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Abstract

Test-time adaptation (TTA) aims to adapt a pre-trained
model to the target domain in a batch-by-batch manner dur-
ing inference. While label distributions often exhibit im-
balances in real-world scenarios, most previous TTA ap-
proaches typically assume that both source and target do-
main datasets have balanced label distribution. Due to the
fact that certain classes appear more frequently in certain
domains (e.g., buildings in cities, trees in forests), it is natu-
ral that the label distribution shifts as the domain changes.
However, we discover that the majority of existing TTA
methods fail to address the coexistence of covariate and la-
bel shifts. To tackle this challenge, we propose a novel label
shift adapter that can be incorporated into existing TTA ap-
proaches to deal with label shifts during the TTA process
effectively. Specifically, we estimate the label distribution
of the target domain to feed it into the label shift adapter.
Subsequently, the label shift adapter produces optimal pa-
rameters for target label distribution. By predicting only
the parameters for a part of the pre-trained source model,
our approach is computationally efficient and can be eas-
ily applied, regardless of the model architectures. Through
extensive experiments, we demonstrate that integrating our
strategy with TTA approaches leads to substantial perfor-
mance improvements under the joint presence of label and
covariate shifts.

1. Introduction

Despite the recent remarkable improvement of deep neu-
ral networks in various applications, the models still suffer
from distribution shifts between source distribution and tar-
get distribution. One type of distribution shift, known as
covariate shift, occurs when the target distribution p;(x)
differs from the source distribution p;(z). In autonomous
driving, for instance, models may degrade significantly dur-
ing testing due to ambient factors such as weather and lo-
cation. To design the models robust to covariate shifts, un-
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Figure 1. We consider the test-time adaptation scenario, when co-
variate and label shifts occur simultaneously. After deploying
the pre-trained model, the model is adapted to the target domain.
However, existing methods often suffer from the coexistence of
covariate and label shifts. Employing our method enables online
adaptation under shifted target label distributions.

supervised domain adaptation literature [9, 10, 23, 19] has
explored the transfer of knowledge learned from labeled
source data to unlabeled target data.

To be more practical in real-world scenarios, test-time
adaptation (TTA) algorithms [46] have emerged to enhance
practicality in real-world scenarios by adapting deep neu-
ral networks to the target domain during inference. Specif-
ically, TTA approaches optimize the model parameters
batch-by-batch using unlabeled test data, avoiding addi-
tional labeling costs. Previous TTA studies have mitigated
the performance degradation caused by covariate shift by
enhancing normalization statistics [41, 11, 24], optimizing
model parameters with entropy minimization [46, 35], or
utilizing pseudo labels [20].

Although the natural data encountered in practice often
exhibits long-tailed label distribution, most previous TTA
methods assume that the model is trained on class-balanced
data. This assumption overlooks another type of distribu-
tion shift, known as label shift, in which label distribu-
tion varies between source p,(y) and target p;(y). Label
shift has been studied extensively in the long-tailed recog-
nition literature [18, 6, 8, 15]. Considering only one type
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Figure 2. Plots of accuracy with different degrees of label shift in
CIFAR-10-C [14]. Although we train source model using balanced
softmax [39], most TTA baselines show lower performance than
source model, when label shift is severe. On the other hand, our
method is more robust to label shifts than other TTA methods.

of distribution shifts in real-world scenarios is infeasible, as
both covariate and label shifts frequently occur simultane-
ously [29, 22]. For example, different object classes such
as buildings and trees are more prevalent in certain environ-
ments, such as cities or forests.

We found that the majority of existing TTA approaches
fail to adapt the pre-trained model when it is trained on
a long-tailed dataset. This is because most TTA methods
that employ entropy minimization [46, 35, 11, 7, 24] are
flawed due to the model bias towards the dominant classes
in source data. In other words, since the predictions on
test samples are often biased toward the majority classes of
training data, utilizing entropy minimization would lead the
model to increase its confidence in predicting the dominant
classes. While some recent TTA studies have addressed
similar challenging issues, such as temporally correlated
test data [1 1] and class-imbalanced test samples [53], they
do not cover the situation where the source domain data has
a long-tailed label distribution, which can lead to bias in
the source model. Furthermore, we observed that training
the source model on a long-tailed dataset with long-tailed
recognition techniques, such as balanced softmax [39], is
insufficient to stabilize TTA algorithms, as shown in Fig. 2.

To tackle such a non-trivial issue, we propose a novel la-
bel shift adapter, which is designed to adapt the pre-trained
model according to the label distribution during inference.
Before deploying the model to the server, we train the label
shift adapter with a pre-trained source model, which takes
the label distribution as input. The label shift adapter is op-
timized to produce the optimal parameters according to the
label distribution. To make our method applicable to any
model architecture, we design the label shift adapter to pre-
dict only the parameters associated with a part of the source
model. After model deployment, we estimate the label dis-
tribution of target domain data for injecting the appropriate

input into the label shift adapter during inference. More-
over, our proposed method can be easily integrated with
TTA methods such as TENT [46] and IABN [11] to adapt
the model to the target domain. Combining TTA approaches
with the proposed label shift adapter enables robust model
adaptation to the target domain, even in the presence of co-
variate and label shifts simultaneously. Through extensive
experiments, we demonstrate that our method outperforms
the existing TTA methods when both source and target do-
main datasets have class-imbalanced label distributions.
In summary, the main contributions are as follows:

e We introduce a novel label shift adapter that produces
the optimal parameters according to the label distribu-
tion. By utilizing the label shift adapter, we can de-
velop a robust TTA algorithm that can handle both co-
variate and label shifts simultaneously.

* Our approach is easily applicable to any model regard-
less of the model architecture and pre-training process.
It can be simply integrated with other TTA algorithms.

* Through extensive experiments on six benchmarks,
we demonstrate that our method enhances the perfor-
mance significantly when source and target domain
datasets have class-imbalanced label distributions.

2. Related Work

Source-Free Domain Adaptation. Unsupervised domain
adaptation (UDA) methods have been widely applied in
cross-domain applications such as classification [9, 10], ob-
ject detection [51], and semantic segmentation [55]. How-
ever, UDA approaches require access to both source and tar-
get domains simultaneously. This restriction makes these
approaches frequently impractical due to computational
costs and data privacy concerns. On the other hand, source-
free domain adaptation (DA) [23, 19] overcomes this limi-
tation by adapting a pre-trained model to the target domain
using only unlabeled target data. However, existing source-
free DA methods barely consider label shifts, which limits
their applicability in real-world scenarios.
Domain Adaptation for Label Shift. Several methods [3,
, 43, 17, 29, 22] have been developed to investigate a
more realistic scenario of domain adaptation in which co-
variate and label shifts co-occur. To alleviate label shift,
previous studies employ the re-weighting method [3, 28]
by estimating target domain label distribution. Recent ap-
proaches employ an alternative training scheme [29] and a
secondary pseudo label [22] to alleviate label shifts in un-
supervised domain adaptation. However, it is challenging
to adapt the model to the target domain in real time using
these methods. Therefore, we focus on addressing such co-
existence of covariate and label shifts in the TTA setting.
Test-Time Adaptation. Fully test-time adaptation [46]
aims to improve model performance on target domain data



through adaptation with unlabeled test samples during in-
ference. Previous work [4 1] improves the robustness under
covariate shift by using the statistics of test batch in nor-
malization layer. TENT [46] further optimizes affine pa-
rameters of batch normalization layers using entropy mini-
mization. Before the pre-trained model deployment to the
server, several approaches train additional modules to ap-
propriately interpolate training and test statistics [56, 24] or
regularize the model parameters [7] for TTA. Recent sev-
eral studies [4, 11, 53] address the model to be more robust
under non-i.i.d or class-imbalanced test samples. However,
they assume that the source domain datasets are balanced,
where the pre-trained model is not biased towards the dom-
inant classes due to the class-imbalanced label distribution.
Different from the existing studies, our research tackles the
cases in which both source and target domain datasets are
class-imbalanced, which is more challenging and practical.
Long-Tailed Recognition. It is natural that datasets have
long-tailed distributions in the real world. Previous stud-
ies addressed this issue by altering loss functions [25, &,
, 40, 21], adjusting logits [33, 39], and employing mul-
tiple experts that are specialized in different label distri-
butions [49, 54, 52]. Recently, several studies such as
LADE [15], SADE [52], and BalPoE [1] have introduced
test-agnostic long-tailed recognition, where the training la-
bel distribution is long-tailed while the test label distribu-
tion is agnostic. However, LADE needs the true test label
distribution to adjust the logits, and SADE and BalPoE re-
quire multiple expert architectures. Due to these aspects,
they are difficult to apply the TTA algorithms. Inspired by
such studies, we design a novel label shift adapter, which
has the capability to handle unknown test label distribution
using training long-tailed distribution. In contrast to previ-
ous methods, our method is applicable to any model regard-
less of its architecture and can be employed without true
test label distribution. In this paper, we focus on handling
the label shifts in TTA setting.
Predicting Weights. A hypernetwork [12] is a deep neu-
ral network to produce the weights of another neural net-
work. Hypernetworks have been developed for federated
learning [42], multi-task learning [34, 26, 31], and contin-
uous learning [45, 5]. Moreover, adapter layers between
existing layers of the model have been proposed for fine-
tuning [27, 16]. The key functional difference is that our
method produces the parameters to handle the label shifts.

