
This paper has been accepted for publication at the
IEEE/CVF International Conference on Computer Vision (ICCV), Paris, 2023. ©IEEE

To Adapt or Not to Adapt?
Real-Time Adaptation for Semantic Segmentation

Marc Botet Colomer∗ 1,2 Pier Luigi Dovesi∗ 3 †

Theodoros Panagiotakopoulos4 Joao Frederico Carvalho1 Linus Härenstam-Nielsen5,6

Hossein Azizpour2 Hedvig Kjellström2,3 Daniel Cremers5,6,7 Matteo Poggi8

1Univrses 2KTH 3Silo AI 4King 5Technical University of Munich
6Munich Center for Machine Learning 7University of Oxford 8University of Bologna

https://marcbotet.github.io/hamlet-web/

0.6 FPS
RGB heavy rain (200mm) CoTTA OnDA

1.3 FPS
CoTTA real-time

27 FPS
HAMLET

29 FPS 48 FPS
No Adaptation

Figure 1. Real-time adaptation with HAMLET. Online adaptation to continuous and unforeseeable domain shifts is hard and compu-
tationally expensive. HAMLET can deal with it at almost 30FPS outperforming much slower online methods – e.g. OnDA and CoTTA.

Abstract

The goal of Online Domain Adaptation for semantic seg-
mentation is to handle unforeseeable domain changes that
occur during deployment, like sudden weather events. How-
ever, the high computational costs associated with brute-
force adaptation make this paradigm unfeasible for real-
world applications. In this paper we propose HAMLET, a
Hardware-Aware Modular Least Expensive Training frame-
work for real-time domain adaptation. Our approach in-
cludes a hardware-aware back-propagation orchestration
agent (HAMT) and a dedicated domain-shift detector that
enables active control over when and how the model is
adapted (LT). Thanks to these advancements, our approach
is capable of performing semantic segmentation while si-
multaneously adapting at more than 29FPS on a single
consumer-grade GPU. Our framework’s encouraging ac-
curacy and speed trade-off is demonstrated on OnDA and
SHIFT benchmarks through experimental results.

1. Introduction

Semantic segmentation aims at classifying an image
at a pixel level, based on the local and global context,
to enable a higher level of understanding of the depicted

clear (F)

25 (F)

50 (F)
75 (F)

100 (F)

200 (F)

100 (B)

75 (B)

50 (B)
25 (B)

clear (B)

30 40 50 60 70 80

CoTTA

Tent

MiT-B1 (no adapt)

Ours

Loading [MathJax]/extensions/MathMenu.jsFigure 2: Online adaptation methods on the Increasing
Storm. We plot mIoUs achieved on single domains. Colors
from colder to warmer encode slower to faster methods.

scene. In recent years, deep learning has become the dom-
inant paradigm to tackle this task effectively employing
CNNs [5, 69, 4] or, more recently, transformers [65], at the
expense of requiring large quantities of annotated images
for training. Specifically, annotating for this task needs per-
pixel labeling, which is an expensive and time-consuming
task, severely limiting the availability of training data.

The use of simulations and graphics engines [42] to
generate annotated frames enabled a marked decrease in

∗ Joint first authorship † Part of the work done while at Univrses

1

ar
X

iv
:2

30
7.

15
06

3v
2

 [
cs

.C
V

]
 7

 A
ug

 2
02

3

https://marcbotet.github.io/hamlet-web/

the time and cost necessary to gather labeled data thanks
to the availability of the ground truth. However, despite
the increasing quality in data realism [47], there is a sub-
stantial difference between simulated data generated by
graphics engines and real-world images, such that leverag-
ing these data for real-world applications requires adapt-
ing over a significant domain shift. The promise of un-
locking this cheap and plentiful source of training data
has provided a major impulse behind the development of
a large body of work on Unsupervised Domain Adaptation
(UDA) techniques [74, 61, 18, 15, 55], consisting of train-
ing semantic segmentation networks on labelled synthetic
frames – the source domain – and then adapting the net-
work to operate on real images, representing the target do-
main, without requiring human annotation. However, the
synthetic-to-real shift represents only one of many possi-
ble domain transitions; specifically, when dealing with real-
world deployment, domain shifts can occur from various
causes, from different camera placements to different light-
ing, weather conditions, urban scenario, or any possible
combination of the above. Because of the combinatorial
nature of the problem, it is simply impossible to evenly rep-
resent all possible deployment domains in a dataset. This
curse of dimensionality prevents having generalized robust
perfomances [41, 45]. However, the recent advent of on-
line domain adaptation [41] potentially allows us to face
continuous and unpredictable domain shifts at deployment
time, without requiring data associated with such domain
shifts beforehand. Nonetheless, despite its potential, sev-
eral severe limitations still hamper the online adaptation
paradigm. In particular, continuously performing back-
propagation on a frame-by-frame schedule [41] incurs a
high computational cost, which negatively affects the per-
formance of the network, dropping its overall framerate to
accommodate the need for continuous adaptation. Vari-
ous factors are involved in this matter: first, the severity
of this overhead is proportional to the complexity of the
network itself – the larger the number of parameters, the
heavier the adaptation process becomes; second, we argue
that frame-by-frame optimization is an excessive process
for the adaptation itself – not only the network might need
much fewer optimization steps to effectively counter do-
main shifts, but also such an intense adaptation definitely
increases the likelihood of catastrophic forgetting over pre-
vious domains [26, 45]. In summary, a practical solution
for online domain adaptation in semantic segmentation that
can effectively operate in real-world environments and ap-
plications still seems to be a distant goal.

In this paper, we propose a novel framework aimed at
overcoming these issues and thus allowing for real-time, on-
line domain adaptation:

• We address the problem of online training by de-
signing an automatic lightweight mechanism capable

of significantly reducing back-propagation complex-
ity. We exploit the model modularity to automati-
cally choose to train the network subset which yields
the highest improvement for the allocated optimisation
time. This approach reduces back-propagation FLOPS
by 34% while minimizing the impact on accuracy.

• In an orthogonal fashion to the previous contribution,
we introduce a lightweight domain detector. This al-
lows us to design principled strategies to activate train-
ing only when it really matters as well as setting hy-
perparameters to maximize adaptation speed. Overall,
these strategies increase our speed by over 5× while
sacrificing less than 2.6% in mIoU.

• We evaluate our method on multiple online domain
adaptation benchmarks both fully synthetic [45] and
semi-synthetic CityScapes domain sequences [41],
showing superior accuracy and speed compared to
other test-time adaptation strategies.

Fig. 1 demonstrates the superior real-time adaptation
performance of HAMLET compared to slower methods
such as CoTTA [57], which experience significant drops in
performance when forced to maintain a similar framerate by
adapting only once every 50 frames. In contrast, HAMLET
achieves an impressive 29 FPS while maintaining high ac-
curacy. Additionally, Fig. 2 offers a glimpse of HAMLET’s
performance on the Increasing Storm benchmark [41], fur-
ther highlighting its favorable accuracy-speed trade-off.

2. Related Work
We review the literature relevant to our work, about se-

mantic segmentation and UDA, with particular attention to
continuous and online methodologies.

Semantic Segmentation. Very much like classification,
deep learning plays a fundamental role in semantic segmen-
tation. Fully Convolutional Network (FCN) [36] represents
the pivotal step in this field, adapting common networks
by means of learned upsample operators (deconvolutions).
Several works aimed at improving FCN both in terms of
speed [68, 38] and accuracy [5, 6, 7], with a large body of
literature focusing on the latter. Major improvements have
been achieved by enlarging the receptive field [72, 66, 5, 6,
7], introducing refinement modules [14, 73, 17], exploiting
boundary cues [3, 10, 46] or using attention mechanisms
in different flavors [13, 31, 58, 64]. The recent spread of
Transformers in computer vision [11] reached semantic seg-
mentation as well [64, 69, 65], with SegFormer [65] repre-
senting the state-of-the-art in the field and being the object
of studies in the domain adaptation literature as well [20].

Unsupervised Domain Adaptation (UDA). This body
of research aims at adapting a network trained on a source,
labeled domain to a target, unlabeled one. Early approaches

2

rely on the notion of “style” and learn how to transfer it
across domains [74, 61, 18, 32, 12, 67]. Common strategies
consist of learning domain-invariant features [15, 25], often
using adversarial learning in the process [15, 55, 8, 19, 51].
A popular trend in UDA is Self-Training. These methods
rely on self-supervision to learn from unlabelled data. In
UDA, a successful strategy consists of leveraging target-
curated pseudo-labels. Popular approaches for this purpose
make use of confidence [77, 37, 76], try to balance the class
predictions [75, 20], or use prototypes [2, 71, 70] to im-
prove the quality of the pseudo-labels. Among many do-
main shifts, the synthetic-to-real one is the most studied,
since the earliest works [74, 61, 18] to the latest [60, 30, 21,
28, 16, 40, 24]. However, this shift is one of a kind since it
occurs only once after training, and without the requirement
of avoiding forgetting the source domain.

Continuous/Test-Time UDA. This family of ap-
proaches marries UDA with continuous learning, thus deal-
ing with the catastrophic forgetting issue ignored in the
synthetic-to-real case. Most continuous UDA approaches
deal with it by introducing a Replay Buffer [1, 29, 27], while
additional strategies make use of style transfer [62], con-
trastive [44, 53] or adversarial learning [63]. Despite the
definition, continuous UDA often deals with offline adapta-
tion, with well-defined target domains over which to adapt.
Conceptually similar to it, is the branch of test-time adap-
tation, or source-free UDA, although tackling the problem
in deployment rather than offline – i.e. with no access to the
data from the source domain [43]. Popular strategies to deal
with it consist of generating pseudo-source data to avoid
forgetting [35], freezing the final layers in the model [33],
aligning features [34], batch norm retraining through en-
tropy minimization [54] or prototypes adaptation [22].

Online UDA. Although similar in principle to test-time
adaptation, online UDA [45, 41, 52] aims to tackle multi-
ple domain shifts, occurring unpredictably during deploy-
ment in real applications and without clear boundaries be-
tween them. On this track, the SHIFT dataset [45] pro-
vides a synthetic benchmark specifically thought for this
scenario, while OASIS [52] proposes a novel protocol to
evaluate UDA approaches, considering an online setting
and constraining the evaluated methods to deal with frame-
by-frame sequences. As for methods, OnDA [41] imple-
ments self-training as the orchestration of a static and a dy-
namic teacher to achieve effective online adaptation while
avoiding forgetting, yet introducing massive overhead.

Real-time performance is an essential aspect of online
adaptation, particularly in applications such as autonomous
driving where slow models are impractical. A slow adap-
tation process not only limits the practicality of real-world
applications but also fails to provide high accuracy until the
adaptation is complete, thereby defeating the original pur-
pose. Therefore, accelerating the adaptation process is cru-

cial for achieving high accuracy in real-time scenarios.

3. Methods
This section introduces HAMLET, a framework for

Hardware-Aware Modular Least Expensive Training. The
framework aims to solve the problem of online domain
adaptation with real-time performance through several syn-
ergistic strategies. First, we introduce a Hardware-Aware
Modular Training (HAMT) agent able to optimize online
a trade-off between model accuracy and adaptation time.
HAMT allows us to significantly reduce online training
time and GFLOPS. Nevertheless, the cheapest training con-
sists of no training at all. Therefore, as the second strategy,
we introduce a formal geometric model for online domain
shifts that enable reliable domain shift detection and domain
estimator signals (Adaptive Domain Detection, Sec. 3.3.1).
These can be easily integrated to activate the adaptation pro-
cess only at specific times, as least as possible. Moreover,
we can further leverage these signals by designing adaptive
training policies that dynamically adapt domain-sensitive
hyperparameters. We refer to these as Active Training Mod-
ulations. We present an overview of HAMLET in Fig. 3.

