
Object-Centric Multiple Object Tracking

Zixu Zhao1 Jiaze Wang2* Max Horn1 Yizhuo Ding3∗ Tong He1 Zechen Bai1

Dominik Zietlow1 Carl-Johann Simon-Gabriel1 Bing Shuai1 Zhuowen Tu1 Thomas Brox1

Bernt Schiele1 Yanwei Fu3 Francesco Locatello1 Zheng Zhang1† Tianjun Xiao1

1 Amazon Web Services 2 The Chinese University of Hong Kong 3 Fudan University
{zhaozixu, jiazew, yizhuodi, htong, baizeche, bshuai, ztu, zhaz, tianjux}@amazon.com
{hornmax, zietld, cjsg, brox, bschiel, locatelf}@amazon.de, yanweifu@fudan.edu.cn

Abstract

Unsupervised object-centric learning methods allow the
partitioning of scenes into entities without additional lo-
calization information and are excellent candidates for re-
ducing the annotation burden of multiple-object tracking
(MOT) pipelines. Unfortunately, they lack two key prop-
erties: objects are often split into parts and are not con-
sistently tracked over time. In fact, state-of-the-art models
achieve pixel-level accuracy and temporal consistency by
relying on supervised object detection with additional ID
labels for the association through time. This paper pro-
poses a video object-centric model for MOT. It consists
of an index-merge module that adapts the object-centric
slots into detection outputs and an object memory mod-
ule that builds complete object prototypes to handle occlu-
sions. Benefited from object-centric learning, we only re-
quire sparse detection labels (0%-6.25%) for object local-
ization and feature binding. Relying on our self-supervised
Expectation-Maximization-inspired loss for object associ-
ation, our approach requires no ID labels. Our exper-
iments significantly narrow the gap between the existing
object-centric model and the fully supervised state-of-the-
art and outperform several unsupervised trackers. Code
is available at https://github.com/amazon-science/object-
centric-multiple-object-tracking.

1. Introduction
Visual indexing theory [45] proposes a psychological

mechanism that includes a set of indexes that can be as-
sociated with an object in the environment. Each index re-
tains its association with an object, even when that object
moves, interacts with other objects, or becomes partially
occluded. This theory was originally developed in the cog-
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Figure 1. Temporal inconsistency and part-whole split of
object-centric representations. We visualize a video object-
centric model SAVi [32] that groups objects into a set of slots with-
out labels. Common issues include that there exist many duplicate
slots that capture the same object or its parts (dashed arrows), and
the slots fail to track objects consistently over time (red boxes).

nitive sciences, however, a very similar principle lies at the
heart of object-centric representation learning. By learn-
ing object-level representations, we can develop models in-
ferring object relations [39, 60, 62] and even their causal
structure [36, 40]. Additionally, object-centric representa-
tions have shown to be more robust [13], allow for combi-
natorial generalization [36], and are beneficial for various
downstream applications [60]. Since causal relations often
unfold in time, it is only logical to combine object-centric
learning (OCL) with temporal dynamics modeling, where
consistent object representations are necessary.

Multiple object tracking (MOT) is a computer-vision
problem that resembles visual indexing theory. MOT aims
at localizing a set of objects while following their trajec-
tories over time so that the same object keeps the same
identity in the entire video stream. The dominant MOT
methods follow the detect-to-track paradigm: First, employ
an object detector to localize objects in each frame, then
perform association on detected objects between adjacent
frames to get tracklets. The development of state-of-the-art
MOT pipelines usually requires large amounts of detection

ar
X

iv
:2

30
9.

00
23

3v
2 

 [
cs

.C
V

] 
 5

 S
ep

 2
02

3

https://github.com/amazon-science/object-centric-multiple-object-tracking
https://github.com/amazon-science/object-centric-multiple-object-tracking


labels for the objects we are interested in, as well as video
datasets with object ID labels to train the association mod-
ule. Consequently, such approaches are label intense and do
not generalize well in open-world scenarios.

Unsupervised object-centric representation learning
tackles the object discovery and binding problem in visual
data without additional supervision [50]. Recent work, such
as SAVi [32] and STEVE [52], extended such models to the
video domain, which hints at possible applications to MOT.
However, existing approaches are primarily evaluated with-
out heavy punishment if slots exchange “ownerships” of
pixels and rather rely on clustering similarity metrics such
as FG-ARI [32]. An object may appear in different slots
across time (a.k.a ID switch issue), which hinders down-
stream applications of OCL models, especially when direc-
tional relationship among objects and their dynamics must
be reasoned upon (e.g., who acts upon whom). Addition-
ally, the part-whole issues are not fully explored, allowing
slots to only track parts of an object. Figure 1 visualizes the
two problems of OCL models that are developed orthog-
onally with respect to MOT downstream tasks, leading to
a significant gap with the state-of-the-art fully supervised
MOT methods. Scalability challenges of unsupervised OCL
methods only accentuate this gap.

