.3.3 Weight-aware Knowledge Distillation

Weight-aware knowledge distillation loss. The knowl-
edge of pseudo labels and weights captured from robust
representations is applied in the distillation process. In each
feed-forward process, pseudo labels and weights are aggre-
gated to the target classifier, as shown in Figure 5. Then,
we propose the weight-aware knowledge distillation loss,
including the traditional supervised loss Ll in labeled data
and weight-aware supervised loss Lu in unlabeled data as
Eq.7.

LWAD = Ll + Lu, (7)

wherein,

Ll =
1

|Dl|
∑

(xi,l,yi,l)∈Dl

ℓ(h(xi,l; θ), yi,l)

Lu =
1

|Du|
∑

xi,u∈Du

wi,uℓ(h(xi,u; θ), ŷi,u)

The traditional supervised loss Ll aims to minimize the
distance between the predicted probability and the ground
truth label. While the weight-aware supervised loss Lu

mainly focuses on selectively transferring the beneficial
knowledge from the teacher model to the student model by
weights to mitigate the negative effect from unknown cate-
gories and improve the target classifier as well. Moreover,
LWAD is the loss function that is adopted to train the target
classifier hT̂ mentioned in Eq.1. Consequently, WAD lever-
ages the pseudo labels and weights to mitigate the pseudo-
labeling and invasion errors, following alleviating the SSL
error, which has been proved in Subsection 3.4.
Knowledge-update in Training. The knowledge of pseudo
labels and weights may be biased as the labeled data is lim-
ited. Accordingly, after several forward iterations, we pro-
gressively add some reliable instances to labeled data. Be-
cause the feedback from the target classifier, i.e., loss, is
highly related to the weights and reflects the training error,
we consider the reliability according to it. Then, the crite-
rion for updating is formulated as Eq.8.

ci,u = ℓ(h(xi,u; θt), ŷi,u) (8)

where ℓ(·, ·) is the cross-entropy function, and θt is the pa-
rameters of the target classifier in the current iteration.

The reliability of xi,u is enhanced when ci,u takes a
lower value. Then, WAD leverages Eq.8 to identify the
top α% reliable instances from the unlabeled data and puts
them in the labeled data while removing them from the un-
labeled data. Moreover, we adopt the polynomial decay [5]
to dynamically adjust α to prevent the gradually increased
negative effect from unknown categories with the iteration.
The details are shown in Appendix 3. A visualization of the
number of selected reliable instances with target categories
is also provided in Appendix 4.4. Consequently, the pseudo

labels and weights are updated in the subsequent distilla-
tion steps, as shown in Figure 5, with the aim of optimizing
the target classifier. Finally, the schematic diagram and al-
gorithm process is presented in Figure 6 and Algorithm 1,
respectively.

3.4. Theoretical Studies

This subsection provides the theoretical studies about the
WAD’s SSL error, as shown in Theorem 1. Detailed proof
of Theorem 1 is given in Appendix 5.

Theorem 1 Given |T | instances that i.i.d. sampled from D
as {(xi, yi)}|T |

i=1, |U | instances that is not i.i.d with D, and
T̂ = {(x, ŷ)|(x, y) ∈ T ∪ U, ŷ ∈ Y} where D = X × Y .
Assume the loss function l(·, y;hT̂ ) is λl-Lipschitz continu-
ous for all y, hT̂ and bounded by H , the regression function
is λµ-Lipschitz continuous, training error l(x, y;hT̂ ) = 0 ,
∀(x, y) ∈ T̂ . w indicates the average of weights, and ξ is
the maximum PMI which determines the pseudo label, with
the probability of at least 1− γ,∣∣∣∣ 1

|T |
∑

(x,y)∈T

l(x, y;hT̂ )−
1

|T̂ |

∑
(x,y)∈T̂\U

l(x, y;hT̂ )

∣∣∣∣
+

∣∣∣∣ 1

|T̂ |

∑
(x,y)∈U

l(x, y;hT̂ )

∣∣∣∣ (9)

≤
√

4− 4ξ(λl + λµHK) +
w|U |H
|T̂ |

+

√
2H2log(1/γ)

|T | .

