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Abstract

An important challenge for autonomous agents such as
robots is to maintain a spatially and temporally consistent
model of the world. It must be maintained through oc-
clusions, previously-unseen views, and long time horizons
(e.g., loop closure and re-identification). It is still an open
question how to train such a versatile neural representation
without supervision. We start from the idea that the train-
ing objective can be framed as a patch retrieval problem:
given an image patch in one view of a scene, we would like
to retrieve (with high precision and recall) all patches in
other views that map to the same real-world location. One
drawback is that this objective does not promote reusability
of features: by being unique to a scene (achieving perfect
precision/recall), a representation will not be useful in the
context of other scenes. We find that it is possible to bal-
ance retrieval and reusability by constructing the retrieval
set carefully, leaving out patches that map to far-away lo-
cations. Similarly, we can easily regulate the scale of the
learned features (e.g., points, objects, or rooms) by ad-
justing the spatial tolerance for considering a retrieval to
be positive. We optimize for (smooth) Average Precision
(AP), in a single unified ranking-based objective. This ob-
jective also doubles as a criterion for choosing landmarks
or keypoints, as patches with high AP. We show results cre-
ating sparse, multi-scale, semantic spatial maps composed
of highly identifiable landmarks, with applications in land-
mark retrieval, localization, semantic segmentation and in-
stance segmentation.

1. Introduction
For an autonomous agent to be able to take useful ac-

tions, it must maintain a spatially and temporally consistent

Code and model weights for this project can be found at https:
//www.robots.ox.ac.uk/˜vgg/research/locus.

Figure 1: Problem setting. Our goal is to train a network to
extract features that are identifiable and 3D-consistent, so
that features at image locations corresponding to the same
region in 3D space, but viewed from different positions, are
similar. This can be done at multiple scales, from large (e.g.,
the kitchen islands in the large green circles) to small (e.g.,
the drawers in the small red circles). However, simply op-
timizing for “unique” representations at each location (e.g.,
via contrastive learning) runs the risk of over-fitting to the
training scenes, as such objectives will discourage reuse of
the same representation for different places. Instead, we
encourage reusable landmark representations, such as the
concept of a kitchen island, which may appear in different
scenes (top and bottom panels) with appearance variations.
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world model. This model may comprise the agent itself
(e.g., pose estimation), the environment (e.g., mapping),
and dynamic objects (e.g., instance detection), and must be
maintained when confronted with previously-unseen views,
occlusions, and long time horizons (e.g., loop closure and
re-identification). However, visual observations used by an
agent for this purpose are inherently inconsistent: the same
landmark may appear significantly different from different
viewpoints in space and time, due to (self) occlusion, reflec-
tions, lighting variations, and dynamic effects, among other
factors. Errors in the estimation of the agent’s internal state
compound these problems. Therefore, it is important for
any vision-based agent to convert observations into some
spatio-temporally consistent form.

Existing approaches [4, 21, 41] do this at the observation
synthesis (mapping) stage, by aggregating or distilling vi-
sual information in 3D. We argue that significant progress
can be made before this point, at the observation processing
stage, which lends itself to a more flexible image-centered
representation that is useful for a range of tasks. The key is
to encourage consistency between image features that un-
project to the same region of 3D space, within a spatial tol-
erance, defining a landmark at a given scale.

This can be achieved by formulating the problem as one
of patch retrieval: given an image patch from one view of
a scene, retrieve all patches in other views that correspond
to the same 3D location, with high precision and recall.
To encourage reusability, so that the learned features are
useful in new scenes, we exclude patches from the retrieval
set if (when unprojected) they exceed a fixed distance
from the query. Excluding such patches ensures that the
representations of similar-looking landmarks in distant
places are not pushed apart unnecessarily, which would
promote over-fitting unique representations to the training
scenes, thus making them non-reusable in new scenes.
Moreover, by adjusting the spatial tolerance that defines
the positive set, we can regulate the scale of the learned
features. This allows us to learn features at a small scale
(e.g., local textures and structures), medium scale (e.g.,
household objects), and large scale (e.g., whole rooms or
places) in the same framework.

We learn this representation by optimizing a ranking-
based metric, (smooth) Average Precision (AP), which
doubles as a criterion for choosing distinctive landmarks
(keypoints). The resulting Location-Consistent Universal
Stable (LoCUS) features are semantically-meaningful,
3D-consistent at the selected scale, and balance distinctive-
ness with reusability, producing sparse, multi-scale, and
semantic maps. We demonstrate applications in landmark
retrieval, localization, semantic segmentation and instance
segmentation.