In this work, we take steps to bridge the gap between
object-centric learning and fully-supervised multiple object
tracking pipelines. Our design focuses on improving OCL
framework on two key issues: 1) track objects as a whole,
and 2) track objects consistently over time. For these, we
insert a memory model to consolidate slots into memory
buffers (to solve the part-whole problem) and roll past rep-
resentations of the memory forward (to improve temporal
consistency). Overall, our model provides a label-efficient
alternative to the otherwise costly MOT pipelines that rely
on detection and ID labels. Our contributions can be sum-
marized as follows:

(1) We develop a video object-centric model that can be
applied to MOT task with very few detection labels
(0%-6.25%) and no ID labels.

(2) OC-MOT leverages an unsupervised memory to pre-
dict completed future object states even if occlusion
happens. Besides, the index-merge module can tackle
the part-whole and duplication issues specific to OC
models. The two cross-attention design is simple but
nontrivial, serving as the “index” and “merge” func-
tions with their key and query being bi-directional.

(3) We are the first to introduce the object-centric repre-
sentations to MOT that are versatile enough in a way of
supporting all the association, rolling-out, and merging
functions, and can be trained with low labeling cost.

2. Related Works
Unsupervised Object-centric Learning. Unsupervised

object-centric learning describes approaches which aim at
tackling the binding problem of visual input signals to ob-
jects without additional supervision [26]. This is often ac-
complished using architectural inductive biases which force
the model to encode input data into a set-structured bottle-
neck where object representations exert competition [16,
37, 57] or exclusive binding to features [25, 24, 6, 15].
Since their initial development on synthetic image data,
these approaches have been extended to more complicated
images by adapting the reconstruction objective [51, 50],
to the decomposition of 3D scenes [9, 42, 53], to synthetic
videos [33, 28, 11, 30, 32, 52] and to real-world videos by
exploiting additional modalities and priors [32, 1, 14]. Our
work is most closely related to the last group of methods
which apply object-centric learning methods to real-world
videos, yet in contrast does not focus on the derivation of
object-centric representations themselves. Instead we focus
on how object-centric representations can be used to per-
form multiple object tracking via long-term memory. Our
work presents the first dedicated memory module, which,
independent of the origin of the object-centric representa-
tion can match occurrences of objects to previously discov-
ered objects and thus track these over time.

Self-supervised MOT. Most works study MOT in su-
pervised settings, where the models are trained with object-
level bounding box labels and ID labels [10, 64, 66, 63, 7].
Tracktor++ [3] uses a ready-made detector[20] to generate
object bounding boxes and propagates them to the next
frame as region proposals. MOTR [63] simultaneously per-
forms object detection and association by autoregressively
feeding a set of track queries into a Transformer decoder
at the next timestep. To reduce the hand-label annotations,
several recent approaches leverage the self-supervised sig-
nals to learn object associations from widely available unla-
beled videos. For example, CRW [58] and JSTG [65] learns
video correspondences by applying a cycle-consistent loss.
Without fine-tuning, these models track objects at inference
time by propagating the annotations from the first frame.

Our work is mostly related to the unsupervised detect-
to-track approaches that assume a robust detector is avail-
able. SORT [4] and IOU [5] associate detections using
heuristic cues such as Kalman filters and intersection-of-
union of bounding boxes. Such models do not need train-
ing but fail to handle scenarios with frequent occlusion and
camera motion. A recent related method uses cross-input
consistency [2] to train the tracker: given two distinct in-
puts from the same video sequence, the model is encour-
aged to produce consistent tracks. Unfortunately, it suf-
fers performance degradation once the detection boxes are
not accurate, e.g., the grouping results from the object-
centric model. For both supervised and unsupervised track-
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Figure 2. Overview of OC-MOT. It consists of two main modules. i) An index-merge module that adapts object-centric slots St into
detection results Mt via two steps. First, index each slot into memory buffers by a learnable index matrix It indicating all the slot-to-
memory assignments. Second, merge slots assigned to the same buffer by recalculating the attention weights masked by It backwards.
ii) A object memory module that improves temporal consistency by rolling historical state forwards for object association. For MOT
evaluation, we decode Mt to masks or bounding boxes via a frozen decoder in the object-centric grouping module.

ers, large amount of detection labels are required to train
a strong detector. Additionally, supervised trackers require
ID labels train feature representations. Overall, MOT is a
label-heavy pipeline. Our work has the potential reduce the
labeling cost. The heavy-lifting part of object localization
and feature binding are done in a self-supervised way: on
both backbone training and grouping training.

Memory Models. Memory models have been widely
used in many video analysis and episodic tasks, such
as action recognition [59, 29], video object segmenta-
tion [38, 43, 34], video captioning [44], reinforcement
learning [22], physical reasoning [21], and code gener-
ation [35]. These works utilize an external memory to
store features of prolonged sequences, which can be time-
indexed for historical information integration. Recently,
memory models have also been used to associate objects for
video object tracking. MemTrack [61] and SimTrack [17]
retrieve useful information from the memory and combine
it with the current frame. However, they ignore the inter-
object association and only focus on single object tracking.
MeMOT [7] builds a large spatial-temporal memory for
MOT, which stores all the identity embeddings of tracked
objects and aggregates the historical information as needed.
As expected, it requires costly object ID labels for training
the memory. In this paper, we propose a self-supervised
memory that leverages the memory rollout for object
association. In contrast to previous learnable memory
modules, our approach does not write global information in
the memory via gradient descent [55] but rather maintains
a running summary of the scene similar to [23] (but with
multi-head attention rollout). Different than [23], we
explicitly enforce an assignment between objects and
memory buffers with subsequent merging steps for MOT.