From Theorem 1, we find that the smaller w and the
larger ξ, the tighter the bound in the SSL error is. Specif-
ically, just as verified in Appendix 5, the pseudo-labeling

error bounded by
√
4− 4ξ(λl + λµHK) +

√
2H2log(1/γ)

|T |

and the invasion error bounded by w|U |H
|T̂ | can be reduced by

minimizing the weights w of unlabeled instances with un-
known categories and maximizing the confidence of pseudo
labels, just as WAD does. Thus, WAD’s SSL error has a
tight upper bound.

4. Experiments
Subsection 4.2 presents the comparison results between

WAD and five state-of-the-art SSL approaches, as well as
one standard baseline. Furthermore, an ablation experiment
is conducted in Subsection 4.3, while sensitivity analyses
and visualization are carried out in Subsection 4.4 and Sub-
section 4.5, respectively. For more experiments, please refer
to Appendix 4.2 & 4.5.

4.1. Experimental Setups

Datasets. Our experiments are conducted on two bench-
mark datasets, CIFAR10 [23] and CIFAR100 [23], as well
as an artificial cross-dataset that comprises subsamples
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Figure 6. The schematic diagram of how WAD works. First, each unlabeled instance is assigned a pseudo label according to the max PMI
with labeled data in (1), as shown in (2). Then, the instances with wrong labels and unknown categories are assigned a tiny weight to avoid
the negative effect, as shown in (3).

Algorithm 1: Weight-aware distillation framework
Input: Labeled data: Dl, Unlabeled data: Du, Max

iterations: N , Initial value of α: α0, Set of
update steps: G.

Output: target classifier hT̂ .
1 Embedding: Zl ← ϕ(Dl), Zu ← ϕ(Du).
2 Initialize model parameter;
3 for t = 0 to N − 1 do
4 ∀xi,u ∈ Du, distill the knowledge about pseudo

label, ŷi,u, using Eq.5;
5 ∀xi,u ∈ Du, distill the knowledge about weight,

wi,u, using Eq.6;
6 α = polynomial decay(α0);
7 Using Eq.7 training the target classifier;
8 if t ∈ G then
9 C = ∅;

10 Calculate the reliability of each unlabeled
instance using Eq.8.

11 Ascending the instances according to
reliability and add the top α% instances
with pseudo labels to C.

12 Dl = Dl ∪ C, Du = Du\{x|(x, y) ∈ C}.
13 end
14 Return target classifier hT̂ .

from CIFAR10, CIFAR100, Flowers [29], Food-101 [6],
and Places-365 [41]. The CIFAR10 and CIFAR100 datasets
consist of 50,000 training and 10,000 testing images of 10
and 100 categories, respectively. The cross-dataset contains
138,000 unlabeled instances from 674 categories. All im-
ages from the datasets are resized to 32×32. For further
details, please refer to Appendix 4.1.

Settings. i) The proportion of the instances with un-
known categories in unlabeled data, named as mismatch
proportion, are set as 20%, 40%, 60%, and 80% in this
work. For instance, the unlabeled data has a 60% mismatch
proportion with 4,000 instances with target categories and

6,000 instances with unknown categories. ii) Randomly
sampled 8% instances from the training dataset that belong
to target categories are regarded as labeled data. The re-
maining 92% of instances with target categories and some
instances with unknown categories are composed of unla-
beled data according to the mismatch proportion.