3.1. Model Setup

Our approach builds on the recent progress in unsuper-
vised domain adaptation and segmentation networks. We
start with DAFormer [20], a state-of-the-art UDA method,
and adopt SegFormer [65] as our segmentation backbone
due to its strong generalization capacity. We use three
instances of the backbone, all pre-trained on the source
domain: a student, a teacher, and a static (i.e. frozen)
teacher. During training, the student receives a mix of target
and source images [49] and is supervised with a “mixed-
sample” cross-entropy loss, LT (represented by green, blue
and red dashed lines, in Fig. 3). This loss is computed by
mixing the teacher’s pseudo-labels and source annotations.
To improve training stability, the teacher is updated as the
exponential moving average (EMA) of the student. To fur-
ther regularize the student, we use source samples stored in
a replay buffer and apply two additional losses (blue lines in
Fig. 3). First, we minimize the feature distance (Euclidean)
between the student and the static teacher’s encoder, LFD.
Then, we employ a supervised cross-entropy task loss LS .
Our complete objective is L = LS +LT + λFDLFD, with
λFD being a weight factor. During inference on the target
domain, only the student is used (red lines in Fig. 3).

3.2. Hardware-Aware Modular Training (HAMT)

Online adaptation requires updating the parameters dur-
ing deployment time. However, back-propagation is com-
putationally expensive and hence too slow to be continu-
ously applied on a deployed agent. Opting for a partial
weight update, for example by finetuning the last module

3

 |ΔBi| Bi

Bi+1

no

|ΔBi|

HAMLET
HAMT applies an expected-improvement decision policy to optimize a trade-off between
minimizing training FLOPS and improving adaptation performance.
Active Training Modulation leverages a specialized domain-shift detector to orchestrate
training phases and identify the best hyperparameter configurations

pseudo-loss

domain det.
decoder

static teacher

teacher

student

T1 T2 T3 T4

speedaccuracy

feat. dist.
loss

task loss
H

mixed image

target image

source image

source label

prediction

Hardware-Aware Modular Training

EMA

Active Training Modulation

ALR

>z

no adaptation

yes
Bi,Bi+1

η-init

η-decay

training iter.

classmix %DCM

domain shift detection

training phase on mixed image
training phase on source image
training phase on target image
inference phase on target image
no update

Figure 3: HAMLET framework. We employ a student-teacher model with an EMA and a static teacher. HAMT orchestrates
the back-propagation over the student restricting it to a network subsection. The Active Training Modulation instead controls
the adaptation process by selectively enabling it only when necessary as well as tweaking sensitive training parameters.

of the network, would enable much more efficient train-
ing time. However, domain shifts can manifest as changes
in both the data input distribution (such as attributes of
the images, e.g. day/night) and the output distribution (e.g.
class priors). This information could be encoded in differ-
ent parts of the network, therefore just updating the very
last segment might not suffice. This motivates the need
for orchestrating the training process, to ensure sufficient
training while minimizing the computational overhead. In-
spired by reward-punishment [48] and reinforcement learn-
ing [56] policies, we introduce an orchestration agent in
charge of deciding how deeply the network shall be fine-
tuned through a trade-off between the pseudo-loss mini-
mization rate and the computational time. In contrast to pre-
vious efficient back-propagation approaches [59, 23, 9], our
model is pre-trained on the task and thus requires smaller
updates to adapt. Let us start by modeling the problem.
Our model backbone, f , is composed of four different mod-
ules: f = m4 ◦ m3 ◦ m2 ◦ m1. This defines our ac-
tion space A = {T1,T2,T3,T4} where T4 corresponds
to training just the last module of the network, m4, while
T3 the last two modules, i.e. m4 ◦ m3, T2 the last three,
i.e. m4 ◦m3 ◦m2, and T1 the whole network f . We also
define a continuous state space S = {R,V} where R is
the second derivative of the EMA teacher pseudo-loss, lt,
over time, hence Rt = − ∆2l

(∆t)2 , computed in discrete form
as Rt = −(lt − 2lt−1 + lt−2). V represents a cumula-
tive vector with the same dimension as the action space A,
initialized at zero. Now we have everything in place to em-
ploy an expected-improvement based decision model. At
each time-step t, action Tj is selected for j = argmaxVt.

During training step t, V[j] is updated as:

V[j]t+1 = αRt + (1− α)V[j]t (1)

where α is a smoothing factor, e.g. 0.1. i.e. Vt hold a dis-
crete exponential moving average of Rt. Therefore, our pol-
icy can be seen as a greedy module selection based on the
highest expected loss improvement over its linear approxi-
mation. A notable drawback of this policy is that we will
inevitably converge towards picking more rewarding, yet
expensive, actions i.e. T1,T2 compared to more efficient
but potentially less effective actions i.e. T3,T4. However,
our goal is not to maximize− ∆2l

(∆t)2 where ∆t is the number

of updates, our goal is instead to maximize − ∆2l
(∆τ)2 where

∆τ is a real-time interval. Therefore, we have to introduce
in the optimization policy some notion of the actual training
cost of each action in A on the target device. To start with,
we measure the training time associated with each action,
obtaining ωT = {ωT1

, ωT2
, ωT3

, ωT4
}. With this we can

compute the time-conditioning vector γ as

γj =
e

1
βωTj

∑K
k=1 e

1
βωTk

for j = 1, . . . ,K (2)

where β is the softmax temperature, and K the number of
actions, i.e. 4 in our model. We modify our update policy
to favor less computationally expensive modules by scaling
the updates with γ, replacing Eq. 1 with:

V[j]t+1 =

{
γjαRt + (1− α)V[j]t if Rt ≥ 0

(1− γj)αRt + (1− α)V[j]t if Rt < 0
(3)

This policy makes it so that more expensive actions re-
ceive smaller rewards and larger punishments. Despite its

4

simplicity, this leads to a significant reduction in FLOPS for
an average back-propagation β, i.e. −30% with β = 2.75
or −43% with β = 1. We finally choose β = 1.75 to ob-
tain a FLOPS reduction of −34%. Exhaustive ablations on
HAMT are presented in the supplementary material.

3.3. Active Training Modulation

Continuous and test-time adaptation methods tackle on-
line learning as a continuous and constant process carried
out on the data stream. Nevertheless, this approach presents
several shortcomings when it comes to real-world deploy-
ments. Performing adaptation when the deployment do-
main is unchanged does not lead to further performance im-
provements on the current domain; instead, it might cause
significant forgetting on previous domains, hence hinder-
ing model generalization (we present evidence of this in
the supplementary material). Even if mitigated by HAMT,
online training remains a computationally expensive proce-
dure, also due to several teachers’ necessary forward passes.
However, knowing when and what kind of adaptation is
needed is not a trivial task. We tackle this by introducing
an Adaptive Domain Detection mechanism, in Sec. 3.3.1,
and then a set of strategies to reduce the training time while
optimizing the learning rate accordingly, in Sec. 3.3.2.

3.3.1 Adaptive Domain Detection

A key element of an online adaptation system consists of
acquiring awareness of the trajectory in the data distribu-
tion space, i.e. domains, traveled by the student model dur-
ing deployment. We can model the problem by setting the
trajectory origin in the source domain. With high dimen-
sional data, the data distribution is not tractable, therefore
the trajectory cannot be described in closed form. Recent
work [41] introduced the notion of distance between the
current deployed domain and source by approximating it
with the confidence drop of a source pre-trained model.
This approach heavily relies on the assumption that the pre-
trained model is well-calibrated. While this might hold for
domains close to source, the calibration quickly degrades
in farther domains [45, 41]. This myopic behavior dampen
the simple use of confidence for domain detection. Further-
more, the additional forward pass increases the computa-
tional cost during deployment. We tackle these limitations
with an equivalently simple, yet more robust, approach.
We modify the backbone of the static teacher f st used for
the feature distance loss LFD by connecting a lightweight
segmentation head, dst

1 , after the first encoder module mst
1 :

hst
1 = dst

1 ◦mst
1 . This additional decoder, hst

1 , is trained of-
fline, on source data, without propagating gradients in the
backbone (mst

1 is frozen). Given a target sample xT , we
propose to compute the cross-entropy between the one-hot
encoded student prediction p(xT) = 1argmax(f(xT)) and the

lightweight decoder prediction g(xT) = hst
1 (xT) as

H
(i)
T = −

H×W∑
p=1

C∑
c=1

p
(
x
(i)
T

)
log g

(
x
(i)
T

)∣∣∣
p,c

(4)

Thanks to the student model’s higher generalization ca-
pability (both due to a larger number of parameters and the
unsupervised adaptation process), it will always outperform
the lightweight decoder head. Nevertheless, since now the
distance is measured in the prediction space, we are not sub-
jected to model miscalibration. Furthermore, since the stu-
dent model is in constant adaptation, the domain distance
accuracy actually improves over time, leading to better re-
sults. We present evidence of these claims in the supple-
mentary material. We now define a denoised signal by us-

ing bin-averaging A
(i)
T =

∑m(i+1)−1
j=mi

H
(j)
T

m where m is the

bin size. Domains are modeled as discrete steps of A(i)
T

B0 = A0 Bi =

{
Ai if |Bi−1 −Ai| > z

Bi−1 otherwise
(5)

where B is the discretized signal and z is the minimum
distance used to identify new domains. Finally, we refer to
the signed amplitude of domain shifts as ∆Bi = Bi−Bi−1,
and a domain change is detected whenever |∆Bi| > z.

3.3.2 Least Training and Adaptive Learning Rate

The definitions of B allow us to customize the training pro-
cess. To this end, we adopt a Least Training (LT) strat-
egy and trigger adaptation only when facing a new domain,
which occurs when |∆Bi| > z. Effective online learning
performance depends heavily on the choice of hyperparam-
eters such as the learning rate η and learning rate decay rate.
Therefore, we can adjust these parameters to facilitate adap-
tation according to the nature and intensity of domain shifts
we encounter, we refer to this orchestration as Adaptive
Learning Rate (ALR). For example, the larger the domain
shift (i.e. |∆Bi|), the more we need to adapt to counteract
its effect. This can be achieved by either running more op-
timization steps or using a higher learning rate. Whenever
a domain shift is detected, we compute the number of adap-
tation iterations L = Kl

|∆Bi|
z , hence proportionally to the

amplitude of the shift |∆Bi| relative to the threshold z. Kl

is a multiplicative factor representing the minimum adapta-
tion iterations. If a new domain shift takes place before the
adaptation process completes, we accumulate the required
optimization steps. Then, we can play on two further pa-
rameters: Kl and the learning rate schedule. We argue that
proper scheduling is crucial for attaining a smoother adap-
tation. The learning rate, η, is linearly decayed until the
adaptation is concluded – the smaller the domain shift, the

5

200mm All-domains Average GFLOPS Adaptation GFLOPS
HAMT LT ALR DCM RCS (mIoU) (mIoU) FPS Total Fwd. Bwd. Fwd. Bwd.