3. Method
Our OC-MOT improves over traditional OCL frame-

works in terms of tracking objects as a whole, and con-
sistently over time. This is achieved by extending the
traditional OC framework with a self-supervised memory
to: i) Store historical information in the memory to fight
against noise and occlusion. This helps improve temporal
consistency. ii) Use the complete representation read-out
from the memory to consolidate parts captured in different
slots, which resolves the part-whole problem. The overall
framework of OC-MOT is shown in Figure 2. Given slots
{St}Tt=1 extracted from T video frames by an object-centric
grouping module, OC-MOT first uses the memory rollout
M̃t to perform slot-to-memory indexing. Then, it merges
the slots as Mt to update the memory.

3.1. Object-centric Grouping

The object-centric grouping module uses Slot
Attention[37] to turn the set of encoder features from
video frames into a set of slot vectors {St}Tt=1. The
model is trained with a self-supervised reconstruction loss
Loc rec = ||y − Dec(S)||2, where y can be the raw frame
pixels, or feature representations extracted from the frames.
The decoder has a compete-to-explain inductive bias to
encourage binding of objects into individual slots.

3.2. Memory Module

We store the historical representations of all tracked ob-
jects into memory buffers M ∈ RM×T×d where M is
the buffer number and d denotes the representation dimen-
sion. The memory is implemented with a first-in-first-out
data structure and reserves a maximum of Tmax time steps
for each object. At time step t, the detection results are



Mt = {m1
t , ...,m

M
t } if we denote mt as the object repre-

sentation. Intuitively, each buffer is a tracklet.

Memory rollout. At time step t, the memory rolls the past
states forward, and predicts the current object representa-
tions for all slots to index. The rollout process integrates
the multi-view object representations together and handles
the part-whole matching in the occlusion scenarios. With-
out losing generality, we denote all the past representations
as M<t. The rollout M̃t ∈ RM×d is obtained by:

M̃t = Rollout(M<t). (1)

We adopt a mini GPT-2 model [46] containing only 1.6M
parameters as the rollout module. It performs temporal rea-
soning via an auto-regressive transformer.

3.3. Index-Merge Module

The index-merge module is used as a discrete interface
between memory buffers and slots. To achieve this, we split
the object association process into the index step and merge
step, as shown in Figure 3, which can be achieved by stan-
dard multi-head attention (MHA) [56] blocks.

Slot-to-memory index. The index matrix It ∈ RN×M

indicates soft slots-to-buffer assignment. To compute it, we
train a MHA block that takes the slots St ∈ RN×d as query,
and rollout M̃t as key and values, where N is slot number:

It = MHA(k, v = M̃t, q = St).attn weight (2)

Memory-to-slot merge. Our goal is to make sure a buffer
represents one object by pooling from the slots that belong
to that object, while simultaneously dealing with slots that
represent parts of an object or duplicates. Thus, we stack
another MHA block to merge the slots, using It as masked
attention weights. Specifically, the merging function is de-
fined as below:

mt = MHA(k, v = St, q = M̃t, attn mask = It). (3)

Here, the query is the rollout M̃t; the key and value are slots
St. We apply It as the attention mask in MHA such that the
re-normalized attention weights can be used for merging.
This helps us to deal with wrongly-assigned slots. For ex-
ample, if there are three slots and two of them are matched
to one buffer, the attention weight could be [0.8, 0.2, 0] in-
dicating that the second slot does not belong to this buffer.

3.4. Model Training under EM Paradigm

Losses. The key of training detect-to-track models is to
minimize the assignment costs for object associations. Usu-
ally, the weights of the pre-trained detector are frozen dur-
ing training [7, 3]. Therefore, in our scenario, we freeze
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Figure 3. Visualization of the index-merge module. Index step:
we show how to generate an index matrix from slots St to mem-
ory rollout M̃t. Note that the duplicate slots (red boxes) or simi-
lar slots (blue boxes) may be assigned to the same buffer. Merge
step: the model recalculates the attention weights for slot merg-
ing, masked by the index matrix. The wrongly assigned slots can
be filtered out with very low weights.

the object-centric model and only train the memory module.
Assume we use Lassign to measure the assignment costs be-
tween slots St ∈ RN×d and memory buffers Mt ∈ RM×d.
The training loss can be formulated as:

LMOT =

T∑
t=1

N∑
i=1

1[Zt[i] = j]Lassign(Si
t ,M

j
t ), (4)

where Zt ∈ RN denotes the assignments and Zt[i] = j
means the ith slots matches to the jth buffer. Specifically,
we have three options to calculate the assignment cost: 1)
use a binary cross-entropy loss on the decoded masks to
promote the consistency of object attributes such as shape;
2) use a pixel-wise squared reconstruction loss on the object
reconstructions (pixel reconstructions multiplied by object
masks) to learn the color information; 3) use the same loss
as 2) but directly apply on the feature space. The assign-
ment cost could be a combination of the three losses:

Lassign(Si
t ,M

j
t ) = λ1BCELoss(Dec(Si

t),Dec(Mj
t ))

+ λ2||Dec(Si
t)− Dec(Mj

t )||2 + λ3||Si
t −Mj

t ||2,
(5)

where λ1, λ2, and λ3 are the balancing weights. We use
the frozen decoder from the object-centric model to decode
object representations into pixel reconstructions and masks.

Optimization. In contrast to prior supervised trackers [7,
63] that use ID labels to find the assignments, our model
learns the index matrix It without any supervision. One
naive solution is to convert It ∈ RN×M to Zt ∈ RN by



performing argmax along the buffer dimension. However,
the argmax function is non-differentiable. Even though we
apply the straight-through trick [27] to make it trainable, the
optimization easily gets stuck in a local minimum because
the model has no chance to evaluate other possible assign-
ments. To tackle this problem, we take inspiration from the
Expectation-maximization (EM) paradigm which optimizes
the assignments from seeing all possible assignments in It.
We formulate the expectation of St matches to Mt as:

Q(θ∗, θ) = E[ln p(St,Mt|θ∗)]
= ΣiΣjp(Mj

t |Si
t) ln p(Si

t ,M
j
t |θ∗)

= −ΣiΣjIt[i, j]Lassign(Si
t ,M

j
t ).

(6)

Here, θ is the learnable parameters in the memory mod-
ule. p(Mj

t |Si
t) denotes the probability of the ith slot is

assigned to the jth buffer, which, in our model, it exactly
equals It[i, j]. Further, we can use Lassign to represent
ln p(Si

t ,M
j
t |θ∗). We optimize the parameters of the model

in order to maximize the expectation via SGD [49], for
which we rewrite equation (4) as:

L =

T∑
t=1

N∑
i=1

M∑
j=1

It[i, j]Lassign(Si
t ,M

j
t ). (7)

The above loss (7) is applied to both the merged results Mt

and rollout M̃t with each combination weight set as 1.

3.5. Model Inference

During inference, we binarize the indexing matrix
It,hard ∈ {0, 1}N×M to strictly assign one slot to one
buffer. Specifically, It,hard[i, j] = 1 only if j =
argmax(It)[i] for i ∈ [1, N ]; otherwise, It,hard[i, j] = 0.
The discrete index supports the object in-n-out logic by in-
dicating the presence of an object.

Object-in logic. For the first frame, we filter out dupli-
cate slots before using them to initialize memory buffers.
Slots with high mask IoU (bigger than τiou) to other slots
will be discarded. For the next frames, we activate new
buffers for new objects if slots have no substantial IoU with
any masks of the memory rollout from the last timestep
{M̃1

t−1, ...,M̃k
t−1}, where k is the active buffer number.

Note that, for training, we replace the rollout with slots from
the last timestep {S1

t−1, ...,SN
t−1} because the rollout is not

reliable at the early training stage.

Object-out logic. To re-track an object, we keep the buffer
alive for τout consecutive frames when the object is oc-
cluded or disappears. In other words, if an object disappears
for more than τout frames, the buffer will be terminated.

a) DINOSAUR b) DINOSAUR+DETR

Figure 4. Comparisons of different grouping module settings on
FISHBOWL: a) self-supervised DINOSAUR has high object re-
call but over-segments on both background and big fishes, causing
trouble to memory buffer initialization. b) Tuning DINOSAUR
with supervised DETR loss and partial mask labels resolves the
over-segmentation issue and filters out background slots.

4. Experiments

We show that 1) OC-MOT consolidates “objects” in
memory and greatly improves the temporal consistency
of object-centric representations; 2) the gap between
object-centric learning and MOT can be narrowed down
by involving partial labels to improve the grouping perfor-
mance; 3) the ablation studies demonstrate the effectiveness
and feasibility of each module in the framework. Finally,
we turn to KITTI [18] to discuss our limitations.

Datasets. CATER [19] is a widely used synthetic video
dataset for object-centric learning. It is rendered using a li-
brary of 3D objects with various movements. Tracking mul-
tiple objects requires temporal reasoning about the long-
term occlusions, a common issue in this dataset. FISH-
BOWL [54] consists of 20,000 training and 1,000 vali-
dation and test videos recorded from a publicly available
WebGL demo of an aquarium, each with a resolution of
480×320px and 128 frames. Compared to CATER, FISH-
BOWL records more complicated scenes and has even more
severe object occlusions. Besides, we also work on the real-
world driving dataset KITTI [18] to analyze the limitation
of the proposed object-centric framework.