Details. The teacher model is with a Resnet-18 [16]
backbone and is trained using SimCLR [10]. And we
maintain consistency with SimCLR in all implementation
details. The target classifier is a WideResnet-28-2 net-
work [38] with input size 32 × 32, following Huang et
al. [19]. Both the encoder and target classifier are trained
from scratch. We train the target classifier using the Adam
optimizer [22] with a learning rate of 5 × 10−4. Further-
more, the epochs and batch size are set as 100 and 32, re-
spectively. The augmentations include random horizontal
flipping, random translation by up to 2 pixels, and Gaus-
sian input noise with a standard deviation of 0.15 is used
in the training of the target classifier as same as Guo et
al. [15]. Moreover, we apply global contrast normalization
and ZCA normalized, which is widely used in the pretreat-
ment [15, 11], on CIFAR10. For simplicity, the functions
g1(·) and g2(·) act as identical mapping with no additional
constraints. The initial value of α is set as 0.1 and decayed
five times until it reached 0. It remains the same across
all experiments unless otherwise specified. Finally, the ap-
proaches on each dataset run three times, and the mean ac-
curacy and standard deviation are reported; the best one is
highlighted in bold.

Baselines. WAD is compared to five state-of-the-art ap-
proaches, including DS3L [15], T2T [19], CCSSL [37],
UASD [11] and ORCA [8], as well as one baseline model
that only trains labeled data. Moreover, T2T and ORCA are
performed without pretraining tasks for fairness, indicated
by “T2T w\o pre.” and “ORCA w\o pre.” .

4.2. Experimental Results

This subsection presents the experimental results of the
classification tasks performed on CIFAR10, CIFAR100,



CIFAR10 CIFAR100
Method 20% 40% 60% 80% 20% 40% 60% 80%
Baseline 94.33±0.45 94.33±0.45 94.33±0.45 94.33±0.45 36.98±1.79 36.98±1.79 36.98±1.79 36.98±1.79
DS3L 91.82±1.89 91.38±1.73 92.47±0.25 90.82±1.50 23.92±2.78 24.92±4.41 26.20±4.29 24.55±3.67
UASD 95.02±0.77 95.03±0.77 93.87±0.13 93.37±0.35 39.85±0.35 37.55±2.24 36.03±0.73 29.87±2.07
CCSSL 86.08±0.12 84.00±0.17 83.13±0.19 81.15±0.25 41.72 ±0.85 41.20±0.58 40.60 ±0.22 39.67±0.31
T2T - - - - 43.70±0.50 42.82±0.45 40.12±0.71 37.35±1.10
T2Tw\o pre. - - - - 39.40±0.36 36.78±0.16 36.65 ±1.09 34.62±1.68
ORCA 95.40±0.74 94.13±1.16 94.35±0.67 93.82±0.93 29.50±0.25 31.12±0.71 31.18±0.40 31.65±1.86
ORCA w\o pre. 93.32±0.99 92.55±2.02 92.37±0.90 89.65±6.95 22.13±1.33 23.98±0.79 23.37±1.14 22.98±0.53
WAD 98.43±0.14 97.88±0.33 97.90±0.20 97.77±0.33 51.65±2.86 50.00±1.43 46.88±0.20 45.45±1.73

Table 1. Experimental results on CIFAR10 and CIFAR100 under different mismatch proportions.

and a cross-dataset. For CIFAR10, we designated two cat-
egories as the target and eight as unknown, while twenty
classes are considered as target categories and eighty cat-
egories as unknown in CIFAR100. Moreover, we con-
structed a cross-dataset integrated with five datasets to eval-
uate WAD in the case that the unlabeled data contains mas-
sive unknown categories. Specifically, six classes from CI-
FAR10 were assigned as target categories, and 668 cate-
gories from four external datasets are unknown. The exper-
imental results conducted on CIFAR10, CIFAR100, and the
cross-dataset are presented in Table 1 and Table 2.

