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Abstract

Semi-supervised crowd counting is an important yet
challenging task. A popular approach is to iteratively gen-
erate pseudo-labels for unlabeled data and add them to
the training set. The key is to use uncertainty to select
reliable pseudo-labels. In this paper, we propose a novel
method to calibrate model uncertainty for crowd count-
ing. Our method takes a supervised uncertainty estimation
strategy to train the model through a surrogate function.
This ensures the uncertainty is well controlled through-
out the training. We propose a matching-based patch-wise
surrogate function to better approximate uncertainty for
crowd counting tasks. The proposed method pays a suf-
ficient amount of attention to details, while maintaining a
proper granularity. Altogether our method is able to gen-
erate reliable uncertainty estimation, high quality pseudo-
labels, and achieve state-of-the-art performance in semi-
supervised crowd counting.

1. Introduction

Crowd counting is the task of estimating the number of
individuals in images or videos. It is important for pub-
lic security, transport management, crowd surveillance, and
catastrophe management, to name a few. Deep-learning-
based methods [51, 60, 63, 43, 41, 1, 37, 11, 24, 40, 39, 25]
have achieved promising performance in crowd counting
tasks. However, to achieve superior performance, these
methods require a large amount of annotations. For each
image, hundreds or thousands of points/markers are added
to indicate pedestrians (see Fig. 1(b)). Acquiring such anno-
tations is costly and time-consuming; it takes 2000 human
hours to annotate UCF-QNRF [10] dataset, which contains
1.25 million points/markers.

To alleviate the annotation burden, semi-supervised
crowd counting is explored to leverage the information in
unlabeled images with fewer annotated images. Previ-
ous works use self-supervised learning [26] and data syn-
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thesis [54, 55]. Another promising direction is pseudo-
labeling, i.e., generating pseudo-labels for unlabeled data
based on model prediction, and adding them as additional
training data. Pseudo-labeling has been used in many other
vision tasks, such as classification [47], segmentation [4],
and object detection [58]. To select reliable predictions as
pseudo-labels, one may use the uncertainty of the model.
Predictions with low uncertainties are considered more re-
liable and can be used as pseudo-labels to train the model.

Despite the wide application of uncertainty in computer
vision [36, 5, 17, 15, 3, 62, 58, 8, 6], estimating uncer-
tainty in crowd counting remains a challenge, due to the
heterogeneity of the marker distributions and fundamental
issues of a crowded scene including perspective, occlusion,
and cluttering. A few previous works [34, 29] estimate un-
certainty for crowded scenes through the consistency be-
tween predictions made by different models. However,
these methods completely rely on models’ predictions on
unlabeled data. Without a proper controlling mechanism,
the uncertainty estimation can not be guaranteed to be reli-
able. In challenging regions, where all models make similar
mistakes, consistency may create overconfidence yet wrong
predictions. The training may be derailed by noisy pseudo-
labels.

In this paper, we propose a novel semi-supervised crowd
counting approach. We focus on uncertainty estimation and
propose the first supervised solution for crowd counting.
Unlike previous methods, we use the labeled data as di-
rect supervision for uncertainty estimation. Although the
true uncertainty is unknown even for labeled data, we pro-
pose a surrogate function based on the similarity between
model predictions and ground truth. Intuitively, when a
model can predict well, it should be less uncertain about
the data. This learning-performance-based surrogate func-
tion provides the opportunity to directly train the model
for uncertainty estimation. One appealing feature is that
the supervised uncertainty estimation is well under-control
throughout different training stages, providing necessary
stability to the dynamic semi-supervised learning process.