To summarize, our contributions are:
1. A framework for learning 3D-consistent features from

posed images via retrieval, taking into account multiple
scales and how to trade off retrieval performance vs. gen-
eralization performance (reusability).

2. A unified ranking-based objective function that facilitates
the selection of highly-identifiable landmarks.

3. An evaluation of the proposed features on real images
of indoor environments, on the tasks of place recogni-
tion, semantic segmentation, instance segmentation and
re-identification, as well as relative pose estimation.

2. Related work

The topics of keypoint detection and description [12, 14,
31], feature matching [44, 11, 16, 35, 39], structure-from-
motion [36], and SLAM [15, 27, 40] have a rich history.
Here, we concentrate on the most recent and related work.

Image retrieval. Learning representations for image
retrieval—the task of ranking all instances in a retrieval
set according to their relevance to a query image—is well-
studied [2, 30, 17]. Metric learning approaches use, e.g.,
contrastive [10] or triplet [43] losses to encourage positive
instances to be close, while negative instances are separated
by a margin. Other approaches optimize (approximations
to) ranking-based metrics like Average Precision (AP) di-
rectly [33, 5]. For example, Smooth-AP [5] proposes a sig-
moid relaxation of the ranking function, where the tightness
of the approximation is controlled by the temperature. Opti-
mizing a ranking metric allows a model to target the correct
ranking without caring about the absolute feature distances.
We leverage the image retrieval literature by defining our
learning task as a patch retrieval problem. By carefully
defining the retrieval set, we can balance feature distinc-
tiveness with re-usability. While image retrieval methods
retrieve entire images, we retrieve 3D spherical regions pro-
jected to 2D. That is, while methods such as Brown et al. [5]
compute a single feature per image that is then used to re-
trieve other images of the same class, we compute features
for pixel patches that are then used to retrieve pixel patches
that cover (parts of) the same 3D spherical region. More
details can be found in Sec. 3.

Learning visual features and keypoints. Several works
explore methods to learn better image features or keypoints
to facilitate 2D–2D matching [44, 11, 16, 35, 39] or 2D–
3D matching [11, 6] for relative/absolute pose estimation
or triangulation. For example, Fathy et al. [16] use metric
learning to learn 2D–2D matchable features, while Camp-
bell et al. [6] learn geometric features that facilitate 2D–3D
matching via an end-to-end trainable blind PnP solver.



Keypoint detectors, by contrast, aim to find a sparse set
of repeatable points in an image [12, 14, 31]. For example,
SuperPoint [12] jointly computes keypoints and descriptors
using a convolutional network trained in a self-supervised
framework. Similarly, D2-Net [14] obtains keypoints via
non-maximum suppression on the learned feature maps.
R2D2 [31] argues that repeatable regions are not necessar-
ily discriminative, so learns to predict keypoint repeatabil-
ity and reliability separately. Unlike the features learned in
these works, the features that optimize our loss function do
not vary as rapidly, allowing them to more closely resemble
the real scene geometry and enabling segmentation.

Neural mapping and reconstruction. Deep learning
approaches have gradually closed the gap on classical
Structure-from-Motion [36] and SLAM [15, 27] approaches
to mapping and reconstruction. For example, Neural Ra-
diance Fields (NeRF) [25] has demonstrated photorealis-
tic reconstruction for known cameras, and been extended
to RGBD SLAM [38, 47], RGB SLAM [46], and seman-
tic mapping [45]. Earlier, MapNet [21] investigated neu-
ral localization and mapping through convolution operators,
resulting in an environment map that stores multi-task in-
formation distilled from the RGBD input, which exhibits
emergent semantic meaning. Our approach produces very
different kinds of maps: sparse, multi-scale, and semantic,
composed of highly identifiable landmarks.

Self-supervised visual feature learning. Vision trans-
formers (ViT) [13] have demonstrated a strong capacity for
learning useful and meaningful features from large amounts
of unlabelled image data [7, 18, 42]. For example, DINO [7]
demonstrated that self-supervised ViT features could be
used for unsupervised object segmentation. The model was
trained via self-distillation between a student network and a
momentum teacher network that receive two different ran-
dom transformation of an image and are encouraged to en-
code similar features.