3. Method
3.1. Problem Formulation

In the TTA task, labeled samples from the source domain
Dy = {(z,y) ~ ps(z,y)} and unlabeled samples from the
target domain D; = {z ~ p;(x)}. TTA aims to predict
the labels of target domain samples by updating the source

model to the target model during inference. Specifically,
under the TTA scheme, the model receives a mini-batch z;
of test samples in the ¢-th inference step.

Generally, previous TTA literature assumes only covari-
ate shift, where p;(z) # p:(y). In other words, the existing
TTA methods only consider class-balanced datasets in train-
ing and testing. Different from previous works, we assume
the joint presence of covariate and label shifts [17, 43, 22]:
po(x) # pi(x) and p,(y) # pi(y). which is more practi-
cal and natural in real-world scenarios. In particular, when
ps(y) has long-tailed label distribution, TTA methods are
flawed, despite leveraging long-tailed recognition methods.
It is due to the fact that most TTA methods are not able to
reduce the model’s bias toward the majority classes. Our
goal is to design a novel method for TTA that can perform
stably regardless of ps(y) and p;(y), while the model can
be adapted during inference.

3.2. Label Shift Adapter

In this paper, we propose a novel label shift adapter for
TTA to handle label distribution shifts in TTA. Entropy min-
imization [46, 35, 7, 11, 24] is widely used for TTA to op-
timize the model with unlabeled test samples during infer-
ence. Intuitively, entropy minimization makes individual
predictions confident. During test time, entropy minimiza-
tion loss is utilized as follows:

Lenp=— Y [f()log f(x), @)

z~pe(x)

where f denotes a model f : * — y. However, if the
pre-trained source model f(x) is biased toward the majority
classes due to the long-tailed label distribution of Dy, the
predictions on test samples also would be biased towards
the majority classes in D, regardless of label distribution of
D;,. In other words, it is not appropriate to minimize under
the shifted label distribution because the model prediction
estimates p(y|z), which is strongly coupled with p(y) and
may differ from p; (y), as explained by the Bayes’ rule [15]:

ps(ylz) = ps(y)ps(zly) _ _Ds (y)ps(zly)
ps() >-ePs(e)ps (zlc)’
where c denotes the class index.

To address diverse p;(y) trained with a long-tailed distri-
bution p;s(y), recent long-tailed recognition methods [52, 1]
have proposed the training strategy utilizing the multiple di-
verse experts, which are specialized in handling different la-
bel distributions, such as long-tailed and uniform label dis-
tributions. However, these approaches are not directly ap-
plicable to TTA setting, as they are designed for multiple-
expert model architectures. Inspired by this strategy, we
aim to develop the model f that is suitable for TTA by dy-
namically adapting the model f to diverse target label dis-
tributions p; (y). Therefore, we introduce a novel label shift
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Figure 3. Overview of the proposed method. (a) We take a frozen pre-trained source model trained with D;. (b) Before model deployment,
we train a label shift adapter with a frozen source pre-trained model. (c) After model deployment, we adapt the model to the target domain

by integrating the label shift adapter into other TTA algorithms.

adapter that can produce the optimal parameters according
to label distribution during inference while it is applicable
to any model regardless of model architecture.

Fig. 3 shows the overview of the proposed method. Our

method consists of three stages. First, our method takes the
pre-trained source model in an off-the-shelf manner. Before
model deployment, we train the label shift adapter with the
frozen pre-trained model, which produces optimal param-
eters depending on the label distribution. Then, our label
shift adapter can be integrated into other TTA algorithms,
such as TENT [46], after model deployment. In specific,
we optimize the affine parameters in the normalization lay-
ers of a feature extractor while adapting the model to the
target label distribution p,;(y) by estimating the label distri-
bution of D; during inference.
Label Shift Adapter. Before training a label shift adapter,
we pre-train a model f : * — y using a source domain
data D, where the model consists of a feature extractor Fy
and a classifier weights W € R™*“ b € R™“. C and d
denote the number of classes and channel of the output i €
R'*9 of the feature extractor, respectively. As several TTA
methods [7, 56, 24] include an additional stage for training
extra components, the label shift adapter is trained with the
frozen pre-trained model before model deployment.

The label shift adapter G, receives the label distribution
7 € RC as conditional input. For applicability and effi-
ciency, we design the label shift adapter to generate the pa-
rameters for a part of the model. With 7, the label shift
adapter G predicts affine parameters v, € R4 3, €
R!*? and the weight difference AW € R*C Ap € R'*C
for the classifier weights W, b. The affine parameters ~y;, and
B, are applied to the hidden feature map h, which is the out-
put of the feature extractor: h = Fy(z). Then, we compute
the output g using W + AW and b + Ab. Formally, ¢ is
computed in the classifier layer as follows:

= (yh+Br) - (W+AW) + (b+Ab).  (3)

Objective Function. The label shift adapter aims to cre-
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Figure 4. Visualization for understanding 7 in a generalized logit
adjusted loss. By adjusting 7, we can control the bias during train-
ing. As 7 increases, the decision boundary

ate the optimal parameters depending on the label distribu-
tion 7. During training the label shift adapter, we sample 7
based on 7, which is the label distribution of D;.

To optimize the label shift adapter, we employ a gener-
alized logit adjusted loss [33, 1], which incorporates a con-
trolled bias during training:

['gla = - Z

(zi,yi)~Ds

yilogo(y; + 7log ), €]

where o denotes a softmax function. ¢; indicates the output
logits before computing the softmax function. 7 € R' is a
scalar value for controlling the bias towards different parts
of the label distribution. We sample 7 at each iteration dur-
ing the label shift adapter training. Specifically, the label
distribution 7 is sampled from three types of label distribu-
tion {7, u, 75 }, where 7, indicate inverse label distribution
that is obtained by inverting the order of training label dis-
tribution 7. u denotes uniform label distribution. We select
the appropriate 7 for sampled label distribution 7, where we
set the hyperparameter 7 matching each m C {mq, u, 74}
For example, if 7, is sampled for 7, 7 is set to 0, resulting in



the use of a cross-entropy loss. On the other hand, 7 is set to
1 and 2 for u and 7, respectively, which correspond to the
balanced softmax [39] and inverse softmax [52] that simu-
late uniform and inverse label distributions. Intuitively, as 7
increases, the decision boundary moves away from minority
classes and towards the majority classes [33, 1], as shown in
Fig. 4. Technically, it is possible to sample 7 in continuous
label space instead of discrete label distributions. However,
we found that sampling three distinctive label distributions
is empirically sufficient to train the label shift adapter.
Test-Time Adaptation. After model deployment, we adapt
the pre-trained model f using test samples x; at ¢-th infer-
ence step. In specific, our method updates affine parameters
v, B in normalization layers of feature extractor Fyp. With
t-th test samples 2, the model minimizes the prediction en-
tropy, following the previous work [46].