One critical question is the design of the surrogate func-
tion, i.e., how to measure the similarity between a prediction
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Figure 1: An overview of our method. The light color represents low uncertainty in the whole context. (a) Original image.
(b) Ground truth point set. (c) Point predictions from our method. (d) Our patch-wise uncertainty map. (e) Density map
generated by density-based method [34]. (f) Pixel-wise uncertainty generated by comparing density maps [34]. (g) The
pipeline of student model training for crowd counting and for uncertainty estimation. A labeled patch goes through the feature
extractor and uncertainty branch to generate an uncertainty score. The uncertainty score is compared with the surrogate
function (ASM) using uncertainty ranking loss. Counting predictions generated by the counting branch are supervised by
crowd counting loss. (h) Pseudo label generation process. We use a teacher model which is acquired from the student model
via the EMA strategy. It generates predictions and patch uncertainty for all unlabeled patches. Patches with low uncertainty
patches are used to supervise the training of crowd counting.

and the ground truth. As the crowd counting prediction can
be evaluated in many different ways, a few different simi-
larity measures have been used for uncertainty estimation.
Direct evaluation of uncertainty at image level [65] cannot
account for the heterogeneous spatial distribution of pedes-
trians. At the other extreme, Meng et al. [34] propose pixel-
level uncertainty using the density maps, i.e., kernel density
based on the points/markers (Fig. 1(e)). They compare the
density maps of teacher and student models pixel-by-pixel
to estimate uncertainty at every pixel. This uncertainty,
however, can be unreliable because the density maps lack
the necessary details, i.e., exact locations of points/markers.
As shown in Fig. 1(f), one obtains very low pixel-wise un-
certainty at high density regions, where the models tend to
be erroneous; but the sky regions get higher uncertainty.

To tackle this challenge, our second contribution is
a novel measure of uncertainty that better suits crowd
counting tasks. We focus on the exact coordinates of
points/markers and compare the prediction point set and
ground truth point set (the set constructed by the coordinates
of individuals) through a matching-based similarity met-
ric, called Accumulated Spatial Matching distance (ASM).
This matching-based strategy accounts for the full details
of the prediction and avoids systematic over-count/under-

count bias. To provide the proper granularity and account
for the spatial heterogeneity of uncertainty, we partition im-
ages into small patches and estimate uncertainty at the patch
level. Fig. 1(d) illustrates the patch-level uncertainty es-
timation by our method; the estimated uncertainty is high
in crowded regions and low in regions with fewer markers,
e.g., sky. This is consistent with our expectations.

We incorporate our supervised uncertainty estimation
into an end-to-end semi-supervised learning pipeline. Our
model uses a student model and a teacher model. During
each training epoch, the student model is trained on the
training set for both prediction and uncertainty estimation.
The uncertainty training is by comparing with the proposed
ASM surrogate function. The teacher model is a stabilized
version of the student model; its weights are an exponen-
tial moving average (EMA) of the weights of the student
model. The teacher model makes predictions and estimates
uncertainties on unlabeled patches. Predictions with low
uncertainty are chosen to be pseudo-labels and be used to
supervise crowd counting.

In summary, our contribution is three-fold.
• We propose a novel supervised approach to calibrate

patch-wise uncertainty for crowd counting task. The
estimated uncertainty can be used to effectively se-



lect reliable pseudo-labels to enhance semi-supervised
training.

• We propose a novel patch-wise matching-based simi-
larity measure as a surrogate function for uncertainty.
This surrogate function focuses on specific coordinates
and cardinalities of points/markers and provides reli-
able information throughout different training stages.

• On various benchmarks, experimental results show
that our method generates well-calibrated uncertain-
ties, high-quality pseudo-labels, and achieves state-
of-the-art performance on the semi-supervised crowd
counting task.

2. Related Works
Deep learning based algorithms have achieved great

progress in crowd counting tasks. In this section, we will
review the works in crowd counting, uncertainty estimation,
and semi-supervised learning.