STEGO [18] extends DINO to unsupervised semantic
segmentation via contrastive learning. It trains a shallow
segmentation network appended to a fixed DINO backbone
with contrastive terms that encourage the learned features
to form compact clusters while preserving their global rela-
tionships. CutLER [42] extends DINO to unsupervised ob-
ject detection and segmentation, achieving extremely com-
pelling results. The model generates training data for a de-
tector by creating foreground object masks using normal-
ized cuts on the patch-wise similarity matrix of DINO fea-
tures, with additional object masks being found through an
iterative masking procedure.

N3F [41] showed that DINO image features can be dis-
tilled into a 3D feature field using the same rendering loss
as NeRF [25], given camera pose supervision. They demon-

strate that the resulting features are 3D-consistent, enabling
3D instance segmentation and scene editing. Our approach
builds on these self-supervised methods by proposing a
proxy patch retrieval task defined in 3D, unlike STEGO and
CutLER, allowing us to adapt DINO features so that they
learn invariances to viewing direction and instance. Like
N3F, we require camera pose supervision to enable our 3D-
aware loss. Unlike N3F, our features are defined in image
space and can be predicted from a single image, facilitating
applications like relative pose estimation.

3. Method
Our training procedure will be centered on the concept

of recognizing landmarks: regions of space that are visu-
ally identifiable and unique within a bounded region, but
reusable outside that region. We mean that landmark em-
beddings (representations) are “reusable” in the sense that
the same embedding may be shared by more than one land-
mark, as long as they are far away in the spatial domain.

Assume that we are given a set of training images, di-
vided into n (potentially overlapping) rectangular patches
xi, i.e., the receptive fields of a Convolutional Neural Net-
work (CNN) or the tokens of a Visual Transformer (ViT).
Each training patch xi ∈ P is also associated with an en-
vironment ei ∈ E (e.g. the identity of a house in a train-
ing set composed of distinct houses) and real-world coor-
dinates within that environment pi ∈ R3, obtained for ex-
ample by projecting the center coordinates of the patch us-
ing known camera geometry (camera pose and approximate
depth) [19]. Note that this information is only needed for
training – at test time no such information is necessary. The
training set is then X = {(x1, e1, p1), . . . , (xn, en, pn)}.

Assume that we have also defined a set of tentative land-
marks L = {(θ1, ϵ1, ℓ1), . . . , (θm, ϵm, ℓm)} in 3D space:
points ℓi ∈ R3 in environments ϵj ∈ E and associated em-
beddings θi ∈ Rc. These do not have to correspond to ac-
tual landmarks (or identifiable locations in 3D), and can be
sampled uniformly across space.1

We wish to train a deep neural network ϕ : P 7→ Rc to
output embeddings that can be used to match each patch xi

to a landmark embedding θj , by computing pairwise scores

sij =
ϕ(xi)

Tθj
∥ϕ(xi)∥∥θj∥

, (1)

consisting of a cosine distance (inner product of normal-
ized embeddings), where higher scores denote more likely
matches. To specify whether a match is correct or not, we
place a sphere of radius ρj around the landmark ℓj , and any
retrievals there (and in the same environment) are consid-
ered positive:

y+ij = 1 (∥pi − ℓj∥ ≤ ρj ∧ ei = ϵj) , (2)

1We will discuss more efficient sampling strategies in Section 3.3.



where 1(·) ∈ {0, 1} is the indicator function. We will
use y+ij as a binary mask to denote positive matches, while
yΩij = 1 is a trivial mask that denotes the union of positives
and negatives. Both are used to define the Smooth Average
Precision (Smooth-AP):

ÃPj =
1∑n
i y

+
ij

n∑
i

y+ij
1 +

∑nm
kl y+klστ (skl − sij)

1 +
∑nm

kl yΩklστ (skl − sij)
, (3)

with the sigmoid στ (x) =
1

1+exp(−x/τ) . In the limit τ → 0,

ÃPj recovers the exact AP with θj as the query embedding.

Discussion. Eq. 3 is similar to Smooth-AP, proposed by
Brown et al. [5], with a few differences that were neces-
sary to adapt it to patch-based landmark retrieval: 1) the
retrieval set consists of rectangular image patches, so ϕ can
be applied convolutionally; 2) the positive set is defined by
3D Euclidean distance (Eq. 2) with per-landmark radii ρj ;
and 3) we wrote Eq. 3 as a function of binary masks y+ij and
yΩij , instead of nested sets.