(A) – – – – – 62.2 ± 0.9 69.5 ± 0.3 5.9 ± 0.0 125.2 ± 0.0 94.4 ± 0.0 30.8 ± 0.0 56.6 ± 0.0 30.8 ± 0.0

(B) ✓ – – – – 60.2 ± 0.5 68.7 ± 0.3 7.0 ± 0.1 114.7 ± 0.0 94.4 ± 0.0 20.3 ± 0.0 56.6 ± 0.0 20.3 ± 0.0

(C) ✓ ✓ – – – 51.8 ± 0.5 65.7 ± 0.2 29.5 ± 0.6 44.4 ± 0.5 42.6 ± 0.4 1.8 ± 0.2 56.6 ± 0.0 20.2 ± 0.2

(D) ✓ ✓ ✓ – – 54.1 ± 1.2 65.9 ± 0.2 29.5 ± 0.5 44.4 ± 0.3 42.7 ± 0.2 1.8 ± 0.1 56.6 ± 0.0 20.3 ± 0.1

(E) ✓ ✓ ✓ ✓ – 56.6 ± 0.8 66.3 ± 0.1 28.9 ± 0.3 44.7 ± 0.2 42.9 ± 0.2 1.8 ± 0.1 56.6 ± 0.0 20.2 ± 0.0

(F) ✓ ✓ ✓ – ✓ 55.8 ± 1.0 66.3 ± 0.2 29.1 ± 1.1 45.2 ± 0.1 43.2 ± 0.1 2.0 ± 0.0 56.6 ± 0.0 20.3 ± 0.0

(G) ✓ ✓ ✓ ✓ ✓ 58.2 ± 0.8 66.9 ± 0.3 29.7 ± 0.6 45.7 ± 0.3 43.6 ± 0.2 2.1 ± 0.1 56.6 ± 0.0 20.2 ± 0.1

(a)

clear 1 200mm clear 2 100mm clear 3 75mm clear 4 clear h-mean target h-mean total h-mean FPS GFLOPS

(A) 72.9 52.2 73.6 64.2 73.0 67.6 73.4 73.2 60.6 67.2 5.6 125.2
(B) 73.0 50.4 73.4 62.1 73.0 67.3 73.2 73.1 59.1 66.4 6.8 114.7
(C) 73.4 46.0 73.5 61.5 73.6 66.1 73.8 73.6 56.5 65.1 7.2 100.0
(G) 73.4 53.6 73.1 65.2 73.5 68.2 73.2 73.3 61.6 67.8 9.1 82.2

(b)

Table 1: Ablation studies – HAMLET components. Top: Increasing Storm (8925 frames per domain) [41], bottom: Fast
Storm C [41] (2975 frames per domain). For each configuration, we report mIoU, framerate, and GFLOPS.

faster the decay. While the initial learning rate, Kη , should
be higher when the domain shift is triggered in domains far-
ther from the source

Kη = Kη,min +
(Bi −Bsource)(Kη,max −Kη,min)

Bhard −Bsource
(6)

where Bsource (resp. Bhard) is an estimate of B when the
network is close to (resp. far from) the source domain; and
Kη,min (resp. Kη,max) is the value of Kη assigned when the
network is close to (resp. far away from) the source. Con-
cerning Kl, we posit that moving towards the source re-
quires less adaptation than going towards harder domains:
the model shows good recalling of previously explored do-
mains and thanks to the employed regularization strategies

Kl =

{
Kl,max if ∆Bi ≥ 0

Kl,min +
(Bi−Bsource)(Kl,max−Kl,min)

Bhard−Bsource
otherwise

(7)

where Kl,min (resp. Kl,max) is the value of Kl assigned
when the model is close to (resp. far away from) the source
domain. Extensive ablations in the supplementary material
will highlight how the orchestration of the adaptation hyper-
parameters improves the accuracy-speed trade-off.

3.3.3 Dynamic ClassMix (DCM)

ClassMix [39] provides a simple mechanism for data aug-
mentation by mixing classes from the source dataset into
target images. Usually 50% of the classes in the source
dataset are selected, however we notice that this percent-
age is a highly sensitive hyperparameter in online domain
adaptation. Injecting a significant portion of source classes
has a beneficial impact when adapting to domains closer to
the source domain, whereas when adapting to domains fur-
ther from the source the opposite effect can be observed, as
it effectively slows down the adaptation process. We there-
fore exploit once more the deployment domain awareness
to control the mixing augmentation:

KCM = KCM,min +
(Bi −Bsource)(KCM,max −KCM,min)

Bhard −Bsource
. (8)

where KCM is the percentage of source classes used during
adaptation; and KCM, min (resp. KCM, max) is the value of
KCM assigned when the network is close to (resp. far away
from) the source domain.

3.3.4 Buffer Sampling

Following [41], to simulate real deployment, we limit our
access to the source domain by using a replay buffer. Ad-
ditionally, instead of initializing at random (with a uniform
prior), we apply Rare Class Sampling (RCS) (skewed pri-
ors) as in [20]. This incentives a more balanced class distri-
bution over the buffer, ultimately leading to better accuracy.

4. Experimental Results
The experiments are carried out on (a) the OnDA bench-

marks [41] and (b) the SHIFT dataset [45]. (a) is a
semi-syntehtic benchmark, as it applies synthetic rain and
fog [50] over 4 different intensities profiles. The main
benchmark, Increasing Storm, presents a storm with a pyra-
midal intensity profile; see Fig. 4. In contrast, (b) is a purely
synthetic dataset, where both the underlying image and the
weather are synthetically generated and thus domain change
is fully controllable. All models are evaluated using mIoU:
following [41], we report the harmonic mean over domains
to present the overall adaptation performance. All experi-
ments were carried out using an Nvidia™ RTX 3090 GPU.
We refer to supplementary material for further details.

4.1. Ablation Studies

In Tab. 1 we study the impact of each contribution to
adaptation performance, both in terms of accuracy and effi-
ciency. For each configuration, we report mIoU over differ-
ent portions of the sequence, the framerate and the amount
of GFLOPS – respectively averages of: total, forward and
backward passes, and dedicated adaptation only, also di-
vided in forward (Fwd) and backward (Bwd). Tab. 1 (a)
shows results on the Increasing Storm scenario [41]. Here,
we show mIoU over the 200mm domain, i.e. the hardest in
the sequence, as well as the mIoU averaged over forward
and backward adaptation, i.e., from clear to 200mm rain

6

clear 25mm 50mm 75mm 100mm 200mm h-mean FPS GFLOPS
F B F B F B F B F B F F B T

(A) DeepLabV2 (no adaptation) 64.5 – 57.1 – 48.7 – 41.5 – 34.4 – 18.5 37.3 – – 39.4 –

(B) DeepLabV2 fully supervised (oracle) 64.5 – 64.1 – 63.7 – 63.0 – 62.4 – 58.2 62.6 – – 39.4 –

(C) OnDA 64.5 64.8 60.4 57.1 57.3 54.5 54.8 52.2 52.0 49.1 42.2 54.2 55.1 – 1.3 –

(D) SegFormer MiT-B1 (no adaptation) 73.4 – 68.8 – 64.2 – 58.0 – 51.8 – 31.2 57.8 – – 48.4 34.9
(E) SegFormer MiT-B5 (no adaptation) 77.6 – 73.9 – 71.0 – 67.2 – 62.6 – 46.7 64.7 – – 11.5 240.4

(F) SegFormer MiT-B1 fully supervised (oracle) 72.9 – 72.4 – 72.1 – 71.5 – 70.7 – 68.6 71.3 – – 48.4 34.9
(G) TENT 73.0 72.8 68.5 68.6 64.5 64.8 59.7 60.2 54.5 54.8 35.9 56.2 63.6 59.9 10.0 –
(H) TENT + Replay Buffer 73.0 72.8 68.5 68.6 64.5 64.8 59.7 60.2 54.4 54.7 35.8 56.1 63.6 59.9 7.8 –
(I) CoTTA 72.5 74.4 69.5 70.9 65.9 68.2 66.1 64.7 64.6 63.5 57.2 65.6 68.1 66.8 0.6 593.8
(J) CoTTA real-time 73.3 75.4 70.3 70.6 66.9 66.4 62.5 61.4 57.6 56.9 39.7 59.2 65.5 62.3 27.0 41.7
(K) HAMLET (ours) 73.4 71.0 70.1 68.8 67.7 67.5 66.6 66.4 65.5 64.6 59.2 66.8 67.6 67.2 29.1 45.7

Table 2: Comparison against other models – Increasing storm scenario. (A-C) methods built over DeepLabv2, (D-E)
SegFormer variants trained on source, (F) oracle, (G-K) models adapted online. We report mIoU, framerate, and GFLOPS.

and backward. Results are averaged over 3 runs with dif-
ferent seeds, with standard deviation being reported. (A)
reports the results achieved by naı̈vely performing full adap-
tation of the model. HAMT can increase the framerate by
roughly 15% by reducing the Bwd GFLOPS of 34%, at the
expense of as few as 0.7 mIoU on average, i.e., about 2
points on the 200mm domain. The main boost in terms
of speed is obviously given by LT (C), which inhibits the
training in absence of detected domain shifts. LT increases
the framerate by approximately 4× by decimating the total
GFLOPS, yet not affecting the adaptation Bwd GFLOPS.
This comes with a price in terms of mIoU, dropping by
about 4 points on average and more than 10 points on
200mm – not a moderate drop anymore. LT impact highly
depends on the domain sequence experienced during de-
ployment: frequent domain changes could prevent training
inhibition, thus neglecting LT gains in terms of efficiency,
as we will appreciate later. The loss in accuracy is progres-
sively regained by adding ALR (D), with further improve-
ments yielded by one between DCM (E) and RCS (F), or
both together (G) leading to the full HAMLET configura-
tion. The three together allow for reducing the gap to 2.5
points mIoU – 4 over the 200mm domain – without sacri-
ficing any efficiency. Tab. 1 (b) shows further results, on a
faster version of Storm C [41]. This represents a much more
challenging scenario, with harsher and 3× more frequent
domain shifts. Here we show the single domains mIoU, as
well as harmonic mean on source and target domains, and
all frames. As expected, in this benchmark, LT alone (C)
results much less effective than before, with a much lower
gain in FPS and GFLOPS. Here, the synergy between the
HAMT, LT, and the other components (G) allows for the
best accuracy and speedup – even outperforming the full
training variant (A) – highlighting their complementarity.
Further ablations are in the supplementary material.

4.2. Results on Increasing Storm

Tab. 2 shows a direct comparison between HAMLET
and relevant approaches. The presented test-time adaptation

0
50

100
200

in
te

ns
ity

40

60

m
Io

U

clear
25mm

50mm
75mm

100mm
200mm

0

2

4

6
le

ar
ni

ng
 ra

te
1e 5

0 8926 17851 26776 35701 44626 53551 62476 71401 80326 89251 98176
Step

0

20

40

FP
S

Figure 4: HAMLET on the Increasing Storm. We show
rain intensity (in millimetres), mIoU over active (bold) and
inactive (dashed) domains, learning rate and FPS.

strategies namely – TENT and CoTTA – were revised to
handle the online setting and be fairly compared with HAM-
LET. All methods start with the same exact initial weights
– with HAMLET requiring the additional lightweight de-
coder, not needed by TENT and CoTTA – using SegFormer
MiT-B1 as the backbone, since it is 4× faster than Seg-
Former MiT-B5 and thus better suited to keep real-time
performance even during adaptation. We report results
achieved by DeepLabv2 trained on source data only (A),
an oracle model trained with full supervision (B), as well
as OnDA [41] (C) as a reference. Then, we report Seg-
Former models trained on the source domain only (D) and
(E). In (F) we show the performance achieved by an oracle
SegFormer, trained on all domains fully supervised. Fol-
lowing [41], columns “F” concern forward adaptation from
clear to 200mm, while columns “B” show backward adap-

7

clear 750m 375m 150m 75m h-mean FPS GFLOPS
F B F B F B F B F F B T

OnDA 64.9 65.8 63.3 62.3 60.7 58.8 51.6 49.1 42.1 55.1 54.1 – 1.3 –
SegFormer MiT-B1 (no adaptation) 71.1 – 70.0 – 67.5 – 58.8 – 46.9 61.3 – – 48.4 34.9
Full training 71.5 72.1 72.9 74.7 71.9 73.1 67.6 68.1 61.3 68.7 71.9 70.3 5.6 125.2
HAMLET (ours) 71.1 71.6 70.3 70.8 68.8 69.2 64.3 64.3 57.0 65.9 68.9 67.4 24.8 50.7

Table 3: Results on foggy domains. Comparison between OnDA, Source SegFormer, full training adaptation, and HAMLET.
Clear Cloudy Overcast Small rain Mid rain Heavy rain h-mean FPS GFLOPS

F B F B F B F B F B F F B T

SegFormer MiT-B1 fully supervised (oracle) 80.1 – 79.9 – 79.8 – 78.9 – 78.7 – 77.1 79.1 – – 48.4 34.93
SegFormer MiT-B1 (no adaptation) 79.6 – 77.1 – 75.4 – 73.4 – 71.4 – 66.7 73.7 – – 48.4 34.93
Full training 78.9 79.3 76.7 76.8 76.8 77.9 74.8 74.8 76.3 76.5 74.0 76.2 77.0 76.6 5.0 125.1
HAMLET (ours) 79.6 78.9 76.9 76.6 76.1 77.4 73.3 74.3 74.2 76.0 74.2 75.7 76.6 76.1 26.8 43.9