However, minimizing the entropy of the predictions ¥,
is insufficient to adapt the model when label shift occurs.
Therefore, the label shift adapter creates a part of parame-
ters (i.e., Yp, Bn, AW, and Ab) of f depending on estimated
label distribution y To estimate the label distribution )} of
D,, we employ an exponential moving average. To be spe-
cific, the estimated target label distribution Y, at t-th step is
updated recursively:

 (u ift =0
Ve = _ - ) ) &)
agy + (1 —a)Ve—q1, ift>0

where a € [0, 1] denotes the momentum hyper-parameter,
U = Tit >ty §¢ is the average model prediction on test

samples x; at the t-th step. We initialize J> as u € R,
which is a uniform distribution vector: u[c] = %,¢ =
1,2,---,C. Based on estimated target label distribution
Vi1, the label shift adapter produces the optimal param-
eters. With jﬁt,l, we can adapt the model to the target do-
main using the refined entropy minimization as follows:

Lent=— > f@:G6(Y))log f(2:G4()),  (6)

x~pi(x)

where the estimated label distribution )> is fed into the label
shift adapter G, to handle label distribution shift, and the
generated parameters from Gy adjusts the model f as shown
in Eq. 3. Intuitively, while our strategy adapts the model
to the target label distribution, entropy minimization boosts
the confidence of correct classes.

Techniques for Label Shift Adapter. In long-tailed recog-
nition literature [18, 2], it is known that the classifier layer
plays an essential role in resolving the label shifts. Based
on this intuition, we have designed the label shift adapter
to produce the parameters only for the parts associated with
the classifier layer. Specifically, AW and Ab is the weight
difference of W and b, and 7, and f3}, shift the feature vec-
tor h properly. By predicting only a small portion of the

model instead of predicting the entire model weights, our
label shift adapter offers various benefits. Our label shift
adapter is readily applicable to any pre-trained models, re-
gardless of the model architecture. Moreover, this strategy
is computationally efficient, as the label shift adapter re-
quires negligible extra computational costs.

We discovered that it is more effective to utilize a map-
ping vector m € R to make the label distribution 7 a
scalar, instead of directly using label distribution 7 as the
input of the label shift adapter. In specific, mTnr € R! is
fed into label shift adapter, instead of 7. Here, the mapping
vector is the class-wise coefficients that increase in propor-
tion to the order of class frequency in the training set. Em-
pirically, this strategy makes the label shift adapter training
more stable. Instead of using a complex label space as a
condition, this technique feeds the degree of imbalance to
label shift adapter, which can easily interpret the condition.
Rationale behind Label Shift Adapter. Label shift adapter
plays a crucial role in handling label shifts by adjusting the
parameters based on the estimated label distribution at test
time. Since the label distribution in the target domain is un-
known, it is possible to train the label shift adapter by sim-
ulating various label distributions using the source domain
dataset. By virtue of this process, the label shift adapter can
learn to produce appropriate parameters based on the label
distribution. Since the label distribution in the target domain
is unknown, it is possible to train the adapter by simulating
various label distributions using the source domain dataset.
Moreover, this approach also allows for the effective han-
dling of biases caused by the label distribution of the source
domain dataset. This is why transferring the model from the
source domain to the target domain proves to be an effective
approach.

4. Experiments
4.1. Experiment Setup

We evaluate the effectiveness of our proposed method
on six datasets widely used in domain adaptation literature.
In contrast to the traditional TTA setting, we utilize imbal-
anced versions of the datasets for training and evaluation.
CIFAR-10&100 and ImageNet [6, 14]. For the training
set of the source domain, we utilize CIFAR-10-LT, CIFAR-
100-LT [6], and ImageNet-LT [30], which are the long-
tailed version of CIFAR-10, CIFAR-100 and ImageNet, fol-
lowing the protocol in long-tailed recognition work. Note
that the imbalance ratio p is defined as p = {5F ™, where
n; denotes the number of class 7 samples in the dataset. In
our experiments, the imbalance ratio of CIFAR-10-LT and
CIFAR-100-LT is set to 100. ImageNet-LT is obtained by
sampling from ImageNet using a Pareto distribution with
a = 6 [30], following the previous work. The categories
in the training set of ImageNet-LT contain between 5 and



CIFAR-10-C CIFAR-100-C
Method Forward-LT Uni. Backward-LT Forward-LT Uni. Backward-LT
Avg. Avg.
50 25 10 1 10 25 50 \ 50 25 10 1 10 25 50

Source 56.78 55.27 52.82 44.74 37.28 34.78 33.88 45.08 \ 33.53 31.95 29.36 22.14 14.98 12.37 11.12 2221
BN Stats 78.60  76.21 71.77 53.19 35.00 28.62 25.18 52.65 49.03 46.61 42.92 31.30 20.07 16.09 13.86 3141
ONDA 77.93 7594 7234 55.28 37.71 31.76 28.64 54.23 4830  46.52  42.82 31.77 20.58 16.55 14.41 31.57
PseudoLabel 79.39 7640  71.37 47.90 30.68 24.95 22.61 50.47 50.80 4824 4356 25.51 17.03 14.28 11.99  30.20
LAME 58.27 55.88 5227 41.60 34.14 32.15 31.54 43.69 32.63 3099  28.12 20.81 13.94 11.58 1029  21.19
CoTTA 80.45 77.86  73.12 53.75 33.89 27.80 24.01 52.98 4832 4571 42.30 30.42 21.65 18.14 1633  31.84
NOTE 76.27 74.79 72.18 61.98 53.13 50.94 49.45 62.68 4452  43.15 40.52 34.25 23.92 20.60 19.11 32.30
TENT 80.36  76.99 71.28 43.65 28.64 23.01 20.32 49.18 51.74 4924  44.05 21.30 15.86 13.40 1125 2955
+Ours 80.39 78.03 73.35 53.91 37.85 32.83 30.32 55.24 5243  50.17  46.07 33.27 21.23 17.12 15.13  33.63
+0.03  +1.04 +2.06 +10.25 +9.21 +9.82 +10.00  +6.06 +0.69  +0.93  +2.02  +11.98 4537 +3.72  +3.87 +4.08

TIABN 76.23 7484 7222 62.22 53.29 50.88 49.69 62.77 44.79 4324  40.63 34.01 23.95 20.67 19.16 3235
+Ours 80.58 78.62  75.26 63.34 68.54 70.07 71.64 72.58 52.06  49.71 46.03 36.84 29.29 2633 2550 37.97
+4.35 +3.78 +3.04 +1.12 +1524 +19.20 +21.95 49.81 +7.26 +6.47 +5.40 +2.83 +5.34 +5.67 +6.33  +5.62

Table 1. Comparison of accuracy on CIFAR-10-C and CIFAR-100-C. The source model is trained with CIFAR-10-LT and CIFAR-
100-LT. We report the average accuracy of 15 corruption types on various test label distributions. Uni. indicates the uniform distribution.

Numbers under Forward-LT and Backward-LT denote the imbalance ratio. We integrate our method into TENT [

] and JABN [11].

Method Forward-LT Uni. Backward-LT Ave.
50 25 10 1 10 25 50

Source 26.15 2564 2467 2146 1828 17.07 16.56 21.40
BN Stats 3947 3889 3771 33.63 2948 28.07 27.20 33.49
ONDA 3945 3883 3771 33.56 29.33 28.01 26.96 33.41
PseudoLabel 41.46 40.78 39.31 3349 29.79 2836 27.67 34.41
LAME 26.08 2557 2458 2137 1820 17.01 16.48 21.33
CoTTA 40.22 39.81 39.10 3540 30.21 28.72 27.65 34.44
NOTE 4243 41.65 4036 35.17 3099 29.14 28.17 35.41
TENT 3940 3873 3727 29.05 2931 2826 27.28 32.76
+Ours 4452 43.03 40.86 34.18 31.32 3121 31.28 36.63
+5.12  +4.30 +3.59 +5.14 +2.01 +2.94 +3.99 +3.87

IABN 4244  41.69 4039 3520 31.02 29.20 28.22 35.45
+Ours 46.88 45.16 42.68 35.72 33.18 3291 33.17 38.53
+4.44  +3.47 +229 +0.52 +2.16 +3.71 +4.95 +3.08

Table 2. Comparison of accuracy on ImageNet-C. We report the average accuracy of 15 corruption types on various test label distribu-
tions. Uni. indicates the uniform distribution. Numbers under Forward-LT and Backward-LT denote the imbalance ratio.