This objective encourages the features from two image
patches to be similar if they correspond to 3D locations that
are at most a distance ρ apart, since they will be in each
other’s positive sets. Thus the objective directly encourages
3D-location-consistent features, extracting similar features
for different viewpoints of the same 3D location. Empirical
support for this is given in Sec. 4.2. The objective also en-
courages semantic meaningfulness, extracting similar fea-
tures for image patches that correspond to the same object.
First, note that if two 3D locations are separated by greater
than ρ but less than 2ρ, they are both within the positive
set of a third landmark location, encouraging all three fea-
tures to be similar. Second, note that the Smooth-AP loss
does not minimise the similarity of a landmark with patches
in the negative set, it only encourages the similarity with
respect to the positive set to be greater than that with the
negative set. Together, this results in similar features being
extracted across an object, facilitating segmentation.

Multi-scale landmarks. The radius ρj of each landmark
defines its overall scale, as any matching embeddings ϕ(xi)
must be invariant to different positions within this radius.
Thus ϕ may learn to recognize not only small-scale key-
points, but also landmarks at the scale of household objects,
whole rooms or even larger regions (place recognition), as
illustrated in fig. 1.

Despite these changes, Smooth-AP still offers a few
other challenges to be adapted to our setting, which we will
detail in the next sections.

3.1. Landmark reusability: “don’t-care” regions

Optimizing for AP has one unfortunate side effect: every
high score matching a patch xi further away from a (tenta-

𝑦∙𝑗
Ω = 0

“Don’t care” region
(same env.)

Pos. region
𝑦∙𝑗
+ = 1

Neg. region

𝑦∙𝑗
+ = 0 ∧ 𝑦∙𝑗

Ω = 1

ℓ𝑗

𝑦∙𝑗
Ω = 0

“Don’t care” region
(other envs.)

Figure 2: Illustration of the projections of the spherical re-
gions that define the landmark retrieval objective (sec. 3.1).
The small green sphere around the tentative landmark ℓj
defines the region inside which image patches are consid-
ered positive matches with the landmark (y+ij = 1). The
larger orange sphere defines the region with positive and
negative matches (yΩij = 1). Importantly, outside this re-
gion matches are ignored (yΩij = 0), as well as in other en-
vironments (bottom panel). As a result, a contrastive (or
retrieval) self-supervised objective does not suppress simi-
lar embeddings for semantically-similar but spatially distant
landmarks, such as the two kitchen islands in the two envi-
ronments shown.

tive) landmark ℓj than ρ+ will be treated as a false positive,
and thus suppressed during training. Likewise, all patches
in different environments ei ̸= ϵj will be treated the same.
While this seems reasonable on the surface, at the optimum
it will force all landmarks to be unique to a particular place
in an environment and thus useless in a new environment
or far away location. We would like some landmarks to
be reusable and shared among different environments, for
example for one landmark to represent a living room in dif-
ferent homes, as opposed to overfitting to a single living
room.

In analogy with “don’t-care” conditions in digital circuit
design [24], which reduce circuit complexity by freeing up
modeling capacity for input–output combinations that are



not important, we propose to define “don’t-care” regions
where the Smooth-AP objective does not constrain the deep
network’s output. Instead of the trivial mask yΩij = 1 that
denotes the universe of all patches as positives and nega-
tives, we instead reduce this universe to

yΩij = 1 (∥pi − ℓj∥ ≤ κρj ∧ ei = ϵj) , (4)

with κ > 1 a multiplier for the distance threshold. Together,
κ and ρj define two concentric regions: a sphere of radius
ρj around a landmark, where any retrievals are considered
positive (Eq. 2), and a spherical shell at distance d from the
landmark, with ρj < d ≤ κρj , where any retrievals are
considered negative (Eq. 4). Any points outside the radius
κρj are not considered as part of the retrieval set, and are
not assigned a label. The end result is that two different
tentative landmarks can have very similar embeddings θj ,
as long as they are at a distance greater than κρj , and this
embedding reuse will not be penalized by the Smooth-AP
(Eq. 3).

3.2. Automatic landmark selection with Vectorized-
Smooth-AP

So far we referred to landmarks as “tentative”, so that
they may not correspond to actual identifiable regions of
space. However, optimizing for Eq. 3 assumes a landmark
ℓj is fixed as a query. If we maximize Eq. 3 in expecta-
tion over j (analogously to Brown et al. [5]), we implic-
itly give equal importance to all tentative landmarks, even
if some may correspond to places that are not easily identi-
fiable (e.g., a wall or empty region).