Table 4: Results on SHIFT dataset [45]. Comparison between Source SegFormer, full training adaptation, and HAMLET.

tation from 200mm to clear, while the h-mean T refers to
the overall harmonic mean. We can notice how SegFomer
results are much more robust to domain changes with re-
spect to DeepLabv2. Indeed, SegFormer MiT-B5 (E), with-
out any adaptation, results more accurate than DeepLabv2
oracle (B), as well as better and faster than OnDA (C). The
faster variant (D) outperforms OnDA both in speed and
accuracy, reaching 48 FPS. Nevertheless, domain changes
still dampen the full potential of SegFormer. Indeed, the
oracle (F) outperforms (D) by about +14 mIoU. However,
this is not meaningful for real deployment experiencing un-
predictable domain shifts, as it assumes to have data avail-
able in advance. Concerning test-time models, TENT starts
adapting properly only beyond 50mm, both with (G) and
without (H) frame buffer, while it loses some accuracy on
25mm. This makes its overall forward adaptation perfor-
mance slightly worse compared to the pre-trained model
(D), while being better at backward adaptation. Despite out-
performing SegFormer MiT-B1, TENT is both slower and
less accurate than SegFormer MiT-B5 running without any
adaptation, further suggesting the robustness of the latter
and making TENT not suitable for real-world deployment.
On the contrary, CoTTA (I) outperforms both SegFormer
models trained on source only, at the expense of dropping
the framerate below 1FPS. It is worth mentioning that these
metrics were collected after each domain was completed by
each model individually. In an evaluation setup imposing
a shared time frame, slower models would present much
lower metrics, since their adaptation process would result
constantly lagged. In fact, forcing CoTTA to run in real-
time, at nearly 30FPS – i.e. by training once every 50 frames
– dramatically reduces the effectiveness of the adaptation
process (J), with drastic drops in the hardest domains. Fi-
nally, HAMLET (K) succeeds on any fronts, improving the
baseline (D) by about 10 points with only a cost of 25%
in terms of speed, while outperforming SegFormer MiT-B5
(E) both on accuracy (+2.5 mIoU) and speed (3× faster)
– being the only method achieving this, and thus the only
suitable choice for real-time applications. Fig. 4 shows the
overall behavior of HAMLET while adapting over the In-
creasing Storm. In addition to the rain intensity and the

0

6

in
te

ns
ity

60

65

70

75

80

85

m
Io

U

clear
cloudy

overcast
small_rain

mid_rain
heavy_rain

0.0

2.5

5.0
le

ar
ni

ng
 ra

te
1e 5

0 21217 35344 43351 50797 57172 64363 70738 78184 86191 100318 121534
Step

0

20

40

FP
S

Figure 5: HAMLET on the SHIFT benchmark. We show
mIoU over active (bold) and inactive (dashed) domains,
learning rate and FPS.

mIoU achieved on each domain – active (bold) or inac-
tive (dashed), i.e. respectively the mIoU on the domain be-
ing currently faced during deployment, and how the current
adaptation affects the performance on the other domains to
highlight the robustness to forgetting – we also report how
the learning rate is modulated in correspondence of detected
domain shifts, with a consequent drop in FPS due to the
short training process taking place. For further experiments
on harsher and sudden adaptation cycles, we include results
of Storms A, B, C [41] in the supplementary material.

4.3. Additional Results: Fog and SHIFT

Fog. In Tab. 3, we investigate adaptation on the Increas-
ing Fog scenario in the OnDA benchmark [41]. Crucially,
for this experiment, we keep the same hyperparameters used
for the Increasing Storm, since in both cases the starting
SegFormer model is trained on the same source domain.
This allows for validating how the proposed setting general-

8

clean 50mm 100mm 200mm

Figure 6: Qualitative results – HAMLET in action. From left to right, we show frames from clean, 50mm, 100mm, and
200m domains. From top to bottom: input image, prediction by SegFormer trained on source domain and HAMLET.

izes at dealing with different kind of domain shifts, beyond
those considered in the main experiments. We effectively
use Increasing Fog as test set, and compare against Seg-
Former trained on source (no adaptation) and a model that
has been adapted by means of full online training optimiza-
tion (configuration (A) of Table 1). HAMLET is able to
adapt almost as well as the full online training model, with
less than a 3 mIoU gap, while enjoying real-time adaptation
at nearly 5× the speed using just 40% of the FLOPS.

SHIFT. We further test HAMLET on the SHIFT
dataset [45]. Tab. 4 collects the results achieved by Seg-
Former trained on source, full online training and HAM-
LET respectively, both at forward and backward adaptation
across Clear, Cloudy, Overcast, Small rain, Mid rain and
Heavy rain domains. Here HAMLET results highly com-
petitive with the full training regime, with only 0.5 drop in
average mIoU, while being more than 5× faster. Fig. 5
depicts, from top to bottom, the rain intensity characteriz-
ing any domain encountered on SHIFT, the mIoU achieved
both on current (bold) and inactive (dashed) domains, the
learning rate changes based on the domain shift detection,
and the framerate achieved at any step. We refer to the sup-
plementary material for a deeper analysis.

Qualitative results. To conclude, Fig. 6 shows some
qualitative examples from CityScapes. We can notice how
SegFormer accuracy (second tow) drops with severe rain,
whereas HAMLET (third row) is capable of keeping the
same segmentation quality across the storm.

5. Discussion

Orthogonality. HAMT and LT act independently.
Indeed, by strongly constraining the adaptation periods
through LT, HAMT has a limited margin of action. The im-
pact of HAMT also depends on the backbone and by care-

fully crafting modular architectures, one can achieve further
optimization. Nevertheless, in a deployment environment
where domain shifts occur at high frequencies (e.g., Storm
C), LT is ineffective, while HAMT thrives.

Measuring forgetting. An interesting topic we have not
investigated consists of introducing an explicit awareness of
which domains have been explored and how well we can re-
call them, expanding the distance B to multiple dimensions.

Safety. We believe dynamic adaptation has the poten-
tial to enhance safety, but we acknowledge the necessity for
rigorous testing and verification to safeguard against drift
or catastrophic forgetting. This mandates a comprehensive
effort from academia, industry, and certification authorities
for ensuring the integrity of dynamically adapting models.

6. Summary & Conclusion

We have presented HAMLET, a framework for real-time
adaptation for semantic segmentation that achieves state-
of-the-art performance on established benchmarks with
continuous domain changes. Our approach combines a
hardware-aware backpropagation orchestrator and a spe-
cialized domain-shift detector to enable active control over
the model’s adaptation, resulting in high framerates on a
consumer-grade GPU. These advancements enable HAM-
LET to be a promising solution for in-the-wild deployment,
making it a valuable tool for applications that require robust
performance in the face of unforeseen domain changes.

Acknowledgement. The authors thank Gianluca Villani
for the insightful discussion on reward-punishment policies,
Leonardo Ravaglia for his expertise on hardware-aware
training, and Lorenzo Andraghetti for exceptional technical
support throughout the project. Their assistance was invalu-
able in the completion of this work.

9

References
[1] Andreea Bobu, Judy Hoffman, Eric Tzeng, and Trevor Dar-

rell. Adapting to continuously shifting domains. In ICLR
2018 Workshop Program Chairs, 2018. 00000.

[2] Chaoqi Chen, Weiping Xie, Wenbing Huang, Yu Rong,
Xinghao Ding, Yue Huang, Tingyang Xu, and Junzhou
Huang. Progressive feature alignment for unsupervised do-
main adaptation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
627–636, 2019.

[3] Liang-Chieh Chen, Jonathan T Barron, George Papandreou,
Kevin Murphy, and Alan L Yuille. Semantic image segmen-
tation with task-specific edge detection using cnns and a dis-
criminatively trained domain transform. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 4545–4554, 2016.

[4] Liang-Chieh Chen, Raphael Gontijo Lopes, Bowen Cheng,
Maxwell D Collins, Ekin D Cubuk, Barret Zoph, Hartwig
Adam, and Jonathon Shlens. Naive-student: Leveraging
semi-supervised learning in video sequences for urban scene
segmentation. In European Conference on Computer Vision,
pages 695–714. Springer, 2020.

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence, 40(4):834–848, 2017.

[6] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L. Yuille. Deeplab: Semantic im-
age segmentation with deep convolutional nets, atrous con-
volution, and fully connected crfs. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 40(4):834–848,
Apr 2018.

[7] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision
(ECCV), pages 801–818, 2018.

[8] Yi-Hsin Chen, Wei-Yu Chen, Yu-Ting Chen, Bo-Cheng Tsai,
Yu-Chiang Frank Wang, and Min Sun. No more discrimina-
tion: Cross city adaptation of road scene segmenters. In 2017
IEEE International Conference on Computer Vision (ICCV),
pages 2011–2020. IEEE, 2017. 00000.

[9] Feng Cheng, Mingze Xu, Yuanjun Xiong, Hao Chen, Xinyu
Li, Wei Li, and Wei Xia. Stochastic backpropagation: A
memory efficient strategy for training video models. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8301–8310, 2022.

[10] Henghui Ding, Xudong Jiang, Ai Qun Liu, Nadia Magne-
nat Thalmann, and Gang Wang. Boundary-aware feature
propagation for scene segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 6819–6829, 2019.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[12] A. Dundar, M. Y. Liu, Z. Yu, T. C. Wang, J. Zedlewski, and
J. Kautz. Domain stylization: A fast covariance matching
framework towards domain adaptation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, pages 1–1,
2020.

[13] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei
Fang, and Hanqing Lu. Dual attention network for scene seg-
mentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 3146–3154,
2019.

[14] Jun Fu, Jing Liu, Yuhang Wang, Yong Li, Yongjun Bao, Jin-
hui Tang, and Hanqing Lu. Adaptive context network for
scene parsing. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 6748–6757,
2019.

[15] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. The journal of machine learning
research, 17(1):2096–2030, Jan. 2016.

[16] Rui Gong, Martin Danelljan, Dengxin Dai, Danda Pani
Paudel, Ajad Chhatkuli, Fisher Yu, and Luc Van Gool. Tacs:
Taxonomy adaptive cross-domain semantic segmentation. In
European Conference on Computer Vision, pages 19–35.
Springer, 2022.

[17] Junjun He, Zhongying Deng, Lei Zhou, Yali Wang, and Yu
Qiao. Adaptive pyramid context network for semantic seg-
mentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7519–
7528, 2019.

[18] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,
Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Dar-
rell. CyCADA: Cycle-consistent adversarial domain adap-
tation. In Jennifer Dy and Andreas Krause, editors, Pro-
ceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning
Research, pages 1989–1998, Stockholmsmässan, Stockholm
Sweden, 10–15 Jul 2018. PMLR.

[19] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Dar-
rell. FCNs in the wild: Pixel-level adversarial and constraint-
based adaptation. CoRR, 2016. 00000.

[20] Lukas Hoyer, Dengxin Dai, and Luc Van Gool. Daformer:
Improving network architectures and training strategies for
domain-adaptive semantic segmentation. arXiv preprint
arXiv:2111.14887, 2021.

[21] Lukas Hoyer, Dengxin Dai, and Luc Van Gool. Hrda:
Context-aware high-resolution domain-adaptive semantic
segmentation. In European Conference on Computer Vision
(ECCV), 2022.

[22] Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier ad-
justment module for model-agnostic domain generalization.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Process-
ing Systems, 2021.

[23] Angela H Jiang, Daniel L-K Wong, Giulio Zhou, David G
Andersen, Jeffrey Dean, Gregory R Ganger, Gauri Joshi,

10

Michael Kaminksy, Michael Kozuch, Zachary C Lipton,
et al. Accelerating deep learning by focusing on the biggest
losers. arXiv preprint arXiv:1910.00762, 2019.

[24] Zhengkai Jiang, Yuxi Li, Ceyuan Yang, Peng Gao, Yabiao
Wang, Ying Tai, and Chengjie Wang. Prototypical con-
trast adaptation for domain adaptive semantic segmentation.
In European Conference on Computer Vision, pages 36–54.
Springer, 2022.