Metrics. Following the standard MOT evaluation proto-
cols [48, 41], we use Identity F1 score (IDF1), Multiple-
Object Tracking Accuracy (MOTA), Mostly Tracked (MT),
Mostly Lost (ML), and Identity Switches (IDS) as the met-
rics. Specifically, IDF1 highlights the tracking consistency,
and MOTA measures the object coverage. To weight down
the effect of detection accuracy and focus on the association
performance, we set the IoU distance threshold as 0.7. We
also introduce Track mAP [12], which is more sensitive to
identity switches by matching the object bounding boxes to
ground-truth through the entire video using 3D IoU.

Implementation details. We train OC-MOT using the
Adam optimizer [31] with a learning rate of 2 · 10−4 and an
exponentially decaying learning rate schedule. The mod-



Method Detection Label ID Label IDF1 ↑ MOTA ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓
CATER [19]

SAVi [32] 73.2% 52.5% 75.2% 21.2% 305027 130810 20352
IOU [5] 83.0% 77.4% 73.3% 17.4% 35480 173595 8259
SORT [4] 84.5% 79.2% 71.8% 24.1% 43097 148068 8219
Visual-Spatial [2] 85.8% 80.3% 76.6% 20.8% 51348 129680 7562
OC-MOT 88.6% 82.4% 82.3% 13.9% 57792 105054 5658
MOTR [63] 100% 100% 89.3% 83.3% 84.8% 4.9% 60647 96746 3366

FISHBOWL [54]
SAVi [32] 6.25% 46.9% 32.3% 47.3% 15.1% 122006 96710 12504
SORT [4] 6.25% 68.4% 64.3% 42.6% 31.9% 30912 132434 15278
IOU [5] 6.25% 71.3% 66.6% 11.0% 62.7% 31672 135394 10306
Visual-Spatial [2] 6.25% 74.6% 68.1% 48.2% 19.8% 28845 131076 8754
OC-MOT 6.25% 77.9% 70.3% 50.2% 13.2% 14738 136852 5898
MOTR [63] 100% 100% 81.6% 79.8% 58.3% 10.1% 9678 92862 4185

Table 1. Evaluation results on CATER and FISHBOWL. For CATER, the object-centric grouping module is pre-trained without any
label. For FISHBOWL, the grouping module is pre-trained with 6.25% mask labels to improve the detection accuracy. The supervised
MOTR [63] is trained with 100% box labels and ID labels. The best results of unsupervised trackers are marked in bold.

els were trained on 8 NVIDIA GPUs with batchsize of 8.
We set τout as 5 for buffer termination. The IoU thresh-
old τiou is set as 0.9. For the experiments on CATER, we
pretrain a SAVi model for object grouping without any an-
notation. We set N = 11 and M = 15. The hyperparame-
ters in the training loss λ1, λ2, λ3 are selected as 1, 0.1, 0.
For the experiments on FISHBOWL, we used a pretrained
image-level DINOSAUR [50] as the grouping module and
selected λ1, λ2, λ3 as 1, 0, 1. We set λ2 to 0 due to GPU
memory limitations when combining the EM loss compu-
tation with the high dimensional DINOSAUR features. We
set N = 24 and M = 40. In complex scenes of FISH-
BOWL, we noticed a performance drop due to more severe
part-whole issues and over-segmentation on the background
as illustrated in Figure 4. To avoid tracking background
objects and reduce over-segmentation on big objects, we
suggest further improving object-centric grouping by uti-
lizing temporal sparse labels. To be more specific, we ap-
ply supervised DETR [8]-style loss on the decoded masks
of slots. Since the object grouping loss already takes the
heavy-lifting of discovering objects and parts, we only re-
quire very few mask labels to inject semantics about which
objects are interesting and how to merge parts into a whole
object. In practice, we utilized 6.25% (randomly label 8
frames in 128-frame videos) mask labels for DINOSAUR
pre-training, with both DETR loss and self-supervised re-
construction loss.

4.1. Comparison with the State-of-the-art Methods

Baselines. We compare OC-MOT with one object-centric
method (SAVi [32]), three unsupervised MOT methods
(IOU [5], SORT [4], and Visual-Spatial [2]), and one fully
supervised MOT method (MOTR [63]). For the SAVi eval-

Method OC Metric MOT Metric

FG-ARI ↑ IDF1 ↑ MOTA ↑ Track mAP ↑
SAVi 90.2 72.3 52.5 42.8
OC-MOT 93.8 88.6 82.4 66.2

Table 2. Comparisons with video object-centric models on
CATER. Note that FG-ARI [32] is a commonly used OC metric.

uation, we remove the background slots and treat each slot
prediction as a tracklet. When training SAVi on FISH-
BOWL, we also provide 6.25% temporal sparse mask la-
bels to be comparable to our own setting. For fair com-
parisons, we use the same pre-trained object-centric model
(DINOSAUR with 6.25% detection labels) as the detector
for IOU, SORT, and Visual-Spatial. MOTR utilizes a query-
based transformer for both object detection and association
but requires object-level annotations (both boxes and object
ID) for model training. This model and its follow-ups have
achieved SOTA results on several MOT benchmarks.