Rather than devise a heuristic to identify good land-
marks, we instead just let the Smooth-AP objective focus
on pairs of landmarks and patches that maximize AP, by
considering all pairs as if they’re part of a single query

−→
AP =

1∑nm
ij y+ij

nm∑
ij

y+ij
1 +

∑nm
kl y+klστ (skl − sij)

1 +
∑nm

kl yΩklστ (skl − sij)
. (5)

Eq. 5 is equivalent to vectorizing the matrix of masks Y + ∈
Rn×m with elements y+ij , by stacking its elements into a
single vector y+ ∈ Rnm, and computing the Smooth-AP
objective (Eq. 3) with this modified input. While subtle,
this has the effect that

−→
AP will be maximized by first dis-

tinguishing the easiest landmark–patch pairs from the rest,
while ignoring those that are too ambiguous. By neglecting
to emphasize all tentative landmarks equally, the objective
adaptively selects highly distinguishable landmarks. We
can identify them by evaluating the non-vectorized Smooth-
AP (ÃPj) on each individually, and taking the top-k land-
marks:

ℓ∗ = top-k
j

ÃPj .

3.3. Sampling tentative landmarks

We now turn to the definition of the tentative landmark
positions ℓj and embeddings θj .

Sampling positions ℓj . While ideally it would be suf-
ficient to sample the landmark positions randomly across
space (either within a bounded region, or restricted to the
visible hull), in a mini-batch with limited memory this is
often not efficient. The reason is that y+ij may have too few
non-zero values due to non-intersecting image views, espe-
cially with a limited number of images in an environment,
or in very large environments.

We found that sampling uniformly across space is very
inefficient, as over 94% of the chosen tentative landmarks
are not visible by more than 2 views (in the training set of
Matterport3D [8]; see sec. 4 for details on the experimental
setting). This creates very poor query sets for retrieval, with
only one or two positive embeddings, which cause over-
fitting as the network easily attains 100% AP on such tenta-
tive landmarks. Instead, we need to bias the sampling more
towards more visible locations. Thankfully, there is a sim-
ple way to sample spatial positions proportionally to how
often they are visible in the training set of views: simply
sample uniformly among all image patches across all train-
ing images. This guarantees that the sampled distribution
is proportional to how often a 3D position is visible, and is
easy to implement.

Sampling embedddings θj . A straightforward way to
define the embedding for ℓj is to average the embeddings
of all patches that map to that location in space:

θj =
1

n

n∑
i

y+ijϕ(xi).

In practice, we found that approximating this average by a
single patch ϕ(xi) such that y+ij > 0 (chosen at random) is
sufficient, which simplifies the implementation.

4. Experiments
In this section, we will detail our experiments, where

we evaluate the ability of LoCUS features to perform place
recognition and relative pose estimation, as well as evalu-
ate its emergent semantic properties, in the form of seman-
tic segmentation and instance segmentation with object re-
identification.

4.1. Experimental setup

Datasets. Our primary dataset for training and evaluation
is the Matterport3D dataset [8], which contains a wide va-
riety of indoor environments, captured densely with RGB



Table 1: Place recognition (retrieval) results, for our Lo-
CUS features and the DINO [7] baseline. We report our
objective, the smooth vectorized AP (

−→
AP), and the Average

Precision (AP), which quantifies the retrieval performance.
For the same features, AP, which corresponds to our objec-
tive in the limit of τ → 0, will always be higher than

−→
AP.

Objective (
−→
AP) Average Precision (AP)

Model Train Val. Train Val.

ResNet50 [20] 0.11 0.11 0.11 0.12
DINO [7] 0.20 0.20 0.20 0.20
DINOv2 [29] 0.17 0.17 0.17 0.17
LoCUS (Ours) 0.56 0.54 0.57 0.55

and depth information. It also includes dense segmenta-
tions at the object level, which facilitate the evaluation of
our model’s semantic properties.