[25] Myeongjin Kim and Hyeran Byun. Learning texture invari-
ant representation for domain adaptation of semantic seg-
mentation. 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Jun 2020.

[26] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei Rusu, Kieran Milan,
John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and
Raia Hadsell. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of Sciences,
114, 12 2016.

[27] Yevhen Kuznietsov, Marc Proesmans, and Luc Van Gool.
Towards unsupervised online domain adaptation for seman-
tic segmentation. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 261–
271, 2022.

[28] Xin Lai, Zhuotao Tian, Xiaogang Xu, Yingcong Chen, Shu
Liu, Hengshuang Zhao, Liwei Wang, and Jiaya Jia. Decou-
plenet: Decoupled network for domain adaptive semantic
segmentation. In European Conference on Computer Vision,
pages 369–387. Springer, 2022.

[29] Qicheng Lao, Xiang Jiang, Mohammad Havaei, and
Yoshua Bengio. Continuous domain adaptation with vari-
ational domain-agnostic feature replay. arXiv preprint
arXiv:2003.04382, 2020.

[30] Geon Lee, Chanho Eom, Wonkyung Lee, Hyekang Park, and
Bumsub Ham. Bi-directional contrastive learning for domain
adaptive semantic segmentation. In European Conference on
Computer Vision, pages 38–55. Springer, 2022.

[31] Xia Li, Zhisheng Zhong, Jianlong Wu, Yibo Yang, Zhouchen
Lin, and Hong Liu. Expectation-maximization attention net-
works for semantic segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 9167–9176, 2019.

[32] Yunsheng Li, Lu Yuan, and Nuno Vasconcelos. Bidirec-
tional learning for domain adaptation of semantic segmen-
tation. 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Jun 2019.

[33] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need
to access the source data? source hypothesis transfer for un-
supervised domain adaptation. CoRR, 2020.

[34] Yuejiang Liu, Parth Kothari, Bastien Germain van Delft,
Baptiste Bellot-Gurlet, Taylor Mordan, and Alexandre Alahi.
TTT++: When does self-supervised test-time training fail
or thrive? In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Informa-
tion Processing Systems, 2021.

[35] Yuang Liu, Wei Zhang, and Jun Wang. Source-free domain
adaptation for semantic segmentation. 2021.

[36] Jonathan Long, Evan Shelhamer, and Trevor Darrel. Fully
convolutional networks for semantic segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[37] Ke Mei, Chuang Zhu, Jiaqi Zou, and Shanghang Zhang. In-
stance adaptive self-training for unsupervised domain adap-
tation. Lecture Notes in Computer Science, page 415–430,
2020.

[38] Vladimir Nekrasov, Chunhua Shen, and Ian Reid. Light-
weight refinenet for real-time semantic segmentation. In
British Conference on Computer Vision (BMVC), 2018.

[39] Viktor Olsson, Wilhelm Tranheden, Juliano Pinto, and
Lennart Svensson. Classmix: Segmentation-based data aug-
mentation for semi-supervised learning. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 1369–1378, 2021.

[40] Fei Pan, Sungsu Hur, Seokju Lee, Junsik Kim, and In So
Kweon. Ml-bpm: Multi-teacher learning with bidirectional
photometric mixing for open compound domain adaptation
in semantic segmentation. In European Conference on Com-
puter Vision, pages 236–251. Springer, 2022.

[41] Theodoros Panagiotakopoulos, Pier Luigi Dovesi, Linus
Härenstam-Nielsen, and Matteo Poggi. Online domain adap-
tation for semantic segmentation in ever-changing condi-
tions. In European Conference on Computer Vision (ECCV),
2022.

[42] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for data: Ground truth from computer
games. In European conference on computer vision, pages
102–118. Springer, 2016.

[43] Serban Stan and Mohammad Rostami. Unsupervised model
adaptation for continual semantic segmentation. In AAAI,
2021.

[44] Peng Su, Shixiang Tang, Peng Gao, Di Qiu, Ni Zhao, and
Xiaogang Wang. Gradient regularized contrastive learning
for continual domain adaptation. 2020. 00000.

[45] Tao Sun, Mattia Segu, Janis Postels, Yuxuan Wang, Luc
Van Gool, Bernt Schiele, Federico Tombari, and Fisher Yu.
SHIFT: a synthetic driving dataset for continuous multi-task
domain adaptation. In Computer Vision and Pattern Recog-
nition, 2022.

[46] Towaki Takikawa, David Acuna, Varun Jampani, and Sanja
Fidler. Gated-scnn: Gated shape cnns for semantic segmen-
tation. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 5229–5238, 2019.

[47] Phillip Thomas, Lars Pandikow, Alex Kim, Michael Stan-
ley, and James Grieve. Open synthetic dataset for improving
cyclist detection, Nov 2021.

[48] Alessio Tonioni, Fabio Tosi, Matteo Poggi, Stefano Mat-
toccia, and Luigi Di Stefano. Real-time self-adaptive deep
stereo. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 195–204, 2019.

[49] Wilhelm Tranheden, Viktor Olsson, Juliano Pinto, and
Lennart Svensson. Dacs: Domain adaptation via cross-
domain mixed sampling. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision
(WACV), pages 1379–1389, January 2021.

11

[50] Maxime Tremblay, Shirsendu S. Halder, Raoul de Charette,
and Jean-François Lalonde. Rain rendering for evaluating
and improving robustness to bad weather. International
Journal of Computer Vision, 2020.

[51] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Ki-
hyuk Sohn, Ming-Hsuan Yang, and Manmohan Chandraker.
Learning to adapt structured output space for semantic seg-
mentation. 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Jun 2018.

[52] Riccardo Volpi, Pau de Jorge, Diane Larlus, and Gabriela
Csurka. On the road to online adaptation for semantic image
segmentation. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2022.

[53] Vibashan VS, Poojan Oza, and Vishal M. Patel. Towards on-
line domain adaptive object detection. 2023 IEEE/CVF Win-
ter Conference on Applications of Computer Vision (WACV),
Jan 2023.

[54] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. In International Conference on
Learning Representations, 2021.

[55] Haoran Wang, Tong Shen, Wei Zhang, Lingyu Duan, and
Tao Mei. Classes matter: A fine-grained adversarial ap-
proach to cross-domain semantic segmentation. In The Euro-
pean Conference on Computer Vision (ECCV), August 2020.

[56] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.
Haq: Hardware-aware automated quantization with mixed
precision, 2018.

[57] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Con-
tinual test-time domain adaptation, 2022.

[58] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 7794–7803, 2018.

[59] Bingzhen Wei, Xu Sun, Xuancheng Ren, and Jingjing Xu.
Minimal effort back propagation for convolutional neural
networks. arXiv preprint arXiv:1709.05804, 2017.

[60] Tsung-Han Wu, Yi-Syuan Liou, Shao-Ji Yuan, Hsin-Ying
Lee, Tung-I Chen, Kuan-Chih Huang, and Winston H Hsu.
D2ada: Dynamic density-aware active domain adaptation for
semantic segmentation. In European Conference on Com-
puter Vision (ECCV), 2022.

[61] Zuxuan Wu, Xintong Han, Yen-Liang Lin, Mustafa Gökhan
Uzunbas, Tom Goldstein, Ser Nam Lim, and Larry S. Davis.
Dcan: Dual channel-wise alignment networks for unsuper-
vised scene adaptation. Lecture Notes in Computer Science,
page 535–552, 2018.

[62] Zuxuan Wu, Xin Wang, Joseph Gonzalez, Tom Goldstein,
and Larry Davis. ACE: Adapting to changing environments
for semantic segmentation. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 2121–2130.
IEEE, 2019.

[63] Markus Wulfmeier, Alex Bewley, and Ingmar Posner. Incre-
mental adversarial domain adaptation for continually chang-
ing environments. 2018. 00000.

[64] Enze Xie, Wenjia Wang, Wenhai Wang, Peize Sun, Hang Xu,
Ding Liang, and Ping Luo. Segmenting transparent objects
in the wild with transformer. In IJCAI, 2021.

[65] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and
efficient design for semantic segmentation with transform-
ers. Advances in Neural Information Processing Systems,
34:12077–12090, 2021.

[66] Maoke Yang, Kun Yu, Chi Zhang, Zhiwei Li, and Kuiyuan
Yang. Denseaspp for semantic segmentation in street scenes.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3684–3692, 2018.

[67] Yanchao Yang and Stefano Soatto. FDA: Fourier domain
adaptation for semantic segmentation. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4084–4094. IEEE, 2020.

[68] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,
Gang Yu, and Nong Sang. Bisenet: Bilateral segmentation
network for real-time semantic segmentation. In Proceed-
ings of the European conference on computer vision (ECCV),
pages 325–341, 2018.

[69] Yuhui Yuan, Xiaokang Chen, Xilin Chen, and Jingdong
Wang. Segmentation transformer: Object-contextual repre-
sentations for semantic segmentation. In European Confer-
ence on Computer Vision (ECCV), 2020.

[70] Pan Zhang, Bo Zhang, Ting Zhang, Dong Chen, Yong Wang,
and Fang Wen. Prototypical pseudo label denoising and tar-
get structure learning for domain adaptive semantic segmen-
tation. 2021.

[71] Qiming Zhang, Jing Zhang, Wei Liu, and Dacheng Tao. Cat-
egory anchor-guided unsupervised domain adaptation for se-
mantic segmentation. Advances in Neural Information Pro-
cessing Systems, 2019.

[72] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
CVPR, 2017.

[73] Yizhou Zhou, Xiaoyan Sun, Zheng-Jun Zha, and Wenjun
Zeng. Context-reinforced semantic segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4046–4055, 2019.

[74] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. 2017 IEEE International
Conference on Computer Vision (ICCV), Oct 2017.

[75] Yang Zou, Zhiding Yu, BVK Kumar, and Jinsong Wang.
Unsupervised domain adaptation for semantic segmentation
via class-balanced self-training. In Proceedings of the Eu-
ropean conference on computer vision (ECCV), pages 289–
305, 2018.

[76] Yang Zou, Zhiding Yu, Xiaofeng Liu, BVK Kumar, and
Jinsong Wang. Confidence regularized self-training. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 5982–5991, 2019.

[77] Yang Zou, Zhiding Yu, Xiaofeng Liu, B. V. K. Vijaya Kumar,
and Jinsong Wang. Confidence regularized self-training.
2019 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), Oct 2019.

12

To Adapt or Not to Adapt? Real-Time Adaptation for Semantic Segmentation –
Supplementary Material

Marc Botet Colomer∗ 1,2 Pier Luigi Dovesi∗ 3 †

Theodoros Panagiotakopoulos4 Joao Frederico Carvalho1 Linus Härenstam-Nielsen5,6

Hossein Azizpour2 Hedvig Kjellström2,3 Daniel Cremers5,6,7 Matteo Poggi8

1Univrses 2KTH 3Silo AI 4King 5Technical University of Munich
6Munich Center for Machine Learning 7University of Oxford 8University of Bologna

https://marcbotet.github.io/hamlet-web/

Ours

Tent

SegFormer MiT-B1

SegFormer MiT-B5

CoTTA

CoTTA real-time

0 10 20 30 40 50

58

60

62

64

66

68

FPS

m
Io

U

Ours

Tent

SegFormer MiT-B1

SegFormer MiT-B5

CoTTA

CoTTA real-time

0 10 20 30 40 50

30

35

40

45

50

55

60

FPS

m
Io

U

all-domains 200mm
Figure 1: Model averaged performances over domain. We can observe how HAMLET reaches state-of-the-art accuracy,
while running more than 6× faster. Adaptive models are displayed in blue, while models trained on source, without adapta-
tion, are displayed in black. On the left we show averaged performances over all domains, on the right we show how metrics
drop in the hardest domain (200mm). The metric drop is limited for strong adaptive networks CoTTA [9], and HAMLET,
while being a drastic drop for TENT [8] and SegFormer [10] (both MiT-B1 and MiT-B5). Finally, CoTTA real-time shows
the performance of CoTTA in deployment conditions, hence running once every 50 frames.