Results on CIFAR10 and CIFAR100. From Table 1, we
have four findings as follows. i) WAD outperforms all com-
pared methods on CIFAR10 and CIFAR100 with different
mismatch proportions, demonstrating its remarkable per-
formance. ii) WAD retains stable performance improve-
ment under different mismatch proportions, exhibiting fur-
ther improvement of 4.1%, 3.55%, 2.91%, and 3.44% for
mismatch proportions of 20%, 40%, 60%, and 80% on CI-
FAR10. This highlights that WAD can achieve robust per-
formance even under a high mismatch proportion. iii) The
accuracies of DS3L on CIFAR10 and CIFAR100 are lower
than baseline, as ORCA does. This is because it weights the
instances according to consistent empirical risk loss, result-
ing in the invasion of many unknown categories in training,
as shown in Appendix 4.3. iv) In CIFAR100, WAD sur-
passes baseline 8.47% for 80% mismatch proportion. This
demonstrates that WAD is still effective when the unlabeled
data contains large unknown categories. Therefore, WAD
achieves outstanding performance on datasets with differ-
ent mismatch proportions and exhibits excellent robustness
to the scale of unknown categories. Notably, T2T can not
apply to the binary classification task, and the accuracy is
not reported here.

Results on cross-dataset. Further, we investigate the limits
of WAD’s tolerance for unknown categories and then per-
form the experiments on an artificial cross-dataset contain-
ing 668 unknown categories from four datasets. From Ta-
ble 2, we observe that WAD still maintains an improvement
compared to the baseline. Obviously, the other compared

Cross-dataset
Method 20% 40% 60% 80%
Baseline 66.83±1.37 66.83±1.37 66.83±1.37 66.83±1.37
DS3L 50.02±6.69 50.69±5.26 49.03±5.93 51.46±6.99
UASD 61.18±0.29 57.02±0.58 54.70±2.25 45.67±1.72
CCSSL 64.83±0.27 65.15±0.56 64.16±0.58 64.16±0.45
T2T 66.56±2.80 65.08±0.76 63.76±0.53 62.83±0.77
T2T w\o pre. 64.44±0.15 62.47±0.79 62.23±0.75 61.42 ±0.65
ORCA 65.53±0.85 65.51±1.25 66.44±0.80 66.46±1.28
ORCA w\o pre. 65.37±0.78 63.63±0.64 64.42±0.53 66.34±1.05
WAD 67.13±0.59 67.20±1.65 67.80±0.07 67.88±0.37

Table 2. Experimental results on cross-dataset under different mis-
match proportions.

methods were lower than the baseline. This indicates that
WAD could boost the performance even on a dataset that
contains massive instances with unknown categories.

4.3. Ablation Studies

We conducted ablation studies on the CIFAR10 dataset
using different models: ”+Pse.” (trained with labeled data
and unlabeled instances with pseudo labels), ”+Pse.&W.”
(trained with pseudo labels and fix weights), and the WAD
model (trained with all components). We also examined
the impact of the weight function and explored alternative
choices for g(·) through identical mappings, gi(·), and the
transformation g̃i(·) = exp(·). Results are presented in Ta-
ble 3, and w\o gi(·) means removing gi(·) from Eq.6.
Effects of pseudo labels. From Table 3, we observe that
compared with the baseline, 2.72% and 1.52% accuracy im-
provement can be obtained by leveraging the unlabeled in-
stances with pseudo labels, under 20% and 80% mismatch
proportion, respectively. This indicates that the pseudo la-
bels are beneficial to improving performance.
Effects of weights. According to Table 3, we observe
two findings about weights. i) Training by leveraging both
pseudo labels and weights exhibits the comparable perfor-
mance to that without weights under 20% mismatch pro-
portion. This is because there are fewer instances with
unknown categories under 20%. Then, the model train-
ing with fixed weights will result in a sub-optimal model