Training details. We train a 2-stage transformer [13] with
128-dimensional internal features, on top of a frozen DINO
backbone [7]. The final features extracted from image
patches have 64 dimensions, and the DINO backbone com-
putes 768-dimensional features, so we use two linear layers
to map between these feature spaces, resulting in 503,232
trainable parameters. This model is trained by implement-
ing the Vectorized-Smooth-AP objective from Eq. 5. We
maximize the objective using the Adam optimizer with an
initial learning rate of 10−4 and mini-batches of size 16,
sampled from the Matterport3D training set [8], and train
for 20 epochs. For all experiments, we set the hyper-
parameters τ = 0.01 and ρj = 0.2 (in meters). With these
settings, the model can be trained on a single NVIDIA RTX
2080Ti GPU.

4.2. Place recognition and retrieval

Since our method is trained with a specific relaxation of
Average Precision (AP) on retrieval-focused sets of image
patches, its primary objective is most closely aligned with
place recognition via retrieval. As such, we start by evalu-
ating its AP on unseen validation environments, which con-
tain objects and layouts that were not seen during training.
This assesses the reusability of features produced by our
method.

Baselines. For this experiment, we compare with pre-
trained ResNet50 [20], DINO [7], and DINOv2 [29] base-
lines. The features of the final layer of the ViT are reduced
to 64 using PCA, the same dimension as our features (sim-
ilar to Tschernezki et al. [41]). Since our model shares al-
most all of its weights with the DINO baseline, this compar-

Figure 3: Visualization of co-segmentation results, obtained
by thresholding the cosine distance (Eq. 1) of the LoCUS
features of a query image patch (blue and orange, high-
lighted in the top left image) and LoCUS features of patches
in other views (remaining images). The thresholded regions
are indicated in matching colours.

ison well-illustrates the effect and advantages of our train-
ing method.

Results. The results for this experiment are reported in
Table 1. In addition to the AP on the validation set, for
both our method and the DINO [7] baseline, we also re-
port the AP on the training set. As expected, our LoCUS
features significantly outperform the DINO baseline, de-
spite sharing almost all weights. While the retrieval perfor-
mance decreases on the validation set, this decline is min-
imal compared to the effect of the training, demonstrating
the reusability of the features in unseen environments.

4.3. Semantic and instance segmentation

We now turn to scene-level object segmentation. There
are two broad categories of segmentation classes: 1) amor-
phous geometry (“stuff”) such as walls, floor and ceil-
ing; and 2) distinct objects (“things”) such as furniture or
appliances. The former are useful for evaluating seman-
tic segmentation at the texture level, while the latter re-
quires distinguishing individual objects, and thus allows us
to evaluate instance segmentation. This setting is slightly
more broad than instance segmentation: an object must not
merely be segmented distinctly from other objects in a given
image, but it must be also re-identified in different images
from varied points of view, so it also encompasses the task
of object re-identification.



Table 2: Semantic and instance segmentation (respectively
“stuff” and “things”) results, with object re-identification.
Both models extract 64-dimensional feature vectors for 8×8
pixel patches, which are then classified into the relevant
classes using a linear probe. Semantic classes contain
“stuff” pixels grouped into their semantic categories, while
instance classes contain pixels belonging to individual ob-
jects. ⋆Uses ground-truth instance labels. †Released after
submission deadline.

Semantic Instance Overall
Model mAP mIoU Jac mAP mIoU Jac mAP mIoU Jac

ResNet50 0.39 0.26 0.55 0.18 0.11 0.12 0.19 0.12 0.41
DINO [7] 0.49 0.34 0.63 0.40 0.28 0.28 0.40 0.29 0.52
DINOv2† 0.55 0.38 0.67 0.49 0.35 0.39 0.49 0.35 0.58
Mask2Former - 0.03 0.07 - 0.00 0.00 - 0.00 0.06
+ Oracle⋆ - 0.41 0.71 - 0.39 0.53 - 0.39 0.64
MaskDINO - 0.05 0.15 - 0.00 0.00 - 0.00 0.12
+ Oracle⋆ - 0.41 0.71 - 0.40 0.54 - 0.40 0.65
LoCUS (Ours) 0.53 0.37 0.67 0.54 0.40 0.42 0.54 0.39 0.59

Qualitative results on co-segmentation. We start by ex-
ploring a single co-segmentation task, highlighting a patch
in one image and then finding all matching patches in other
views, by simply thresholding the similarity metric (Eq. 1).
The results can be seen in Section 4.2. We can observe that,
despite dramatic changes in viewpoint, the learned LoCUS
features are very stable over 3D space, successfully match-
ing over very significant changes in distance, rotation, par-
tial occlusion and out-of-view regions.