1280 samples, with an imbalanced ratio set to 256. For eval-
uation, we utilize three corrupted test sets: CIFAR-10-C,
CIFAR-100-C, and ImageNet-C [14], which consist of 15
corruption types at five severity levels. The severity level is
set to 5 and 3 for CIFAR-C and ImageNet-C, respectively.

Following the test-agnostic long-tailed recognition set-
ting [15, 52], the models are evaluated on multiple subsets
of test datasets that follow different label distributions. We
construct three types of test label distributions as follows:
(i) Forward distribution: as the imbalance ratio increases, it
becomes similar to the training label distribution. (ii) Uni-
form distribution: a class-balanced test dataset. (iii) Back-
ward distribution: the order of classes is reversed, causing
it to deviate more from the training distribution, as the im-
balance ratio increases. Note that the degree of label shifts
increases from Forward to Backward.

VisDA-C [38]. VisDA-C is a challenging large-scale bench-

mark whose training data is synthesized through 3D model
rendering, and its test data is sampled from the real world.
The dataset contains 12 categories. We utilize an imbal-
anced dataset VisDA-C (RSUT), where source and target
domains are subject to two reverse Pareto distributions, fol-
lowing the previous work [43]. Here, RSUT denotes the
combination of Reversely-unbalanced Source (RS) and Un-
balanced Target (UT) distribution. The label distributions
of RSUT are described in the supplementary.

OfficeHome [44]. This dataset comprises four domains,
each consisting of 65 categories. We also employ Office-
Home (RSUT) [43], which is created by the same protocol
as VisDA-C (RSUT). Since the artistic domain in Office-
Home is too small to sample an imbalanced subset, we only
utilize the remaining three distinct domains (e.g., Clip Art,
Product, and Real-World), as prior work [22].

DomainNet [37]. We employ a subset of DomainNet [43],



Method VISDA-C Method C—-P C—R P-C P—-R R—C R-P Avg,
Source 51.45 Source 45.39 44.53 32.94 64.33 40.22 68.92 49.39
BN Stats 49.33 BN Stats 44.30 48.27 35.63 62.17 40.73 62.20 48.88
ONDA 50.68 ONDA 44.84 47.57 35.20 62.09 40.61 63.83 49.02
PseudoLabel 49.50 PseudoLabel  47.98 49.34 37.71 62.42 39.38 63.21 50.01
LAME 50.72 LAME 41.68 42.27 32.40 63.57 37.92 66.94 47.46
CoTTA 49.88 CoTTA 44.46 48.19 35.63 62.34 40.73 62.20 48.92
NOTE 49.37 NOTE 43.02 42.38 38.64 61.69 41.40 64.33 48.58
TENT 48.68 TENT 49.60 49.51 38.96 63.08 41.25 64.52 51.15
+Ours 72.97 +Ours 49.60 53.13 37.81 66.45 41.35 68.35 52.78

+24.29 0.00 +3.62 -1.15 +3.37 +0.10 +3.83 +1.63

Table 3. Comparison of accuracy on Table 4. Comparison of accuracy on three domains of Officchome (RSUT): C: Clipart, P:
Product, R: Realworld.

VisDA-C (RSUT).

Method C—-P C-»R C-»S P—-C P—»R P—»S R—-C R—P RS S—C S—P S—R Avg
Source 5273 7487 52.15 5842 8122 61.82 66.03 69.58 5531 6392 59.68 7543 64.26
BN Stats 56.81 77.05 54.10 63.63 81.12 60.22 67.38 70.00 56.84 71.75 6872 80.18 67.32
ONDA 56.82 7832 5481 6399 81.79 61.86 67.14 70.09 58.11 71.60 69.34 80.77 67.89
PseudoLabel 61.81 7743 56.25 62.56 81.64 62.04 71.06 7389 5849 71.81 7038 80.12 68.96
LAME 4920 7245 48.69 57.81 80.09 60.85 6525 6819 5397 61.00 5566 7325 6220
CoTTA 56.88 77.33 54.18 63.69 8131 6026 6744 70.07 57.14 71.69 68.85 80.56 67.45
NOTE 5538 74.15 5798 6559 81.66 64.65 7129 7332 63.28 7228 6831 8025 69.01
TENT 63.26 77.10 59.76 66.69 80.02 6432 71.88 7434 6225 7313 72.64 78.73 70.34
+QOurs 63.26 81.11 60.39 67.38 8299 67.23 71.88 7483 6440 7188 7156 82.67 71.63

0.00 +4.01 +0.63 +0.69 +297 +291 0.00 +049 +2.15 -125 -1.08 +394 +1.29

Table 5. Comparison of accuracy on four domains of DomainNet: C: Clipart, P: Painting, R: Real, S: Sketch.

Forward-LT

Uni.

Backward-LT

comprising 40 categories from four domains: Real, Clipart,
Painting, and Sketch. As the label shift between these do-
mains is inherent, we did not need to modify the label distri-
bution of the dataset. The visualization of label distribution
in DomainNet are illustrated in the supplementary.

Baseline Methods. Note that we utilize the pre-trained
model trained using balanced softmax [39], which is a
widely used long-tailed recognition approach. Source indi-
cates the pre-trained model with the source data using bal-
anced softmax. We compare our method with the follow-
ing TTA baselines: BN stats [41], ONDA [32], PseudoLa-
bel [20], LAME [4], CoTTA [47], TENT [46], IABN [11],
and NOTE [11]. Note that IABN is a normalization layer
introduced in the NOTE paper. Since NOTE has been pro-
posed for temporally correlated test samples, IABN layer
has the capability to handle the class-imbalance in a batch.
Implementation Details. We utilize ResNet-18 [13]
as the backbone for CIFAR-10 and CIFAR-100, and
ResNeXt [50] for ImageNet. We also employ ResNet-50 for
OfficeHome and DomainNet, and ResNet-101 for VisDA-
C, which are pre-trained on ImageNet. For fair compar-
isons, the same architecture and optimizer are utilized for
all TTA baselines. In all experiments, the source domain
model is trained using Balanced softmax [39], a representa-
tive long-tailed recognition method. During inference, the
batch size is set to 64 in all experiments. Further details

Dataset  Prior Avg.

50 25 10 1 10 25 50

75.26 68.54
75.17 68.65

29.29
29.79

46.88 45.16 42.68 3572 33.18 3291 33.17 3853
47.71 45.69 4298 36.02 3295 32.65 33.23 38.75

Table 6. Comparison between estimated label distribution and
target prior on CIFAR-10-C, CIFAR-100-C, and ImageNet-C.
Prior indicates that the true target label distribution is utilized as
prior knowledge for label shift adapter, instead of estimated label
distribution. We conduct the experiments using ITABN+Ours [11].

70.07
70.51

71.64
72.86

72.58
73.91

80.58
81.58

78.62
79.05

63.34

CIFAR-10-C 69.55

26.33
27.46

25.50
27.03

37.97
38.99

52.06
53.59

49.71
50.95

46.03
46.96

36.84

CIFAR-100-C 3717

x| Sx[N%

ImageNet-C

regarding the hyperparameters for each baseline and our
method are described in the supplementary.

4.2. Results on Corruption Data

Table 1 reports the average accuracy on 15 corruption
types in CIFAR-10-C and CIFAR-100-C. The results on
each target domain are presented in the supplementary. The
results demonstrate that the performance of previous TTA
methods is significantly inferior in the backward long-tailed
distributions compared to the forward settings. This issue
arises because TTA models learn based on model predic-
tions, which are biased toward the majority classes.