This report introduces further details on the ICCV paper - “To Adapt or Not to Adapt? Real-Time Adaptation for Semantic
Segmentation”. On the cover of this document, Figure 1, we propose a comparison of HAMLET (Hardware-Aware Modular
Least Expensive Training) against state-of-the-art adaptation strategies, hence showing its highly favorable trade-off between
speed and accuracy.

Then, starting with Section 1 we present an ablation study on the Hardware-Aware Modular Training (HAMT) method,
where we show several speed-accuracy trade-offs. In Section 2 we dive deep in the Least Training (LT) and Adaptive Learning
Rate (ALR) methodologies. We illustrate the behavior of different policies by comparing them on the same domain shift,
and we also show how the policy copes with noisy domain shift detection. In addition, we present a quantitative analysis
focusing on both speed and accuracy. A deeper analysis of the effect of the adaption on every single class is presented in

∗ Joint first authorship † Part of the work carried out while at Univrses.

Section 3. Then, in Sections 4 and 5 we detail the model implementation and the chosen hyperparameters. In Section 6
we provide extensive studies on additional storms as presented in the OnDA benchmark [5]. We particularly focus on the
behavior of repeated adaptation cycles and how they affect domain shift detection (hence ALR policies). Then, in Section
7 we illustrate additional experiments on the SHIFT dataset [6]. We first present a plot summarizing the model behavior
on SHIFT and then we analyze how LT could prevent forgetting in long sequences without relevant domain shifts. We
conclude by reporting some qualitative results in Section 8, and by referencing the qualitative videos uploaded on Youtube in
Section 9. The first qualitative video (https://www.youtube.com/watch?v=zjxPbCphPDE&t=139s) showcases
a comparison between HAMLET, CoTTA, and SegFormer MiT-B1 (no adaptation) on a Cityscapes [2] sequence with the
Incremental Storm. Finally, we argue that synthetic data could only partially provide evidence of our methods: purposely,
we run HAMLET on a real driving video taken in Korea across different rainy domains – https://www.youtube.
com/watch?v=Dwswey-GqQc, whose author gave us consent to use it – to further support its effectiveness. The second
qualitative video (https://www.youtube.com/watch?v=zjxPbCphPDE) shows the outcome of this experiment.

1. Ablation study: Hardware-Aware Modular Training
In this section, we present an additional ablation study on the HAMT module to further investigate its performance.

Table 1 reports the adaptation results achieved by different configurations that exploit HAMT alone, without Active Training
Modulation being enabled. We focus on the average adaptation performance and results on the hardest domain (200mm)
and source domain (clear) to respectively measure the effectiveness of the adaptation scheme on the hardest domain and the
robustness when adapting back on the source domain. Additionally, we report the framerate achieved by each configuration
and the GFLOPS performed to backpropagate gradients through SegFormer.

We compare the Full training model (A) to several configurations that use a random sampling policy to pick which module
to optimize (B, C, D, E) and HAMT sampling strategy (B’, C’, D’, E’), characterized by uniform sampling – not hardware-
aware – (B, B’) or by setting β equal to 2.75, 1.75, or 1 for time conditioning, respectively, for entries (C, C’), (D, D’), and
(E, E’). We also include a time-conditioned random sampling policy that uses softmax of the measured FPS for each action,
with the temperature controlled by the same parameter β introduced in HAMT. The time-conditioned random sampling is
achieved by skewing the uniform distribution with a softmax of the measured FPS for each action, effectively making more
likely to pick an action, the faster it is. The softmax temperature is controlled by the same parameter β introduced in HAMT.
This allows us to compare how HAMT performs compared to a simpler baseline bound to achieve similar FPS, nevertheless,
the action choice will not be controlled by HAMT reward-punishment algorithm, but it will be randomly sampled.

As expected, we find that the most aggressive GFLOPS reduction corresponds to lower β values, but this comes with
a price in metrics. Our observations show that even the naı̈ve hardware-aware random policy can significantly reduce the
GFLOPS dedicated to backpropagation without drastic metric drops. However, given the same β, HAMT policy always
results in better performance than the naı̈ve time-conditioned policies, both on hard domains (200mm of rain), the source
domain (clear, 0mm of rain), and on average (F and T to signal forward and backward adaptation). As reported in the main
paper, we set β = 1.75 as the default choice in any other experiments, allowing for a trade-off between GFLOPS reduction
and adaptation effectiveness.

We can notice how the gain lead by HAMT over the naı̈ve the metrics is more prominent for high values of β (i.e. less
intense time conditioning) since it leaves to the reward-punishment algorithm more freedom of action to pick the best modules
to train.

Overall, our ablation study shows that HAMT can effectively reduce the computational cost of adaptation without com-
promising accuracy. HAMT is especially useful when facing harsh and frequent domain shifts, where adaptation cannot be
easily interrupted. Moreover, our study provides insights into the impact of time conditioning on the performance of HAMT
and the importance of setting appropriate values of β.

Focus: Why are we using the 2nd derivative and not the 1st? Since every action corresponds to an optimization step,
we expect that every action will minimize the loss function. Therefore, on average, all actions would receive positive rewards.
This might lead to the model repeatedly taking the same action, moreover, we want to reward only those actions which are
leading to a sharper loss reduction compared to the other optimization alternatives. Indeed the 2nd derivative will be positive
only if the loss minimization has been greater than the expected linear extrapolation.

2. Ablation study: Active Training Modulation
We now focus on studying variations and single components of the policy we defined in Section 3.3 of the main paper.

Specifically, with reference to the notation in Section 3.3, we define 5 different policy variants in an incremental manner, by

clear . . . 200mm h-mean Backward % Backward
F B F F B T GFLOPS GFLOPS

(A) Full training 73.5 73.2 62.6 68.7 71.0 69.8 30.8 100.0
(B) Random policy (uniform) 73.5 72.9 . . . 61.6 68.2 70.4 69.3 22.6 73.5
(B’) HAMT (no time conditioning) 73.5 73.1 61.9 68.4 70.4 69.4 22.4 72.9
(C) Random policy (time-conditioned β = 2.75) 73.5 73.0 . . . 59.0 67.5 70.1 68.8 21.4 69.5
(C’) HAMT β = 2.75 73.4 73.2 61.1 68.0 70.3 69.1 21.3 69.3
(D) Random policy (time-conditioned β = 1.75) 73.3 72.8 . . . 59.9 67.6 70.4 69.0 20.7 67.3
(D’) HAMT β = 1.75 73.6 72.9 60.9 67.8 70.4 69.1 20.3 65.8
(E) Random policy (time-conditioned β = 1) 73.1 72.6 . . . 60.2 67.6 70.0 68.8 19.4 63.1
(E’) HAMT β = 1 73.2 72.7 60.0 67.6 70.1 68.9 17.7 57.6

Table 1: Ablation studies – HAMT module (3.2). We report adaptation results on the Increasing Storm, achieved by
exploiting different HAMT configurations. We also report the framerate, as well as the GFLOPS required to perform the
backward pass during optimization.

assuming:
I) Constant learning rate and a number of iterations proportional to |∆Bi|. In this policy, it is assumed that the

length of the adaptation window should grow with the intensity of the observed domain shift with respect to z, the minimum
|∆Bi| that trigger adaptation. We then compute the number of adaptation iterations as L = Kl

|∆Bi|
z with the factor Kl and

the learning rate η kept constant. If new domain shifts are detected before the end of the adaptation windows, the remaining
iterations are accumulated.

II) Constant initial learning rate with decay inversely proportional to |∆Bi|. In addition to the previous policy, now
the learning rate η gradually decays until the adaptation is stopped, the smaller the domain shift, the faster the decay. The
initial learning rate Kη is kept constant.

III) Initial learning rate proportional to |∆Bi| with constant number of adaptation interations. This policy assumes
to always adapt for a fixed amount of steps, hence L is fixed. However, the initial learning rate is proportional to the intensity
of the measured domain shift |∆Bi| with respect to the minimum detectable shift z. Therefore, the initial learning Kη , is
computed as Kη = Pη

|∆Bi|
z , where Pη is a constant that defines the minimum value of Kη .

IV) Number of iterations proportional to |∆Bi|, and initial learning rate proportional to the discretized distance
B. This policy follows II), yet assuming an initial learning rate Kη that is higher for domains farther from the source.

Kη = Kη,min +
(Bi −Bsource)(Kη,max −Kη,min)

Bhard −Bsource
(1)

where Bsource (resp. Bhard) is an estimate of B when the network is close to (resp. far from) the source domain; and Kη,min
(resp. Kη,max) is the value of Kη assigned when the network is close to (resp. far away from) the source.

V) Number of iterations proportional to |Si|, direction sensitive, and initial learning rate proportional to the dis-
cretized distance B. This is the policy applied in the main paper, building upon policy IV). Here we use a variable mul-
tiplicative factor for the number of iterations Kl which depends both on both the distance from the source domain and the
direction of the domain shift. The rationale is that domain shifts moving away from the source domain are likely to require a
deeper and longer adaptation window. On the contrary, domain shifts moving closer to the source domain require fewer and
fewer adaptation steps as we get closer. This is because the model shows good recalling of previously experienced domains
as well as presenting strong performances close to the source thanks to regularization strategies we put in place.

K̃l =

{
Kl,max if Si ≥ 0

Kl,min +
(Bi−Bsource)(Kl,max−Kl,min)

Bhard−Bsource
otherwise

(2)

Where Kl,min (resp. Kl,max) is the value of K̃l assigned when the network is close to (resp. far away from) the source
domain. We will appreciate how this last policy results in the best trade-off between accuracy and speed.

In Tab. 2 we showcase the results achieved on the Increasing Storm by different instances of SegFormer, according to the
policy variants outlined so far. In (A) full training is performed, while in (B) and (C) we propose two baselines where we
naı̈vely optimize the model every 15 and 20 frames respectively, or by implementing our policies (I-V). As for HAMT,
we report performance on clear and 200mm domains, as well as the average forward, backwards and total mIoU together
with the framerate. As expected, reducing the adaptation steps to one every 15 or 20 frames definitely increases the FPS,

clear . . . 200mm h-mean FPS
F B F F B T

(B) Train every 15 iterations 73.2 73.3 . . . 53.3 64.1 68.3 66.2 26.5
(C) Train every 20 iterations 73.2 73.0 50.2 63.2 67.9 65.5 34.0
(I) Adapt. iter. (constant η) 73.4 72.8 55.6 65.5 69.3 67.4 25.3
(II) Adapt. iter. 73.4 73.1 . . . 58.5 66.5 69.7 68.1 25.2
(III) Adapt. η 73.4 71.4 55.4 65.3 67.9 66.6 31.0
(IV) Adapt. iter. and η 73.4 73.2 57.9 66.0 70.0 68.0 23.4
(V) Adapt. iter. and η, dir. sensitive 73.4 73.2 57.8 66.0 69.0 67.5 29.1

Table 2: Ablation studies – Active Training Modulation (3.3). We report adaptation results on the Increasing Storm,
achieved by exploiting different Active Training Modulation policies (I-V), together with framerates.