Implementation. For the quantitative evaluation, we use
linear probes to assess the learned features’ correlation
with respect to the semantic classes, as is common in self-
supervised learning [7]. To do this, we extract the LoCUS
features ϕ(xi) over all training images (considered frozen)
and train a patch-wise linear classifier with a cross-entropy
loss and the ground-truth segmentation labels. We use the
same optimizer settings as for the main objective until con-
vergence, for all methods.

Evaluation setting and metrics. We use an evaluation set
of unseen scenes, which are not part of the training set, and
thus test the generalization ability of the methods. We re-
port segmentation metrics on “stuff” pixels only (semantic
segmentation), on “things” pixels only (instance segmen-
tation and object re-identification), and on all pixels taken
together. For each case, we compute three metrics:

1. mAP: For each object instance (in the case of instance
segmentation) or for each class (in the case of semantic
segmentation), we calculate the average precision (AP)
of the linear classifier, in a one vs. all mode (i.e., consid-
ering all other pixels as negative labels). We then average

across all instances or classes to obtain a mAP score.
2. mIoU: We calculate the Intersection-over-Union (IoU)

[34] between the predictions and ground-truth binary
masks for each object (or class) separately, and then re-
port the average.

3. Jaccard (Jac): Similarly to the mIoU, we compute the Jac-
card index separately for each object (or class), and report
the average. The Jaccard index is given by TP / (FP +
FN), given the counts of binary True Positives (TP), False
Positives (FP) and False Negatives (FN).

Baselines. To provide a point of comparison to the seman-
tic segmentation capabilities of the proposed features, we
also report results for a number of segmentation baselines.
We evaluate pretrained ResNet50 [20], DINO [7], and DI-
NOv2 [29] feature extractors, first reducing the computed
features to the same number of dimensions as ours (64) us-
ing PCA computed over the full training set. This is the
same strategy employed to evaluate Neural Feature Fusion
Fields [41]. Similar to our method, we then use a linear
probe to produce the segmentations.

We also evaluate two recent segmentation-specific mod-
els, Mask2Former [9] and MaskDINO [23] in their default
setting, and a setting where we relabel each predicted seg-
mentation mask with the ground-truth scene-consistent in-
stance ID (“Oracle”). The former performs poorly because
it does not maintain consistent instance identities across
frames (no object re-identification), as is required by this
task.

Results. The results are shown in Table 2. Our proposed
LoCUS features are better able to discriminate both seman-
tic classes, such as undifferentiated ceiling or wall regions,
as well as to re-identify particular object classes. Figure 6
visualizes the qualitative results. The proposed method
outperforms the baseline feature extractor methods, espe-
cially on the instance segmentation and re-identification
task, showing that the object identity predictions are stable
under viewpoint changes. DINO features are trained to be
invariant to image-space augmentations [7], and so under-
standably do not enjoy the same stability across viewpoints,
especially when they change dramatically.

Our method performs comparably with the Oracle meth-
ods despite not receiving the ground-truth labels.

4.4. Relative pose estimation

Since our LoCUS features are trained to be stable across
3D viewpoints, within a specified scale, they should be
helpful for tasks that require spatial reasoning. Further-
more, the fact that we can train features for landmarks at
different scales should help with coarse-to-fine strategies.
For this reason, we focus on relative pose estimation. Note



Ground Truth Predicted

Figure 6: Qualitative results of semantic segmentation
(wall, ceiling, floor classes) in the first two rows and
of instance segmentation (household objects) in the third
and fourth row. Note that object instance identities are
stable across viewpoints, thus also performing object re-
identification.

that this is different from other settings like Simultaneous
Localization And Mapping (SLAM), since those assume
temporal continuity over a video stream. In contrast, we
perform relative pose estimation between single pairs of im-
ages, without any extra context, which severely limits the
information available.

Dataset. We use the image pairs generated from Matter-
port3D for relative pose estimation that were introduced in
SparsePlanes [22]. We remark that there is very limited
overlap between the views of each pair, which makes this
an extremely challenging task.

Metrics. We report standard metrics for translation and
rotation error. For translation, we report median and av-
erage errors, as well as the fraction of pairs that have an
error smaller than 1 meter. For rotation, we also report me-
dian and average errors, and the fraction of pairs with error
smaller than 30 degrees.