In contrast, it is noteworthy that our strategy consider-



Dataset Method Forward-LT Uni. Backward-LT Avg,
>0 - 10 ! 10 25 >0 Method MACs Params
Logit Adjust 78.89 77.20 73.58 58.86 46.12 4195 39.72  59.47
CIFAR-10-C  IM Loss 76.54 7539 7234 5643 49.79 47.58 46.62 60.67 fnget'lg ggggiﬁ H?%
Ours+IABN  80.58 78.62 75.26 6334 68.54 70.07 71.64 72.58 urs : :
Table 8. Computational costs. We
Logit Adjust 4323 41.16 3755 3094 2544 23.67 2338 3219 easure MACs and the number of
CIFAR-100-C M Loss 4410 4264 4000 3336 2361 2054 1901 3191 parameters (Params.).
Ours+IABN  52.06 49.71 46.03 36.84 2929 2633 2550 37.97

Table 7. Comparison with logit adjustment [

bl

ably improves the accuracy when label shift is severe. As
our method produces the optimal parameters depending on
the target label distribution, the models can be adapted to
the target domain stably, even in the presence of severe la-
bel shifts. Furthermore, when integrated with IABN [1 1], a
normalization layer for addressing the class imbalance in a
batch, our method yields the best performance. Neverthe-
less, it should be noted that relying solely on IABN may not
be sufficient in managing severe label shifts.

As shown in Table 2, our method consistently outper-
forms the existing TTA approaches on ImageNet-C, a more
challenging dataset. Integrating our proposed method con-
sistently improves the performance in all test sets. Further-
more, our method also improves the accuracy on the uni-
form dataset: TENT (+5.14%) and IABN (+0.52%). The
promising results demonstrate the practicality and effective-
ness of our method under covariate and label shifts.

4.3. Results on DA Benchmarks

We evaluate the effectiveness of our method in compar-
ison with TTA methods on three domain adaptation bench-
marks: VisDA-C (RSUT), OfficeHome (RSUT), and Do-
mainNet. In VisDA-C (RSUT) and OfficeHome (RSUT),
we utilize the test datasets, including the reversed Pareto
label distribution. Surprisingly, the existing TTA methods
perform worse than the source pre-trained model for eval-
uation data of VisDA-C, as shown in Table 3. This result
indicates that the baselines do not work when the label shift
is severe. In contrast, TENT combined with our method im-
proves the performance significantly for VisDA-C test data.

The results on OfficeHome (RSUT) are reported in Ta-
ble 4. We discovered that since the number of test sam-
ples in OfficeHome (RSUT) is limited (e.g., Clipart: 1,017,
Product: 1,985, Real: 1,235), TTA methods generally do
not result in significant performance improvements com-
pared to the source model. Nonetheless, our method ex-
hibits a general improvement on the OfficeHome (RSUT)
datasets, except for P—C.

Table 5 shows the results on the DomainNet dataset,
where the label shifts between different domains already
exist. This result demonstrates that our approach generally
outperforms the baselines. Moreover, we confirmed that our
model performs better when adapting to Real domain that

] and information maximization (IM) loss [23].

CIFAR-10-C CIFAR-100-C

With Label Shift Adapter Without Label Shift Adapter

Class Index

Class Index

Figure 5. Visualization of estimated target label distributions and
target priors on CIFAR-10-C and CIFAR-100-C. Applying the la-
bel shift adapter improves the target label distribution estimation.

contains a larger number of test samples compared to other
domains (e.g., Real: 6,943, Clipart: 1,616, Painting: 2,909,
Sketch: 2,399). It is because the target label distribution can
be estimated more precisely with more test samples.

4.4. Analysis on Label Shift Adapter

Estimated Target Label Distribution. The proposed label
shift adapter predicts the weight difference with the esti-
mated target label distribution. Therefore, it is essential to
estimate the target class prior accurately, which is the label
distribution of target domain data. Different from previous
TTA methods, our method adapts the pre-trained model ac-
cording to the label distribution shift. As shown in Fig. 5,
we visualize the estimated target label distribution of the
model with and without our label shift adapter. This result
shows that the model with the label shift adapter is supe-
rior for estimating various label distributions compared to
the model without the label shift adapter. In addition, our
method estimates the target label distribution similar to the
target prior in CIFAR-10-C and CIFAR-100-C datasets.

As shown in Table 6, we compare the performances of
the label shift adapter with estimated target label distribu-
tion and target prior. Obviously, the overall accuracy of
the model increases if the target prior is utilized instead
of the estimated target label distribution. Nevertheless, our



method shows comparable performances to the model using
target prior as the input of label shift adapter.
Computational Costs. Table 8 shows the computational
costs of our method. We measure the computational cost of
ResNet-18, which is utilized for CIFAR-100-C. Since we
design the architecture of the label shift adapter efficiently,
our method requires a negligible amount of additional com-
putational costs (MACs: +0.11M, Params: +0.12M). We
describe the details of the label shift adapter architecture in
the supplementary. Moreover, we report ablation study on
the architecture of label shift adapter in the supplementary.
Effectiveness of Label Shift Adapter. We validate the
effectiveness of our method over existing approaches for
handling label shifts. Specifically, we apply the follow-
ing non-trivial baselines with entropy minimization loss and
IABN [11]: (i) Post-hoc logit adjustment [33, 15] modi-
fies the logits using the estimated target label distribution.
(ii) Information maximization loss [23] makes the outputs
globally diverse by maximizing mean entropy, which can
reduce the bias toward certain classes. Table 7 shows that
these baselines are not sufficient to handle the label distribu-
tion shifts, particularly on inversely long-tailed distribution
(e.g., Backward). In contrast, our approach leads to promis-
ing performance gains on various label distributions.

5. Discussions

Normalization Layers for Label Shifts. This paper intro-
duces the label shift adapter for addressing the label shift
problems in the test-time adaptation scenario, which can
be applied to any model regardless of its architecture. In
addition to our method, we found that managing the bias
in batch statistics is also crucial for reducing performance
degradation caused by label shifts. This observation is ev-
idenced by the effectiveness of normalization layers, such
as instance-aware batch normalization (IABN) layers, in
dealing with the class imbalance in a batch. However,
IABN layers are highly sensitive to hyperparameter selec-
tions such as the soft-shrinkage width o. Consequently, im-
proving the robustness of normalization layers to label shifts
is a promising future research direction.

Training Additional Component. One limitation of our
work is that our method requires an additional stage for
training the label shift adapter. In several recent test-time
adaptation methods [7, 56, 24], an additional training pro-
cess is often carried out before server deployment to train
the additional components. Despite the drawback of requir-
ing an additional training stage, we believe that these test-
time adaptation models, including our method, are practi-
cally useful because they are more robust during inference.
Furthermore, there are techniques [18, 6, 49, 48, 2] in the
long-tailed recognition field that involves dividing the train-
ing process into two stages. Our approach can serve as
an inspiration for methods that can be applied for handling

test-agnostic label distributions in long-tailed recognition,
regardless of the model architecture.

6. Conclusion

This paper addresses the label shift problem in TTA,
where both source and target domain datasets are class im-
balanced. Existing TTA methods employing entropy mini-
mization are often flawed due to the model bias toward the
majority classes in source data. To address such a non-
trivial issue, we propose a novel label shift adapter, which
produces the optimal parameters according to the label dis-
tribution. Our label shift adapter is applicable to existing
TTA methods regardless of the model architectures. Fur-
thermore, we estimate the label distribution of target do-
main data to feed into the label shift adapter. Through ex-
tensive experiments, we demonstrate that our method out-
performs the state-of-the-art TTA baselines. We believe that
our work inspires future researchers to improve TTA meth-
ods under the joint presence of covariate and label shifts.
Acknowledgements. We would like to thank Kyuwoong
Hwang, Simyung Chang, Hyunsin Park, Janghoon Cho,
Juntae Lee, Hyoungwoo Park, Seokeon Choi, and Jungsoo
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Figure 6. Visualization of label distributions in datasets. (a) shows the illustrations of forward or reversely-unbalanced source (RS)
setting and backward or unbalanced target (UT) setting. In specific, forward and backward are used in CIFAR-10-C, CIFAR-100-C, and
ImageNet-C. In addition, RS and UT are utilized in VisDA-C and OfficeHome. (b) shows the natural label shift of DomainNet.

A. Implementation Details

In this section, we introduce further information regard-
ing the datasets, along with the implementation details for
the baseline test-time-adaptation (TTA) methods and the la-
bel shift adapter.

A.l. Datasets

Fig. 6 illustrates the label distributions for the datasets
utilized in our experiments. As depicted in Fig. 6 (a),
‘forward’ and ‘RS’ represent long-tailed label distributions,
with class order corresponding to the training label distribu-
tion. Conversely, ‘backward’ and ‘UT’ indicate a reversed
class order.