Results on CATER. As shown in Table 6, OC-MOT sub-
stantially outperforms the video object-centric model and
other unsupervised baselines. Our approach is also com-
petitive with supervised MOTR [63] trained on expen-
sive object-level annotations, yielding only slightly lower
IDF1 and MOTA. OC-MOT can keep tracking more ob-
jects but produces fewer ID switches. For example, it
achieves 82.3% Mostly Tracked (MT) and 13.9% Mostly
Lost (ML), and shows only 5658 IDS. Moreover, in Table 2,
SAVi achieves 90.2% of FG-ARI but performs bad in terms
of other MOT metrics such as 42.8% Track mAP, indicating
that the FG-ARI is not a good metric for measuring object-
level temporal consistency.
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Figure 5. MOT results on CATER and FISHBOWL. We highlight the occlusion cases with colored masks. SAVi over-segments the
objects (yellow arrows) and has ID switches after occlusions. In contrast, OC-MOT tracks objects more consistently over time.

Results on FISHBOWL. FISHBOWL is a more challeng-
ing benchmark with serious occlusions and complicated
backgrounds. In this scenario, SAVi [32] tends to split
the complicated background into multiple slots, causing the
high number of false positive (FP). Table 6 shows that OC-
MOT achieves state-of-the-art performance among the un-
supervised tracking methods. By getting a much lower IDS
number, our approach shows its advantage in solving the
occlusion problem. The non-linear transformation in fre-
quent occlusions cannot be handled by IoU-based associa-
tion (IOU [5]) or Kalman filter (SORT [4]). Compared to
supervised MOTR, what would like to highlight is the im-
pressive association capability of OC-MOT. We point out
that the lower IDF1 and MOTA are mainly caused by the de-
tection limitation of existing OC models (e.g., DINOSAUR
decoder predicts masks at a low feature resolution, making
it hard to get pixel-level accuracy).

4.2. Visualization

The MOT results on the occlusion cases are visualized
in Figure 5. OC-MOT associates the slots from the object-
centric model and generates consistent predictions even
when objects frequently interact with each other. Due to
the severe occlusions, SAVi [32] fails to track objects even
using the track query as input, thereby causing more ID
switches. Moreover, SAVi produces more false positives
due to over-segmentation.

In Figure 6, we visualize the memory rollout results by
decoding the representations to object reconstructions. The
memory starts to roll out after the first frame, and, at t = 1,

t=
1

t=
5

t=
10

t=
25

t=
30

t=
20

Frame Rollout

t=
15

Figure 6. Visualization of memory rollout. We show the object
reconstructions decoded from the rollout representations. Each
column denotes a memory buffer. The rollout predictions are con-
sistent and complete, even when objects are partially occluded

we visualize the existing memory features. We can ob-
serve that the rollouts achieve good temporal consistency
and, even more interestingly, that the memory can predict a
complete object even when it has been partially occluded.

4.3. Ablation Studies

Component analysis. Table 3 compares different design
choices for the key components in OC-MOT. For the index-



merge module, a naive solution is to use a parameter-
free dot-product to calculate the feature similarity, inspired
by [47]. As expected, it produces the worst association per-
formance. A further option is to train one single MHA (i.e.,
two MHAs with shared weights) to cluster slots to buffers
as in [23]. To get the discrete index for object in and out
logic, we still follow the indexing and merging steps yet
only calculating the attention weights once. We observe
that this model yields slightly lower IDF1 and MOTA than
training two MHA modules. The latter choice is mathemat-
ically the similar but with higher module capacity. For the
memory module, we compare utilizing the rollout module
to only using the last tracks as the index query. Without
aggregating the historical memory features, the association
performance drops dramatically, indicating the necessity of
building a memory to handle the MOT problem.

Index-Merge
Module

Memory
Module IDF1 ↑ MOTA ↑ IDS ↓

Dot-product Rollout 72.0% 61.5% 22050
One MHA Rollout 86.2% 80.5% 7655
Two MHA Last Tracks 77.2% 68.8% 16582
Two MHA Rollout 88.6% 82.4% 5658

Table 3. Ablation on OC-MOT components on CATER.

Effect of memory length. In Table 4, we explore the ef-
fect of the memory length Tmax from 6 to 32. Note that
Tmax equals the length of the training sequence. The track-
ing performance increases as Tmax grows. However, for
longer videos, we should set a max length of memory due
to hardware limitations. To make the model more appli-
cable, we propose to reserve a short-term memory trained
with sequences sampled by slow-to-fast pace. The various
sampling rates produce both short-term and long-term infor-
mation and, more importantly, include the occlusion cases
during training. Quantitatively, this sampling strategy peaks
in performance with Tmax = 6. Unless noted otherwise, we
set Tmax to 6 as default in other experiments.