Domain Model Rider M.bike Sky Road Truck S.walk Wall Veget. Fence Tr.Light Terrain Bus Car Train Sign Build. Person Pole Bike mIoU

clear (both) 53.5 61.6 94.4 98.0 77.5 83.2 56.4 92.0 53.3 62.8 63.7 78.3 93.6 56.0 72.9 91.5 76.2 57.3 72.1 73.4

50mm No adapt. 43.8 44.5 83.5 96.3 67.1 73.2 32.5 88.0 43.4 54.0 50.6 70.5 90.6 51.1 67.5 86.3 70.1 40.4 65.7 64.2
50mm HAMLET 49.0 45.4 92.1 97.2 68.5 78.7 45.2 90.1 48.1 56.3 55.8 73.0 90.5 55.5 68.7 89.1 71.2 45.2 66.7 67.7

100mm No adapt. 30.0 24.1 37.2 92.6 54.4 57.6 19.3 80.6 30.1 41.9 40.0 58.2 85.1 45.7 60.5 75.6 63.9 28.6 58.4 51.8
100mm HAMLET 41.6 48.3 90.6 96.8 70.0 76.1 44.5 88.7 46.7 48.3 57.9 70.7 89.5 53.1 64.3 87.5 67.7 38.3 63.5 65.5

200mm No adapt. 11.7 3.7 1.9 81.9 25.1 25.3 7.8 59.5 9.4 21.8 19.5 33.4 59.2 21.3 45.5 59.2 50.9 14.8 40.1 31.2
200mm HAMLET 36.2 32.9 85.4 96.1 65.8 71.6 33.1 86.1 40.8 38.5 53.6 69.2 86.7 35.9 57.5 84.4 62.9 29.2 59.1 59.2

Table 3: Single classes mIoUs. Results on single classes by the source model on clear and 200mm, and by HAMLET on
50mm, 100mm, 200mm (Incremental storm, forward pass). The improvements achieved with online adaptation are consistent
all across the board.

nevertheless it also notably reduces the overall adaptation effectiveness – in particular on the hardest domain of 200mm, with
a drop of around 10% compared to full training. To attain a better accuracy-speed trade-off, we employ our policies: we
can appreciate how (II) allows for the best overall adaptation performance as well as over 200m of rain while achieving the
lowest FPS among the policies. Using (III) we obtain the highest FPS while losing accuracy both on average mIoU and when
returning back to the source – specifically, resulting in the worse policy in backward adaptation. Policy (IV) provides for
the best backward adaptation results, at the expense of forward adaption and average performance. Finally, (V) balances all
of the aspects considered before, while being the second fastest configuration among those considered. We also highlight
how these policies merely represent examples of potential uses of the domain detection signals and how even a simple active
training configuration policy could enable very fast and effective adaptation processes.

In Figure 2 we provide insight into the Active Training Modulation mechanism. In the top row, we exemplify two simple
domain shift sequences: from clear weather to 50mm to clear (on the left) and a much more sudden change, from clear
weather to 200mm to 75mm (on the right). In the second row, we display H , denoised in A (third row) and discretized in B
(fourth row). We then display S = ∆B (fifth row) acting as the first derivative of B over time frames. On the left, the domain
shift is correctly detected as a single domain shift. This is visible by having a single spike in S. On the other hand, in the
harder scenario (on the right), the domain shift is detected in two consecutive steps. We could define this as a false positive
detection. The rows below show how the ALR policies manage the training phases and the learning rate modulation. We
remind the reader that when the learning rate is zero, the training phase is inhibited. We notice how the policy formulation
can withstand the double-detection of the domain shift by simply recomputing the learning and accumulating the residual
iterations, overall presenting a robust behaviour.

3. Single Classes Analysis
In Table 3 we present the per-class mIoU of HAMLET and a model just trained on the source domain (No adapt.). We

present results on the source domain, where the two models are equivalent, and in the 50mm, 100mm, and 200mm domains
of the forward pass of the Incremental Storm [5]. As expected HAMLET vastly improves the non-adapted baseline on each
domain, in every single class. Interestingly, we see that HAMLET improvement is not just on a few classes, but instead, all
classes are improved by a consistent amount. As expected some classes are more impacted by the domain change, such as the
Sky and rare classes (e.g. M.bike, Rider, Fence), while some others present greater robustness (e.g. Road, Vegetation, Car,
Person).

0-50-0mm domain shift 0-200-75mm domain shift

0

50

in
te

ns
ity

0.0

2.5H

0

1A

0

1

B

0.5
0.0
0.5

S

0

1

(I)

1e 5

0

1

(II
)

1e 5

0.0

0.5

1.0

(II
I)

1e 4

0

2

(IV
)

1e 5

0 2976 5951 8926
Step

0

2

(V
)

1e 5

0
75

200

in
te

ns
ity

0

5

H

0

3

A

0

2

B

0.5
0.0
0.5

S

0

1

(I)

1e 5

0

1

(II
)

1e 5

0

5

(II
I)

1e 5

0.0

2.5

5.0

(IV
)

1e 5

0 2976 5951 8926
Step

0.0

2.5

5.0

(V
)

1e 5

Figure 2: Focus on the mechanism of domain detection signals and relative adaptation process for each applied policy.

4. Model Setup: Additional Information
In this section, we present additional information on the UDA model and backbone used and provide details about the

lightweight decoder.
Let x ∈ RCin×H×W denote an input image and y ∈ [0, 1]C×H×W denote a segmentation label with C number of classes.

Let DS = {(x(i)
S , y

(i)
S }ns

i=1 be the labeled source dataset and DT = {x(i)
T }nt

i=1 the unlabeled target dataset encounter during
deployment, which may contain multiple sequential domains. Our goal is to train a model fθ that predicts the probability of
each class in each pixel of the input image, such that fθ(x) ∈ RC×H×W .

To this end, we use a student-teacher scheme with parameters θ for the student model and parameters θ′ for the teacher
model. During each training iteration i, we optimize the student by minimizing the loss function in Eq. 3. The teacher is
updated as an EMA of the student weights fθ (Eq. 4) where α is the decay rate of the EMA.

L(i) = L(i)
S + L(i)

T + λFDL(i)
FD (3)

θ′
(i+1) ← αθ′

(i)
+ (1− α)θ(i) (4)

The training loss in Equation 3 is a combination of three terms. The first term, LS , is a supervised term used to learn the
semantic segmentation task using the replay buffer from the labeled dataset and a Cross-Entropy loss. The second term is

Figure 3: Adaptive Domain Detector. We attach a SegFormer all-MLP decoder after the first module mfd
1 . This allows us

to obtain segmentation maps of any image at a low cost and with very limited speed impact.

a self-training loss that is learned from the target dataset, and the third term is a feature distance loss used as a regularizer.
We perform self-training by training the student model fθ on a strongly augmented version of the target dataset, along with
one-hot encoded pseudo-labels generated by the teacher. The augmented images are generated by mixing randomly selected
classes from the source image with target images following ClassMix [4]. LT is the cross-entropy between the mixed image
and the mixed label weighted by factor qT , as the ratio of the pixels that have a confidence level higher than a certain threshold.
To prevent the student network’s weights from deviating significantly from a pre-trained model on the source dataset (static
teacher), we incorporate a feature distance loss, denoted as LFD, in the training process. Specifically, the feature distance
loss is computed by taking the features produced by the student network’s encoder fθ and those produced by a static teacher
network with frozen weights on a given input sample, and measuring the Euclidean distance between the feature embeddings
generated by these two networks.

For our domain adaptive detector, we utilize SegFormer [10] as a semantic segmentation backbone, incorporating both its
encoder and decoder design. We modify the static teacher model f fd by connecting an extremely lightweight segmentation
head, denoted as dfd1, after the first encoder module m1fd, resulting in hfd1 = dfd1 ◦mfd1. This lightweight segmentation
head follows the SegFormer decoder architecture, using an all-MLP decoder that takes feature encodings from mfd1 with C1

channels and produces segmentation maps using only MLP layers (as illustrated in Fig. 3).

5. Implementation details
We report any hyper-parameters used to train the described methods. The supervised models were trained using SegFormer

pre-trained weights for 100’000 iterations (selecting the checkpoint with the best validation accuracy) using a learning rate of
6× 10−5, warm-up and linear decay scheduling. The online models were trained using AdamW with β1 = 0.9, β2 = 0.999
and weight decay 0.01. The hyperparameters values described in the method section are: α = 0.1, Kl = 750, Kη,min =
1.5×10−4 Kη,max = 6×10−5, Kl,min = 187, Kl,max = 562, KCM,min = 0.5, KCM,max = 0.75 and m = 75. For the storm
and fog scenarios we use: Bsource = 0.8, Bhard = 2.55. For the SHIFT dataset [6], we use Bsource = 0.46, Bhard = 1.85 and
m = 200. For the video sequences, we use the fog and storm parameters with m = 350. We also used 1000 source images as
a buffer. All models performed training with a batch size of 1 and images scaled to 512×1024 resolution and random crops
of 512 × 512 where using for training. Both in HAMLET and in the full training baseline we employ SegFormer decoder,
without using DAFormer [3] custom head. It’s also worth noting that, to marginalize the impact of different backbones,
all tested models in this work are using SegFormer MiT-b1 backbone (i.e. HAMLET, TENT, CoTTA) as model backbone,
except if specified otherwise (i.e. OnDA and Advent [7] are using DeepLabV2 [1]).

During training (evaluation is included), HAMLET consists of the following forward passes:

• Student model using source buffer image

• Static teacher encoder using source buffer image (no decoder)

• EMA teacher using a target image

• Student model using mixed image

• Student model using a target image to provide a prediction

• First module of static teacher in the target image and relative small decoder

0
50

100

200
in

te
ns

ity

0
50

100

200

0
50

100

200

30

40

50

60

70

m
Io

U
No

n
Pr

e-
Ad

ap
te

d

30

40

50

60

70

30

40

50

60

70

30

40

50

60

70

m
Io

U
Pr

e-
Ad

ap
te

d

clear
50mm

100mm 200mm
30

40

50

60

70

clear
25mm

100mm
200mm

50mm
30

40

50

60

70

clear
200mm

100mm 75mm

5
0
5

10
20

m
Io

U
Di

ffe
re

nc
e

5
0
5

10
20

5
0
5

10
20

0 2976 11901 20826 29751 38676 47601 56526 65451
Step

tra
in

in
g

0 2976 11901 20826 29751 38676 47601 56526
Step

0 2976 11901 20826 29751 38676 47601 56526
Step

Storm A Storm B Storm C

Figure 4: Experimental results – Storms A, B, C. Adaptation performance by two HAMLET instances, one trained on
source domain (clear) and adapted for the first time, and one that has been pre-adapted on the Increasing Storm. In the last
two rows, we show the boost in accuracy achieved by the latter model compared to the former, as well as the iterations during
which the two are optimized (orange: the former only, blue: the latter only, gray: both).

clear 50mm 10mm 200mm h-mean FPS GFLOPS
F B F B F B F B F B T

Full training 73.6 73.0 69.3 70.1 66.6 66.4 61.4 62.8 67.4 67.9 67.6 4.6 125.2
HAMLET (non pre-adapted) 73.4 71.8 68.3 68.8 63.5 64.6 57.1 58.2 65.0 65.4 65.2 22.8 58.2
HAMLET (pre-adapted) 71.9 72.1 69.4 69.4 65.8 64.6 58.1 59.8 65.9 66.1 66.0 20.2 59.8

Table 4: Experimental results – Storm A

Backpropagation is applied on the student model only. Afterwards, the dynamic teacher is updated as EMA of the student.
During simple evaluation, HAMLET consists of the following forward passes:

• Student model using a target image to provide a prediction

• First module of static teacher in the target image and relative small decoder

The full source code used for our experiments is attached to this document (hamlet code.zip).

6. More storms and longer adaptation analysis
We run HAMLET on three additional rainy scenarios, generated as detailed in [5]. We both evaluate the performance

of the brand-new adaptation cycle, starting from SegFormer trained on source domain and adapting to the new storms A, B
and C. Additionally, we test a model previously online adapted on the Increasing Storm scenario and compare the two (Non
Pre-Adapted and Pre-Adapted) in terms of performance and training phases.

Figure 4 collects, from left to right, the results achieved on Storms A, B, and C as defined in [5]. On top, we plot the rain
intensity over time faced during the adaptation process, followed by mIoU plots highlighting how the two models introduced
before adapt and the difference in terms of mIoU achieved by the pre-adapted model compared to the brand-new one. On the
last row, we show the iterations during which the models are optimized, specifically in gray when both run back-propagation,
while in orange and blue when only the brand-new or the pre-adapted model are optimized, respectively.