In the forward and backward settings, the imbalance ra-
tios for CIFAR-10-C, CIFAR-100-C, and ImageNet-C are
configured to 10, 25, and 100. We adjust the label distribu-
tion by reducing the number of images per class based on
the specified imbalance ratio. For VisDA-C, The imbalance
ratio is set to 100 for both training and test datasets. Fur-
thermore, we utilize an imbalanced version of OfficeHome
created by the previous research [43].

Fig. 6 (b) shows the label distributions of DomainNet, in
which existing label shifts are significant enough. The su-
perior performance of our method on DomainNet demon-
strates its ability to handle label shifts that arise in real-
world scenarios.

A.2. Details of Baselines

We carry out the experiments using the official imple-
mentations of the baseline models. We provide additional
details regarding the implementation specifics, including

hyperparameters. Note that the batch size for test-time
adaptation is configured to 64 for fair comparisons. For
simplicity, we present the hyperparameters in the following
sequence: {CIFAR-10-C, CIFAR-100-C, ImageNet-C,
VisDA-C, OfficeHome, DomainNet } for test-time adapta-
tion baselines. In instances where hyperparameters are not
separately described for each dataset, the same values are
employed across all datasets.

Source. Different from the previous TTA studies, we em-
ploy long-tailed datasets in our research. To mitigate model
bias towards the majority classes, we utilize a balanced
softmax [39], which is a prominent method for long-tailed
recognition. Formally, the balanced softmax is expressed

as:
£bal = - Z

(zi,9i)~Ds

y; log o (g; + log(ms)),

where 75 represents the frequency of the training classes,
and o denotes the softmax function.

Table 9 describes the hyperparameters utilized for train-
ing on source domain datasets. We select the hyperparam-
eters for VisDA-C, OfficeHome, and DomainNet in accor-
dance with the imbalanced source-free domain adaptation
study [22]. As described in the main manuscript, we utilize
pre-trained ResNet-50 and ResNet-101 on ImageNet, when
conducting the experiments on VisDA-C, OfficeHome, and
DomainNet. Moreover, the learning rate for the feature
extractor and the classifier is set to 0.1 xLR and LR, re-
spectively, when training the model on VisDA-C, Office-
Home, and DomainNet. All experiments are conducted us-
ing NVIDIA RTX A5000 GPU.

BN Stats. BN stats [4 1] utilizes test batch statistics instead
of running statistics within batch normalization layers.
PseudoLabel. In accordance with previous studies [20, 46],



Src Data Tgt Data Model Optim. Scheduler Epoch Batch WD Momentum LR
CIFAR-10-LT CIFAR-10-C ResNet-18 SGD CosineAnneal 200 128 Se-4 0.9 0.1
CIFAR-100-LT CIFAR-100-C ResNet-18 SGD CosineAnneal 200 128 Se-4 0.9 0.1
ImageNet-LT ImageNet-C ResNeXt-50 SGD Manual 90 64 2e-4 0.9 0.1
VisDA-C (RS) VisDA-C (UT) ResNet-101 SGD - 15 40 le-3 0.9 le-3
OfficeHome (RS)  OfficeHome (UT) ResNet-50 SGD - 50 40 le-3 0.9 le-2
DomainNet DomainNet ResNet-50 SGD - 20 40 le-3 0.9 le-2

Table 9. Hyperparameters for training the model with source domain data. Src Data and Tgt Data denote source domain and target
domain datasets, respectively. Optim. indicates the optimizer. WD and LR denote the weight decay and learning rate for training. The
manual scheduler for ImageNet-LT is to decay the learning rate at 60 and 80 epochs.

Model Architecture

Forward-LT

Uni.

Backward-LT

Avg.

Yh Bhn AW Ab ‘ 50 25 10 1 10 25 50
v 51.20 49.30 46.06 37.36 27.28 23.75 21.84 36.69
v 48.79 42.45 32.10 15.21 22.52 24.09 25.14 30.04
v 51.32 49.36 46.11 37.17  27.06 23.56 21.71 36.61
v 52.50 50.19 46.64 37.51 28.95 25.56 24.06 37.92
v v 52.09 4948 45.43 35.92 29.60 26.82 26.25 37.94
v v 51.93 49.78 4643 37.18 27.71 24.28 22.57 37.12
v v v v 52.06 49.71 46.03 36.84 29.29 26.33 25.50 37.97

Table 10. Ablation study on architecture design of label shift adapter using CIFAR-100-LT and CIFAR-100-C.

we update the affine parameters in the batch normalization
layers using the hard pseudo labels. The learning rate is set
to {1e-3, le-3, 2.5e-4, 5e-5, 5¢-5, le-3} for each respective
dataset, following the hyperparameters of TENT [46].
ONDA. Online domain adaptation (ONDA) [32] modifies
the batch normalization statistics for target domains using a
batch of target data through an exponential moving average.
We set the update frequency N = 10 and the decay of the
moving average m = 0.1, adhering to the default values of
the original paper.

TENT. Test entropy minimization (TENT) [46] optimizes
the affine parameters of batch normalization layers via en-
tropy minimization. The learning rate is configured to {le-
3, le-3, 2.5e-4, 5e-5, 5e-5, le-3} for each dataset. We re-
ferred to the official implementation for hyperparameter se-
lection.

LAME. Laplacian adjusted maximum-likelihood estima-
tion (LAME) [4] alters the output probability of the clas-
sifier. Following the authors’ implementation, we set the
kNN affinity matrix with the value of & as 5.

CoTTA. Continual test-time adaptation (CoTTA) [47]
adapts the model to accommodate continually evolving
target domains by employing a weight-averaged teacher
model, data augmentations, and stochastic restoring.
CoTTA incorporates three hyperparameters: augmentation
confidence threshold py,, restoration factor p, and the decay
of EMA m. p and m are set to 0.01 and 0.999, respectively.
Additionally, py, is configured to { 0.92, 0.72, 0.01, 0.01,
0.01, 0.01 }. Given that the authors do not provide the hy-
perparameters for VisDA-C, OfficeHome, and DomainNet,

Algorithm 1 Training Process of Label Shift Adapter
Require: Dataset D, = {(x;,y:)}0" .
model f. A label shift adapter G4.

1: Initialize the parameters ¢ randomly

2: for k =1to K do
3: B < SampleMiniBatch(D, m)
> a mini-batch of m examples
4: 7, T < Sample({ms, u, Ts }, {Tr. s Tu> T2, })
> sample 7 matching 7
L(Gy) < % Z(x,y)es Lgia((2,y,m); f,Gg)
6: Gy < Gp —nVeL(Gy) > one SGD step
7: end for

A pre-trained

()

we fine-tune the appropriate hyperparameters for them.

NOTE. Non-i.i.d. test-time adaptation (NOTE) [ 1] com-
prises two components: (i) Instance-aware batch normal-
ization (IABN), and (ii) Prediction-balanced reservoir sam-
pling (PBRS). In accordance with the original paper, we
substitute the batch normalization layers with IABN layers
before pre-training the source models. Two hyperparame-
ters are associated with IABN: soft-shrinkage width o and
EMA momentum m. The values of « are configured as {
4, 4,8, 8,8, 8}, while m is set to { 0.01, 0.01, 0.1, 0.1,
0.1, 0.1 }. The memory size of PBRS is set to 64, equal to
the batch size. In our experiments, we incorporate our label
shift adapter into the models using IABN layers.
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Figure 7. T-SNE visualizations of (a) TENT and (b) IABN+Ours. We visualize the feature map h obtained from the Gaussian noise
corruption in the CIFAR-10-C uniform test dataset. The number of training samples is large in the order of the classes in the legend.