Tmax Sequence Sampling IDF1 ↑ MOTA ↑ IDS ↓
6 Consecutive 82.9% 76.3% 7601

10 Consecutive 83.2% 76.5% 7524
20 Consecutive 86.9% 78.1% 6230
32 Consecutive 88.4% 82.1% 5763
6 Slow-Fast 88.6% 82.4% 5658

Table 4. Ablation on the memory length on CATER.

4.4. Limitations

There exist some limitations of the proposed OC-MOT.

Inductive bias in the grouping architecture. We apply
the same DINOSAUR+DETR grouping module with 6.25%

temporally sparse mask labels to KITTI dataset. Figure
7 visualizes the grouping results. The cars can be de-
tected but the predicted masks are not accurate, especially
for far-away objects. One reason is that DINOSAUR pre-
dicts masks at a feature resolution that is down-scaled 16
times from the original size. The architecture of the group-
ing module needs to be further improved considering multi-
resolution inductive biases that have already been adopted
in supervised detection and segmentation pipelines. We en-
courage researchers to develop stronger OC models with
powerful detection performance but low labeling cost.

Figure 7. DINOSAUR grouping results on KIITI. We observe that
the masks are imprecise, espcially for objects that are far away.

The model is not trained end-to-end. In this paper, we use
the pre-trained OC model as a plug-n-play detector, which
is supposed to handle different data flexibly. Potential future
work is to extend OC-MOT into an end-to-end framework.
The object prototype built in the memory may be useful as
a prior for object discovery.

5. Conclusion

In this paper, we build a pipeline for MOT with object-
centric backbones. With memory modules, we can address
both part-whole issues and consistently track objects over
time. Overall, our approach improves over conventional
tracking-by-detection pipelines by replacing expensive an-
notations (especially ID annotations) with self supervision.
This work opens many directions for new research. First
of all, it allows for active learning. For example, the model
could elicit a request for labeling on specific frames, further
reducing necessity for costly annotations. Furthermore,
incorporating memory information as top-down reasoning
prior for the object-centric encoder still remains to be
explored. Additionally, we still require few masks and
class labels to resolve over-segmentation. Those semantic
signals could be distilled from multi-modal foundation
models trained with weaker supervision signals (e.g.,
captioned images). Finally, our results delineate a clear
benefit in improving (video) object-centric backbones. As
we have demonstrated, improvements in self-supervised
object-centric learning can greatly facilitate complex
downstream vision tasks like MOT, improving performance
by training on unsupervised or weakly-supervised data.
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Appendices
Appendix A. EM-inspired Loss Formulation

In this section, we illustrate the formulation of our EM-
inspired loss with more details. First, let’s start from the for-
mulation of the Expectation-Maximization (EM) algorithm.
Given data X , parameters θ and a set of unobserved latent
data Z, we intend to estimate the following data likelihood:

p(X|θ) =
∫

p(X|Z, θ)p(Z|θ)dZ = EZ∼p(·|θ)[p(X|Z, θ)].

(8)

However, p(Z|θ) is usually intractable in practice, therefore
the EM algorithm proposes to instead optimize θ with the
following two-step iterative process:

1. Expectation step: Given θ(t) as the estimation value
at iteration step t, we compute the log-likelihood
Q(θ|θ(t)) = EZ∼p(·|θ(t),X)[log p(X,Z|θ)].

2. Maximization step: We obtain the next value by
θ(t+1) = argminθ Q(θ|θ(t)).

Suppose Z is discrete, the E-step can be re-written as:

Q(θ|θ(t)) = EZ∼p(·|θ(t),X)[log p(X,Z|θ)] (9)

=
∑
Z

p(Z|θ(t), X) log p(X,Z|θ) (10)

In our work, we see I as the unobserved data Z, and there-
fore Iij as a sample from the distribution p(Z|θ(t), X).
Next, we formulate log p(X,Z|θ) with three likelihood
functions by design. Let Dec(·) be the mask decoder shared
by slots and memory, the memory representation M and
slot representation S be two θ-parameterized functions of I
(i.e. Z) and X .

1. p1(X,Z|θ) = Dec(M)Dec(S)

2. p2(X,Z|θ) = N (Dec(M);Dec(S), I)

3. p3(X,Z|θ) = N (M;S, I)

where I is the identity matrix. Next, let

p(X,Z|θ) ∝ p1(X,Z|θ)λ1p2(X,Z|θ)2λ2p3(X,Z|θ)2λ3

(11)
and we will have:

log p(X,Z|θ) =λ1Dec(S) logDec(M) (12)

− λ2||Dec(S)− Dec(M)||2 (13)

− λ3||S −M||2 + C, (14)

with C being negligible constant.
By taking negative and expanding S to Si and M to Mj ,

we have the equivalence between log p(X,Z|θ) and Equa-
tion (5), i.e. Lassign, in the main text. As a result, Equation
(7) is equivalent to Q(θ|θ(t)). To simplify the computation
of argminθ Q(θ|θ(t)) for the M-step, we use stochastic gra-
dient descent to approximate θ(t+1) = θ(t) −α∇Q(θ|θ(t)).