compared to explicit labels. ii) The weights improve the
accuracy by 0.99% over without it, under 40% mismatch
proportion, while the gap decreases with the mismatch pro-
portion increasing. This demonstrates that the weights are
effective in filtering the instances with unknown categories.
And the performance degradation is because the absence of
the knowledge-update makes the algorithm fail to prevent
the increased negative effect from unknown categories.
Effects of knowledge-update. We have two findings ac-
cording to Table 3. i) The accuracy with knowledge-
update surpasses the one only leveraging pseudo labels and
weights, and the gap between them reaches 1.77% under
80% mismatch proportion. This indicates that knowledge-
update plays important roles in WAD. ii) WAD, training
with all components, shows its outstanding performance
compared to the ones removing other parts. This demon-
strates that the aggregation of all the proposed parts could
achieve significant improvement.
Effects of each part of Eq.6. From the Table 3, we have the
following two findings. i) both “w\o g1(·)” and “w\o g2(·)”
are worse than WAD, illustrating their equal importance for
WAD. ii) Assigning the same mappings to g1(·) and g2(·)
yields better performance, as the same mappings share the
same scales.

Setting 20% 40% 60% 80%

Baseline 94.33±0.45 94.33±0.40 94.33±0.4 94.33±0.45
+Pse. 97.05±0.48 95.98±0.75 96.65±0.35 95.85±0.88
+Pse.&W 96.62±0.47 96.97±0.78 97.22±0.38 96.00±0.48
w\o g1(·) 97.85±0.57 96.98±0.11 94.38±1.52 94.38±0.74
w\o g2(·) 97.98±0.53 96.85±0.14 94.58±0.46 95.85±0.35
g̃1(·)× g2(·) 97.50±0.07 97.15±0.71 94.95±0.14 94.48±0.46
g1(·)× g̃2(·) 96.60±0.57 96.93±0.04 95.65±0.21 95.65±0.07
WAD 98.43±0.14 97.88±0.33 97.90±0.20 97.77±0.33

Table 3. Ablation Studies under different mismatch proportions.

4.4. Sensitivity Analysis

This subsection investigates the influence of parameter
α, which controls how many instances with high reliability
will be added to labeled data. Hence, we vary the initial
value of α and evaluate WAD’s performance on CIFAR10.
The results are reported in Table 4. We find that WAD de-
picts the comparable performance with different values of
α, although lower values of α achieve slightly better perfor-
mance with 20% and 40% mismatch proportions. This in-
dicates that WAD is not sensitive to α because the selected
instances may have higher similarities. Thus, WAD can
achieve a robust performance for a wide range of α but not
too large, preventing the invasion of unknown categories.

4.5. Visualization

To comprehend how WAD works, we visualize pseudo
labels assigned to unlabeled instances with target categories

Setting 20% 40% 60% 80%

α = 0.05 98.62±0.28 98.12±0.39 97.63±0.03 97.63±0.19
α = 0.10 98.43±0.14 97.88±0.33 97.90±0.20 97.77±0.33
α = 0.15 98.35±0.25 97.73±0.15 97.93±0.08 97.42±0.63

Table 4. Sensitivity analysis under varied mismatch proportions.

alongside the ground truths of labeled ones in different col-
ors, as depicted in the left part of Figure 7. We observe that
instances with target categories are separated into two clus-
ters and follow the same distribution as labeled instances.
Additionally, the weight distribution, shown on the right
side of Figure 7, depicts that WAD assigns smaller weights
to unknown categories and larger ones to target ones, mak-
ing it feasible to filter out harmful unknown categories and
to distill useful information from target ones.
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Figure 7. Visualization of pseudo labels and weights on CIFAR10
under 60% class distribution mismatch.

5. Conclusions
To tackle class distribution mismatch in an SSL man-

ner, we theoretically reveal that the SSL error is com-
posed of pseudo-labeling error and invasion error under
mismatch scenarios. Then, a distillation-based SSL frame-
work, WAD, is proposed to transfer knowledge, such as
pseudo labels and weights, from the representations to the
target model. Theoretical analyses verify that the popula-
tion risk of WAD is tightly bounded. Extensive experiments
on two benchmark datasets and a cross-dataset demonstrate
the superiority of WAD.

In the near future, we would like to investigate whether
some instances from unknown categories are beneficial to
target task and how to utilize them if so.
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