Method. Given a pair of images, we extract the LoCUS
features of each patch ϕ(xi). We then calculate pairwise
scores (Eq. 1), and for each patch, filter out all scores that
are smaller than a threshold of 0.7. We then use two con-
ditions on the continuity of the mapping from patches in
image A to patches in image B to remove outliers from the
set of patch pairs. Details on this process can be found in the
supplementary material. Taking the top-100 pairs by score,
we use a standard robust 5-point RANSAC algorithm [28]
to calculate the essential matrix with the smallest error, and
then find the corresponding relative pose (up to unknown
scale) using a RANSAC chirality check [3]. The unknown
scale can in practice be recovered using for example very
coarse depth measurements; here we simply scale the trans-
lation vector by its ground truth length.

Baselines. We compare with several baselines from the
literature. Most of these were specifically engineered for
geometric matching tasks, while ours focuses on coarser
(multi-scale) landmark retrieval. As such, we expect ours
to be more robust at matching in the large scale, while
other methods to do better at very fine-grained geometric
matching. We report results for SuperPoint [12] (pre-trained
and with its feature dimension reduced to 64 using PCA)
with nearest neighbours (NN) search and SuperPoint with
FGINN for outlier removal. Given the pixel matches ex-
tracted in this way, we compute the in the same way as our
method (5-point RANSAC [28]). We also report results for
a number of methods that do not extract features, but are
specialised to estimate relative poses more directly: Sparse-
Planes [22], 8-Point-Supervision [32], and PlaneFormers
[1].

Results. The results are presented in Table 3. We can see
that, despite not being trained specifically for camera lo-
calization, the spatial stability of the trained features does
help localize the camera correctly in most instances. Never-
theless, we would expect that with greater overlap between
views, methods that are more geared towards fine-grained
keypoint matching would do better than coarse matching
methods such as ours, which are more concerned with
coarse place (landmark) recognition. The most comparable
method are the two relative pose estimation algorithms us-
ing SuperPoint keypoints, which our method outperforms.



Table 3: Relative pose estimation results. We report trans-
lation errors in meters and rotation errors in degrees.

Translation Rotation
Model Med. Avg. ≤ 1m Med. Avg. ≤30◦

SparsePlanes [22] 0.63 1.25 0.67 7.33 22.78 0.83
8-Point-Sup [32] 0.64 1.01 0.67 8.01 19.1 0.85
PlaneFormers [1] 0.66 1.19 0.67 5.96 22.2 0.84

SuperPoint [12]
+ NN 1.08 1.84 0.48 34.4 47.8 0.47
+ FGINN [26] 1.02 1.87 0.49 29.9 45.2 0.50

LoCUS (Ours) 0.92 1.69 0.53 22.1 34.5 0.58

4.5. Ablation study

We also evaluated the relative impact of different de-
sign decisions in our method, and assessed its robustness
to different hyper-parameter choices. The results from the
preceding sections used the optimal combination under the
constraint of similar memory consumption found in this
study. We refer the interested reader to the supplemental
material for detailed results.

5. Conclusion

We have proposed a method for learning multi-scale
view-invariant features from posed images by optimiz-
ing a novel retrieval-based objective: Vectorized-Smooth-
AP. This objective modulates the DINO [7] ViT fea-
tures towards 3D-consistency and adaptively selects highly-
distinguishable landmarks. Moreover, we select the re-
trieval set in such a way to encourage the model to balance
retrieval (distinctiveness) with reusability (generalisability),
through the introduction of a “don’t-care” region beyond a
certain spatial extent.

We demonstrate compelling performance when using
these features for several downstream tasks, including place
recognition and retrieval, semantic and instance segmen-
tation with re-identification, and relative pose estimation,
demonstrating the utility of our learned features. This result
reinforces the strong semantic properties of self-supervised
image features and shows how aggregating information in
3D, via the ranking loss function and camera pose su-
pervision, can improve their effectiveness, especially for
3D-aware tasks. Nonetheless, strategies for removing the
weak camera pose supervision warrant investigation, since
a fully self-supervised approach would facilitate access to
greater quantities of data. Depending on the environment,
Structure-from-Motion [36] or SparsePose [37] may be able
to alleviate this requirement, making it possible to train on
larger-scale video data.

Ethics and attribution. We use the Matterport3D
dataset [8] in a manner compatible with their terms and
the end user license agreement, available at this URL:
https://kaldir.vc.in.tum.de/matterport/
MP_TOS.pdf. The dataset may accidentally contain
personal data, but there is no extraction of personal or
biometric information in this research.
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