Appendix B. Hyper-parameter Selection
Table 5 summarizes the hyper-parameter selection for

OC-MOT on CATER and FISHBOWL datasets. We ab-
late the selection of those hyper-parameters and show the
best choice in bold. Specifically, we analyzed the effect of
memory length and MHA block number in the main text.

Method CATER FISHBOWL
τout 5, 7, 9 5
τiou 0.9, 0.8, 0.7 0.9

λ1, λ2, λ3 1, 0.1, 0 1, 0, 1
Memory Length Tmax 6,10,20,32 6

Slot Number N 11 24
Buffer Number M 12, 15, 20 40

MHA Block Number 1, 2 2

Table 5. Hyper-parameter selection for OC-MOT. The best se-
lections are marked in bold.

Appendix C. OC Grouping with Partial Labels
To understand how labels and unsupervised training ob-

jectives can be combined in a synergistic fashion, we per-
formed a series of ablations where we decrease the number
of annotated frames gradually. Generally, it is to be ex-
pected, that the performance continues to increase as more
labels are added, yet this would be linked to higher label-
ing effort/cost in real-world applications. Thus, in a prac-
tical setting, it is desired to find the point of diminishing
returns, where the rate of performance increase declines as
more data is added. As these experiments are independent
from the memory module, they were performed by training
a DINOSAUR model on a per-frame basis on the FISH-
BOWL dataset. In order to reduce variance in this compar-
ison, all models are fine-tuned based on the same check-
point of a vanilla trained DINOSAUR model [50] and use
the same subset of frames. As shown in Figure 8, both
the purely unsupervised model (DINOSAUR) as well as
the fully supervised version of the model on a subset of 8
frames (DETR [8]) show comparable results. Nevertheless,
by adding some annotated frames the performance increases
significantly as ambiguity about part-whole relationships is
resolved by the labels. The relative performance increase
of doubling the number of annotated labels is on average
1.92%. Further, we see indication of diminishing returns



Figure 8. Effect of partial labeling on OC grouping on FISH-
BOWL. Comparison of FG-ARI for training fully unsuper-
vised (DINOSAUR), partially supervised (D+DETR [#annotated
frames]) and fully supervised on 8 frames per video (DETR [8]).

when increasing the number of frames from 4 to 8 as the
performance only improves by 1.6% in this case. Overall,
this shows that adding a few annotated examples to the data
significantly improves the performance of the unsupervised
DINOSAUR model and greatly outperforms a model that
was exclusively trained on the annotated data.

Method IDF1 ↑ MOTA ↑ IDS ↓
SAVi (RGB Recon.) 46.9% 32.3% 12504
SAVi (Optical Flow) 53.2% 34.9% 15394
OC-MOT 77.9% 70.3% 5898

Table 6. Comparison with video object-centric models on
FISHBOWL. The SAVi models are trained with RGB reconstruc-
tion and optical flow reconstruction, respectively.

Appendix D. SAVi Baseline Analysis
We reported the MOT results of SAVi on FISHBOWL

dataset in the main paper. To handle the grouping problems
in complicated scenes, such as over-segmentation (part-
whole issue), we trained the SAVi baseline with supervised
DETR-style loss (with 6.25% detection labels) on top of the
self-supervised RGB reconstruction loss. Another option to
run the SAVi reconstruction loss is to reconstruct the optical
flow and this setting is reported to work better on compli-
cated scenes. As shown in Table 6, SAVi with optical flow
achieves slightly better IDF1 and MOTA, and even more
ID-Switches. The performance still has a large gap with
our proposed OC-MOT. In the deep dive analysis, we no-
ticed SAVi with optical flow reconstruction improves on the
boundary accuracy for the segmentation masks, but shows

Figure 9. MOT results of OC-MOT on TAO dataset. Only the
tracklets of persons and cars are visualized.

similar issues on ID Switch and over-segmentation.

Appendix E. Extension to Real-world Videos.
In the main paper, we do not report metrics on standard

benchmarks such as MOT17 that heavily reflects the de-
tection performance rather than object association perfor-
mance, as majority of the bounding boxes can be correctly
linked with spatial locations. Therefore it’s not a good
fit for evaluating our method because current un/weakly-
supervised OC models are less capable of producing com-
parable results with SOTA supervised object detectors. We
discussed this as limitation in Section 4.1 on KITTI, which
is generalizable to MOT17. Instead, one highlight of the
work is our novel framework to learn object association
in a self-supervised manner. This is agnostic to the de-
tection module. We believe this contribution is quite inter-
esting and novel in MOT community. To further apply OC-
MOT to real-world videos, we replaced the object-centric
model with SEEM [67] that can accurately segment objects
in real worlds. We trained OC-MOT with self-supervised
loss on TAO (track any object) dataset and observed quite
good tracking performance. In Figure 9 , we visualize the
tracklets of persons and cars. Overall, OC-MOT performs
strong object association without ID labels as long as the de-
tection model can provide good object representations that
contain enough information for tracking such as appear-
ances and locations.