Src Method  TTA Method Forward-LT Uni. Backward-LT Ave.
50 25 10 1 10 25 50

Source 4020 3726 33.18 2220 12.19 895 724  23.03

BN Stats 48.12 4544 40.17 2617 13.67 9.69 7.80  27.30

ONDA 4849 4580 41.16 2766 1517 11.02 898 2833

c PsecudoLabel  48.76 4526 39.09 19.84 11.32 8.19 644 2556

E ross TENT 49.17 4521 3842 1532 999 744 567  24.46

ntropy LAME 38.17 3517 3122 2044 11.02 793 630 2146

CoTTA 3283 2935 2572 1475 738 494 367 1695

NOTE 4641 4410 4049 2930 1577 1187 9.84 2826

IABN 4643 4392 3980 2535 1471 11.13 927 2723

+Ours 5320 5077 4626 3234 18.56 14.07 1174 3242

Source 3488 3254 29.12 2029 1180 9.09 751 2075

BN Stats 4507 4293 39.10 28.67 17.82 1397 11.88  28.49

ONDA 4479 4260 3901 2920 18.62 1465 1270  28.80

Balanceg  FcudoLabel  47.08 4466 4045 2698 1731 1359 1123 2876

S“ ‘”’;"’ TENT 4828 4564 41.07 2404 1688 1350 1130  28.67

amping . 1 AME 32.88 3044 27.08 18.48 1048 7.89  6.39 19.09

CoTTA 3038 28.68 2558 1732 1074 796 649  18.16

NOTE 46.62 4427 4064 3042 1699 1277 1032  28.86

IABN 46.85 4429 4040 2720 1612 1205 9.88  28.12

+Ours 5132 49.18 4499 3192 19.64 1511 13.00 32.16

Source 40.17 3747 3359 2323 1342 10.18 851  23.80

BN Stats 4833 4560 40.82 2749 1513 11.16 9.11  28.23

ONDA 4833 4577 4157 2896 1678 1250 1063  29.22

Classi PsecudoLabel ~ 49.10 45.89 40.19 21.01 1274 950 7.66  26.58

R ‘T‘“’ﬁ’ﬁ’ TENT 4970 46.19 3979 1659 1128 893 692  25.63

e-lrammng v AME 3822 3541 31.60 2148 1228 9.3 752 2223

CoTTA 3193 2923 2591 1526 8.18 555 433 1720

NOTE 4596 4404 41.14 31.68 1852 14.66 12.67 29.81

IABN 46.11 4404 4053 2761 1728 1371 11.94 2875

+Ours 53.11 50.86 46.66 34.04 2077 1641 14.12 33.71

Table 11. Ablation study on the source pre-trained model using CIFAR-100-LT and CIFAR-100-C.



A.3. Details of Label Shift Adapter

Model Architecture. We utilize the same model archi-
tecture for the label shift adapter across all datasets. The
proposed label shift adapter consists of two fully-connected
(FC) layers and a ReLU activation function, structured as
FC-ReLU-FC. Furthermore, the label shift adapter is par-
titioned into two neural networks producing (v, 8p) and
(AW, Ab). As described in the main manuscript, the label
shift adapter takes mT7 € R! and produces (v, 3,) and
(AW, Ab) in each respective neural network. The hidden
layer size in the label shift adapter is configured to 100.
Details of Label Shift Adapter. We provide the algo-
rithm of the training process for the label shift adapter as
a pseudo-code in Algorithm 1. The primary objective of
the label shift adapter is to learn the relationship between
« and adaptive parameters by selecting appropriate 7 based
on sampled 7 within generalized logit adjusted loss [33, 1]
function. Increasing 7 results in decision boundary shift-
ing away from the minority class towards the majority class.
Consequently, instead of sampling batches differently based
on w, we sample 7 and 7 iteratively, as described in Algo-
rithm 1. This enables the label shift adapter to optimize
its parameters in accordance with input label distributions
(e.g., m and Vo thereby producing suitable parameter ad-
justments.

During the training of the label shift adapter, we sam-
ple the label distribution 7 from three types of label dis-
tributions: {m,,u,7s}. For each sampled label distri-
bution, we select the appropriate 7 C {7x.,Tu, Tz},
with the hyperparameter 7 corresponding to each 7. Dif-
ferent 7 values are employed for each dataset. We
set 7 to {1,—1.5,3}, {1,0,—2}, {1,0,—2}, {1,0,—2},
{1,—1,-3}, and {1,0,—2}, for CIFAR-10-LT, CIFAR-
100-LT, ImageNet-LT, VisDA-C, OfficeHome, and Do-
mainNet, respectively.

The mapping vector m maps the label distribution’s vec-
tor to the scalar of the imbalance degree. We set the range of
m from -1 to 1, with the values increasing proportionally to
the data count rank of each class. This technique enables the
adapter to effectively utilize the degree of imbalance as an
input, circumventing the challenges associated with com-
plex label spaces encountered when using 7 directly.

While training the label shift adapter, we employ the
same optimizer and batch size as those employed for train-
ing the source models. The learning rate is set to le-3 for
all datasets. Moreover, we train the label shift adapter for
{200, 200, 30, 15, 50, 20} epochs.

During inference, the momentum hyperparameter « for
target label distribution estimation is configured to 0.1. For
learnable parameters in the test-time adaptation process,
we only update affine parameters in normalization layers
by following TENT [46] and IABN [11]. Unlike TENT,
we freeze the top layers and update the affine parameters

of the layer in the remaining shallow layers, inspired by
previous work [7, 36]. Specifically, for ResNet, including
four layer groups (layer 1, 2, 3, 4), we only freeze layer4
in CIFAR-10-C, CIFAR-100-C, and ImageNet-C. In other
datasets, there is no significant difference in performance,
so all affine parameters are trained. When estimating the
label distribution on ImageNet-C, we utilize only the top-
3 probability to update the estimated label distribution V.
Empirically, we discovered that it is effective to consider
only top-k when the number of classes is particularly large.

B. Further Analysis on Label Shift Adapter

Ablation Study on Architecture Design. We examine
the model architecture design for the proposed label shift
adapter. The label shift adapter produces four types of out-
puts: v, Br, AW, and Ab. Table 10 presents the ablation
study for each component. Interestingly, even when only
Ab is employed, the performance is quite good. However,
we observed that as the degree of the label shift increases,
the performance of using only Ab declines. Moreover, uti-
lizing 7, and (3, only also yields impressive results, indicat-
ing that appropriately shiting the feature map A is effective
in addressing the label shifts. We choose the architecture
design of the label shift adapter that achieves the best aver-
age accuracy, indicating that the final model generally per-
forms well across a variety of label distributions.

T-SNE Visualization. To further substantiate the effective-
ness of our method, we visualize the feature map h using
t-SNE by extracting h during test-time adaptation. As illus-
trated in Fig. 7, our method shows a more well-separated
representation space in a class-wise manner compared to
TENT. Notably, it is evident that the minority classes (e.g.,
horse and truck) are not well divided in the representation
space of TENT. In contrast, our method integrating into
TABN layers enhances class-discriminability.

Ablation Study on Source Model. In the main manuscript,
we employ the balanced softmax to reduce the model bias
towards the majority classes. To further validate the effec-
tiveness of the proposed method, we apply our method to
several source pre-trained models utilizing different train-
ing strategies. We employ three types of techniques: (i)
Cross-entropy loss, (ii) Balanced sampling, (iii) Classifier
re-training [18], where the feature extractor is trained us-
ing cross-entropy loss, and then the classifier is randomly
re-initialized and re-trained using class-balanced sampling.
Table 11 demonstrates that our method effectively handles
the label shifts, regardless of the source pre-trained models.
Moreover, these results indicate that existing long-tailed
recognition methods can be combined with our method to
further reduce the model bias towards the majority classes
in source domain data.

Ablation Study on 7. As described in the main manuscript,
we sampled three kinds of label distributions for 7 during



Num.| F50 F25 F10 U B10 B25 B50 Avg.

3 [52.06 49.71 46.03 36.84 29.29 26.33 25.50 37.97

5 5091 48.82 45.41 36.90 29.28 26.37 25.51 37.60

7 |51.13 48.99 45.52 36.96 29.24 26.25 25.45 37.64

oo [51.62 49.36 45.85 37.09 29.12 26.06 25.03 37.73
Table 12. Ablation study on the number of 7 for training label shift
adapter using CIFAR-100-C. Num. denotes the number of 7 for
training the adapter. F, U, and B indicate forward, uniform, and
backward distributions, respectively. We chose three label distri-
butions.