We notice, similarly to OnDA [5], how HAMLET also benefits from previous adaptation on the Increasing Storm. The
highest gain is achieved on Storm C, in which the domain rapidly switches from source to the hardest one, i.e. 200mm.
Moreover, we can appreciate in general how the pre-adapted model witnessed almost no drop in accuracy on the inactive
domains. This is caused by the Active Training Modulation strategy, which limits the amount of adaptation steps performed

clear 25mm 100mm 200mm 50mm 25mm 2 clear 2 total h-mean FPS GFLOPS

Full training 73.3 70.6 68.2 64.1 66.1 70.9 72.1 69.2 4.6 125.2
HAMLET (non pre-adapted) 73.4 70.0 67.4 61.6 61.5 68.8 70.6 67.3 20.0 50.3
HAMLET (pre-adapted) 71.9 70.0 67.8 62.5 63.0 67.7 69.9 67.4 25.2 44.9

Table 5: Experimental results – Storm B

clear 1 200mm clear 2 100mm clear 3 75mm clear 4 clear h-mean target h-mean total h-mean FPS GFLOPS

Full training 73.6 60.1 73.4 65.6 73.0 68.8 72.9 73.2 64.6 69.3 4.5 125.2
HAMLET (non pre-adapted) 73.4 54.4 72.7 64.7 71.0 65.7 71.4 72.1 61.1 67.0 16.4 51.9
HAMLET (pre-adapted) 71.9 59.5 72.9 65.7 72.2 68.6 72.0 72.3 64.4 68.7 22.2 48.3

Table 6: Experimental results – Storm C

0

6

in
te

ns
ity

60

65

70

75

80

85

m
Io

U

clear
cloudy

overcast
small_rain

mid_rain
heavy_rain

0.0

2.5

5.0

le
ar

ni
ng

 ra
te

1e 5

0 21217 35344 43351 50797 57172 64363 70738 78184 86191 100318 121534
Step

0

20

40

FP
S

Figure 5: Experimental results – SHIFT benchmark. We show mIoU over active (bold) and inactive (dashed) domains,
learning rate and FPS.

by HAMLET to be as few as needed to adapt to the new domains while neglecting the occurrence of catastrophic forgetting
over inactive domains. Indeed, once adaptation has been performed over the Increasing Storm, it results sufficient to maintain
high accuracy when moving to the new storms, as pointed out by the almost horizontal dashed lines in the pre-adapted plots.
By focusing on the last row, we point out how, in most times, the non pre-adapted model runs significantly more optimization
steps (orange) compared to the pre-adapted one (blue), which can already deal with the domain switches occurring in these
storms. This is due to its prior experience on the Increasing Storm, indeed the domain detection relies both on the static
lightweight decoder and the student itself. When the student becomes more robust to new domains, also the domain detection
becomes more accurate. We also notice how, despite training only a fraction of the iterations, the Non Pre-adapted model can
still catch-up with the pre-adapted one, with a delay, even in the hardest transition, i.e. storm C. For a quantitative overview
of HAMLET performance on the three storms, we collect the results in Tables 4, 5 and 6, respectively for Storms A, B, and
C. In particular, we point out how the pre-adapted model is more accurate, as well as faster than the non pre-adapted one on
B and C, since it activates adaptation fewer times as previously discussed with reference to Figure 4.

To conclude, HAMLET can benefit from previous adaptation both in terms of accuracy, as well as speed (the fewer the
optimization steps, the higher the framerate).

0

6

in
te

ns
ity

0 21217 35344 43351 50797 57172 64363 70738 78184 86191 100318 121534
Step

55

60

65

70

75

m
Io

U

Full training HAMLET

Figure 6: Experimental results – SHIFT benchmark. We show the mIoU of the heavy rain domain during the training
cycle for Full training and HAMLET. Bold lines represent when the domain is active and dashed lines when is inactive.

clean 50mm 100mm 200mm

Figure 7: Qualitative results – HAMLET in action. From left to right, we show the same source frame, augmented with
increasing rain intensity, respectively clean, 50mm, 100mm and 200m. From top to bottom: input image, prediction by
SegFormer trained on source and HAMLET.

7. SHIFT analysis
We now dive deeper in HAMLET performance on the SHIFT benchmark. Figure 5 depicts, on top, the rain intensity

characterizing any domain encountered while running HAMLET on SHIFT. Then, we plot the mIoU achieved both on
current (bold) and inactive (dashed) domains, as done for the Increasing Storm in the main paper and Storms A, B, C in
the previous section. Then, we show how the learning rate changes based on the domain shift detection, followed by the
framerate achieved by HAMLET at any step.

From the mIoU plot, we can notice how the drop in accuracy, even on the hardest domain, is moderate compared to what
was observed in OnDA benchmarks [5]. We speculate that this might be caused by the full-synthetic nature of this domain,
which makes the task easier. Interestingly, the performance on small rain and mid rain domains continue to improve even
after HAMLET moves to further domains. In general, as previously observed on Storms A, B, C, HAMLET do not experience
any catastrophic forgetting on the inactive domains that have been faced previously. For what concerns domain shift detection,
we can notice how this sometimes occurs with a slight delay – i.e. clear to cloudy and vice-versa – or does not occur at all
– i.e. overcast to small rain and vice-versa. Nevertheless, once again, this confirms that just a few adaptation steps aligned
with the domain shifts are enough to achieve an accuracy comparable to the one obtained with full training, as shown in Tab.
4 in the main paper.

This dataset evaluation offers further insights when it comes to observing another problematic behavior of naı̈ve full

0
75

200

in
te

ns
ity

0

2

4

H

0

3
A

0

2

B

0 5000 10000 15000 20000 25000 30000 35000
Step

0

1

tra
in

in
g

Figure 8: HAMLET adaptation schedule over the qualitative video sequence. From first to last row we present: rain
intensity, domain detection signals: H,A,B, training phases (1: training + inference, 0: inference)

training. Indeed, besides being vastly more computationally expensive, training when it is not required, contributes to the
futile specialization of specific domains, hence leading to worse generalization on other domains. This is clearly visible in
Figure 6 when we focus on the performances of our Full Training baseline on the heavy rain domain. During the adaptation
to clear weather, we notice how evaluating on heavy rain leads to progressively worse performances without achieving any
significant improvement in clear weather either. Despite its ability to eventually adapt, this behavior might raise concerns
when it comes to sudden domain shifts and it hints to potential domain forgetting. To support this, we show in Figure 6 the
accuracy achieved on the heavy rain domain at any time during adaptation, when being the active (bold) or inactive (dashed)
domain, for both SegFormer adapted with full training and HAMLET. We can notice how the full training regime leads to
dramatic drops in accuracy on this domain when it is inactive, until it is actually encountered. HAMLET, on the contrary,
can preserve its original accuracy on the heavy rain, proving that selective adaptation also avoids catastrophic forgetting, to
which full training is prone to.

8. Qualitatives
In Figure 7 we present extensive qualitative examples from the Increasing Storm evaluation set. Figure 7 shows the results

achieved by the source model and HAMLET on increasing rain intensity. We can notice how the source model, at first, is
robust to moderate rain. When moving towards higher intensity, the model gradually starts failing, whereas HAMLET keeps
high accuracy.

9. Videos
To conclude, we attach two qualitative videos to this document. For the first (https://www.youtube.com/watch?

v=zjxPbCphPDE&t=139s) we emulate a realistic deployment by synthesizing rain over Cityscapes. The domain shift
sequence follows the same pattern as the Increasing Storm. In this case, we cap the video framerate at 5.88FPS using the
same setup of [5]. On this video, we run SegFormer in three main flavors: 1) trained on source domain, 2) adapting using
CoTTA and 3) adapting with HAMLET. We mainly compare against CoTTA: while HAMLET keeps the pace with the
considered framerate, CoTTA – which runs at 0.6FPS – is trained over 1 frame every 10, allowing it to keep the pace with the

0.0

2.5

5.0

le
ar

ni
ng

 ra
te

1e 5

0

2

4

B

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000 80000 85000
Step

0.0

0.5

1.0

tra
in

in
g

Figure 9: HAMLET adaptation schedule over the qualitative video sequence. From first to last row we present: learning
rate schedule, domain detection signal B, training phases (1: training + inference, 0: inference)

incoming frames. This emulates a realistic behavior during deployment in which all the frames are processed sequentially,
yet favoring CoTTA – since a higher framerate, e.g. 30FPS, would require CoTTA to adapt on even fewer frames to keep
the pace. The video sequence is unlabelled, so we cannot compute mIoU and thus we can appreciate our results only
qualitatively, nevertheless, we can provide an overview of the adaptation process operated by HAMLET. Figure 8 sketches
the domain sequence, domain shift detections, and relative training intervals, i.e. 1 when training is active and 0 otherwise.
The average speed theoretically obtained by HAMLET in this sequence is 20.4FPS, even though the input rate was capped
at 5.88FPS. It is also interesting to notice how sequential frames and underlying natural domain shifts taking place over the
video are making the adaptation task significantly more challenging than the Increasing Storm benchmark proposed in [5],
nevertheless, HAMLET manages to identify and activate short training burst in correspondence to the domain shifts, enough
to vouch for effective adaptation to the new domains encountered.

In the second video (https://www.youtube.com/watch?v=zjxPbCphPDE) we showcase HAMLET in action
in a real environment – i.e., on the road from Seoul to Daegu, Korea. During the trip, we face several different domain
transitions, meeting heavy rain, highway environment, dusk, and even nighttime. This latter qualitative result proves that,
despite most experiments in the main paper having been conducted in semi-synthetic datasets, HAMLET is effective on
real data as well and can be effectively deployed for real applications. The video shows, on top, the input RGB images
from the sequence being processed, and at the bottom, the results by SegFormer trained on the source domain (left) and
HAMLET being adapted on the sequence itself (right). First and foremost, we point out how the video itself exposes several
domain shifts due to the environment itself – i.e., SegFormer has been trained on Cityscapes, featuring cities from Germany
in a mostly urban environment, while the whole video features Korea and transits from urban roads to highways. We can
appreciate how these domain shifts do not represent a challenge for HAMLET. Then, we observe that rain represents one of
the earliest, weather challenges faced in the video, both in the form of small droplets on the glass shield of the car, as well as
in actual storms met during driving. While the accuracy of the source SegFormer model dramatically drops in these domains,
HAMLET rapidly copes with them and maintains a much higher quality of the results. In the last part of the video, we
encounter nighttime domains: despite the much lower brightness in the images and the lower contrast between the different
regions (e.g., road vs vegetation or cars), HAMLET can still keep the drop in accuracy moderate, while the source SegFormer
model results completely ineffective on such an unseen domain, rarely distinguishing the road from any generic vehicle. Fig.
9 sketches the domain shift detections and relative learning rate schedules, training intervals, i.e. 1 when training is active
and 0 otherwise. We can observe how HAMLET can identify several domain shifts and tune the adaptation rate accordingly.

References
[1] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image segmentation

with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine
intelligence, 40(4):834–848, 2017.

[2] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth,
and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016.

[3] Lukas Hoyer, Dengxin Dai, and Luc Van Gool. Daformer: Improving network architectures and training strategies for domain-
adaptive semantic segmentation. arXiv preprint arXiv:2111.14887, 2021.

[4] Viktor Olsson, Wilhelm Tranheden, Juliano Pinto, and Lennart Svensson. Classmix: Segmentation-based data augmentation for
semi-supervised learning. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 1369–
1378, 2021.

[5] Theodoros Panagiotakopoulos, Pier Luigi Dovesi, Linus Härenstam-Nielsen, and Matteo Poggi. Online domain adaptation for se-
mantic segmentation in ever-changing conditions. In European Conference on Computer Vision (ECCV), 2022.

[6] Tao Sun, Mattia Segu, Janis Postels, Yuxuan Wang, Luc Van Gool, Bernt Schiele, Federico Tombari, and Fisher Yu. SHIFT: a
synthetic driving dataset for continuous multi-task domain adaptation. In Computer Vision and Pattern Recognition, 2022.

[7] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu Cord, and Patrick Pérez. ADVENT: Adversarial entropy minimization for
domain adaptation in semantic segmentation. 2019. 00000.

[8] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully test-time adaptation by entropy
minimization. In International Conference on Learning Representations, 2021.

[9] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation, 2022.
[10] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Segformer: Simple and efficient design

for semantic segmentation with transformers. Advances in Neural Information Processing Systems, 34:12077–12090, 2021.