‘DELTA ISFDA  TENT+Ours

VISDA-C | 50.10  61.02 72.97

Table 13. Comparison with additional baselines in test-time adap-
tation setting.

| Method | F50 F25 FI10 U B10 B25 B50 Avg.

SAR+GN
SAR+BN
Ours+IABN

57.22 5720 57.07 57.12 61.84 63.06 64.37 59.70
78.63 76.28 71.82 53.28 34.99 28.60 25.18 52.68
80.58 78.62 75.26 63.34 68.54 70.07 71.64 72.58

9.09 959 10.23 14.05 18.93 2046 21.70 14.86
CIFAR100| SAR+BN | 49.44 47.04 43.39 32.18 20.22 16.24 13.96 31.78
Ours+IABN| 52.06 49.71 46.03 36.84 29.29 26.33 25.50 37.97

Table 14. Comparison with SAR using CIFAR-10-C and CIFAR-
100-C in TTA setting. F, U, and B denote forward, uniform, and
backward, respectively. GN and BN indicate group and batch nor-
malization, respectively.

CIFARI10

SAR+GN

training label shift adapter. Regarding the effect of sam-
pling different numbers of 7, Table 12 indicates that such
variations have negligible impact on performance. Specif-
ically, in this experiment, we interpolate three distributions
(i.e., s, u, W) and 7 to train the label shift adapter when
different numbers of 7 are utilized.

C. Additional Experiments

Comparison with Baselines Related to Label Shifts.
We’ve compared two baselines in Table 7, which have the
capability of handling label shifts. We compare additional
baselines, DELTA [53] and ISFDA [22], which address co-
variate and label shifts simultaneously. Although ISFDA
requires several epochs for adapting the source models,
we conduct the experiments in the test-time adaptation set-
ting for a fair comparison. Table 13 demonstrates that our
method is superior to baselines significantly in the VISDA-
C dataset. ISFDA, a domain adaptation model, exhibits lim-
itations in its suitability for online learning during inference.
Since DELTA only focuses on class imbalances in the tar-
get domain, it lacks the ability to handle imbalances in the
source domain. In contrast, our method successfully ad-
dresses the imbalance in both source and target domains in
the test-time adaptation setting.

Comparison with Recent TTA Baseline. We compare
recent test-time adaptation baseline, sharpness-aware and

reliable entropy minimization (SAR) [36]. SAR proposes
an optimizer and analyzes normalization layers to resolve
imbalances in the target domain. However, it is impor-
tant to note that our work addresses imbalances in both
the source and target domains. Table 14 demonstrates that
our method outperforms both SAR+GN and SAR+BN sig-
nificantly. Moreover, it is a viable option to integrate our
method with SAR method.

D. Domain-wise Results

Table 15, 16, 17 show the average classification accuracy
on CIFAR-10-C, CIFAR-100-C, and ImageNet-C, shown
per domain. To compute the accuracy of each domain,
we calculate the average performances of Forward50, For-
ward25, Forward10, Uniform, Backward10, Backward?25,
and Backward50, as described in the main manuscript.
These results demonstrate that our method consistently en-
hances performance across various domains.
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Source 23.06 2694 1959 46.89 41.06 4563 4942 5830 4531 4572 69.85 2123 5760 60.14 6545 4508
BN Stats 49.18 50.52 46.29 58.11 4505 56.14 5596 5232 50.65 53.60 59.11 5493 51.63 54.15 5212 52.65
ONDA 50.70 51.66 47.68 59.80 4649 5745 57778 53.81 5236 55.14 6152 5476 53.60 5649 54.19 5423
PseudoLabel 46.87 48.76 4447 5596 4387 53.89 5346 4996 4870 5091 56.34 52.57 4929 51.88 50.16 50.47
LAME 1797 2275 1543 4474 4036 4240 47.08 6130 48.62 4520 67.84 20.33 5540 61.36 64.59 43.69
CoTTA 51.69 53.11 5031 5580 47.28 5431 5488 5260 52.18 5281 5830 49.66 52.12 5532 5439 5298
NOTE 5448 56.22 5324 68.20 48.64 6487 6509 6556 6443 6408 7333 67.59 6024 6695 6726 62.68
TENT 46.41 4829 4338 53.82 4242 5222 5157 4892 4751 49.81 5506 50.62 4790 50.58 4920 49.18
+ Ours 51.66 53.55 48.66 60.74 4694 58.77 5737 55.04 5348 56.00 62.05 57.68 54.11 5748 55.07 5524
IABN 5477 56.48 5325 68.24 4839 6453 6489 6563 6444 6460 7379 6724 6032 6781 67.17 62.77
+ Ours 68.72 6954 6494 7748 61.47 7624 7552 72.06 72.83 7453 79.69 79.08 69.66 74.25 72.69 72.58
Table 15. Domain-wise results on CIFAR-10-C.
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Source 1442 1645 9.08 22.55 23.14 2565 25.82 2737 2298 18.57 34.51 584 33.03 1747 36.19 2221
BN Stats 27.59 28.51 2620 36.89 28.61 3453 3644 2940 28.81 2898 36.66 29.22 3337 3378 32.18 3141
ONDA 27.53 28.77 26.17 36.85 29.07 3437 3691 2971 29.09 2938 3697 27.77 33.89 34.00 33.00 31.57
PseudoLabel 27.44 28.54 2559 3492 27778 32.83 3456 2858 2740 2858 3496 26.01 3158 32.80 3138 30.20
LAME 1341 1573 7.66 2093 2230 2479 2463 2721 2239 17.07 33.62 448 3241 15.62 35.66 21.19
CoTTA 30.01 30.85 2845 3477 30.64 3404 3564 3092 30.10 2865 36.09 2430 33.54 3558 34.00 31.84
NOTE 2417 25.64 18.62 3573 28.08 36.89 3748 3491 3395 29.13 4147 3393 36.29 32.01 36.13 32.30
TENT 27.50 28.49 2528 3398 2689 32.12 3336 28.00 26.79 27.78 34.05 2520 31.01 3225 3053 29.55
+ Ours 3095 3221 2877 38.60 30.58 36.06 38.24 3230 30.74 3152 3834 3036 3475 36.19 3486 33.63
IABN 2454 2579 1892 3550 28.00 36.80 37.58 3497 3420 29.02 4139 3399 36.17 32.09 3629 3235
+ Ours 33.65 3437 28.17 41.86 33.62 41.08 41.79 37.82 3836 34.77 4351 4254 39.18 3998 38.76 37.97
Table 16. Domain-wise results on CIFAR-100-C.
-
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Source 5.72 5.88 4.82 1548 11.17 1798 18.73 2125 1521 28.04 44.67 28.63 39.16 29.56 3477 21.40
BN Stats 29027 2890 2546 2559 2294 33,14 3291 2837 2515 40.06 4527 40.19 4359 41.84 39.74 3349
ONDA 29.15 28.88 2533 2549 2274 3273 3296 28.18 25.04 40.12 4546 39.69 43.60 42.02 39.72 3341
PseudoLabel 31.25 30.93 29.00 27.72 2580 3436 33.64 3020 2539 4033 44.09 39.56 4278 4143 39.65 3441
LAME 5.56 5.73 4.67 1533 11.03 1792 18.67 21.19 15.16 28.01 44.64 2861 39.12 2949 3475 21.33
CoTTA 3093 3036 2747 2728 2495 3442 3356 3001 2644 40.62 44779 40.58 4332 41.83 40.05 3444
NOTE 31.34 30.83 29.26 27.39 24.66 35.67 32770 3334 2833 3952 4655 4497 43.67 4138 4159 3541
TENT 29029 2894 2584 25.68 2294 32.11 3237 27.17 2350 3943 4394 38.18 4230 40.66 39.02 32.76
+ Ours 3238 3239 2877 29.07 2621 3570 3581 3144 27.86 43.14 4856 43.00 4659 4492 4359 36.63
IABN 3147 30.86 29.28 27.37 24.66 35.69 32777 3335 2837 3954 46.65 45.03 4372 4140 41.60 3545
+ Ours 34.28 34.00 32.18 30.25 27.14 3892 3553 3648 31.58 4250 4995 4835 4693 4495 44.87 38.53

Table 17. Domain-wise results on ImageNet-C.