Crowd counting. Density-based crowd counting frame-
works are widely studied. The crowd counting problem
is treated as a density estimation problem by density-based
methods. The crowd size is calculated by summing all the
pixel values of the density map. The density map can be
generated pixel-by-pixel [18, 9, 28, 2, 12, 35] or patch-by-
patch [57, 22, 23]. Wang et al. [52] utilize Optimal Trans-
port (OT) to measure the distribution difference between the
predicted density map and ground truth. Ma et al. [32] con-
struct the likelihood function of individuals based on Gaus-
sian distribution. Bai et al. [2] address the noise in crowd
counting annotations and conduct a self-correction (SC) su-
pervision framework, which can correct annotations based
on the model’s output. Many promising methods have been
published in this track. Despite the strong performance of
density-based methods, they cannot generate the accurate
locations of individuals out of the predicted density map.
Localization-based methods count the crowd by locating all
individuals. Some of them utilize object detection tech-
niques to get the individual locations [38, 30, 19]. How-
ever, most crowd counting datasets are only point annotated.
This makes it difficult to acquire the precise coordinates of
bounding boxes and leads to inferior model performance.
The locations of individuals are also captured by dots [21]
or blobs [16], but ad-hoc post-process is used to elimi-
nate false-positive and separate joint individuals. Song et
al. [48] propose a one-to-one matching framework to match
the point proposals with ground truth locations. Instead of
comparing the location distribution difference, they focus
on finding positive proposals and increasing model confi-
dence in these proposals.

Counting with limited annotations. It is laborious and
time-consuming to annotate images for crowding count-
ing tasks. Semi-/weakly supervised learning methods have

been proposed to alleviate the annotation burden. Liu et
al. [26] introduce a learning-to-rank framework to leverage
the unlabeled information contained in the relation between
crop size and counting number (image patches should in-
clude more individuals than their sub-patches). Yang et
al. [61] propose a soft-label sorting network to utilize the
counting information of crowd numbers rather than the lo-
cations of individuals. Xu et al. [59] propose a density-
based framework for partial annotation setting. Sindagi et
al [44] use an iterative learning framework with Gaussian
Process (GP) to leverage unlabeled information and boost
model performance. Liu et al. [29] construct a series of sur-
rogate tasks for training a feature extractor on both labeled
and unlabeled data with a self-training framework. Liu et
al. [20] use a contrastive loss to intensify the learning of
density maps on labeled and unlabeled data through density
agency. Most previous methods can utilize unlabeled data
properly, but the inherent noise in unlabeled supervision can
deteriorate the model performance significantly.
Uncertainty estimation for crowd counting. Uncertainty
estimation is extensively studied for tasks like segmenta-
tion [13, 33, 15, 3, 17] and object detection [7, 31]. For
crowd counting, uncertainty estimation is important but un-
derstudied. Meng et al. [34] estimate pixel-wise uncertainty
by comparing density maps generated by teacher and stu-
dent models. As illustrated in Fig. 1(f), the pixel-wise un-
certainty can be incorrect, especially in dense areas. Com-
paring models’ output also makes the uncertainty less reli-
able. This method also treats the problem as a segmenta-
tion task and compares segmentation maps between teacher
and student models for uncertainty estimation. This addi-
tional uncertainty map suffers from the same issues as the
density-based uncertainty map. Zhao et al. [65] introduce
uncertainty by comparing the crowd density distribution
between different images and claim that the images with
crowd dense distribution more dissimilar from labeled im-
ages have higher uncertainty. Liu et al. [27] design a self-
supervised proxy task based on the fact that for the same
region, the wider range scene should contain more individ-
uals. The number of mistakes made on this proxy task can
be seen as an uncertainty estimation. Our method differs
from these previous methods in that it is the first one to use
a supervised strategy for uncertainty calibration, ensuring a
much more stable uncertainty map during training. Further-
more, our method focuses on the locations and cardinalities
of markers and provides patch-level uncertainty maps. This
ensures that important details are used while proper granu-
larity is used.

3. Method
We propose a pseudo-labeling-based semi-supervised

crowd counting approach using patch-level uncertainty es-
timation. Given a small set of labeled images and a large set
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Figure 2: (a) An illustration of the introduction of the spatial matching distance. We pair all blue points with orange points
one-by-one and use sums of the lengths of the green arrows as part of the matching distance. Three unpaired orange points
will contribute a constant penalty each. (b) The ASM distribution on the ShanghaiTech Part-A training set. (c) Sample image
patches from ShanghaiTech Part-A, have high ASM (red loop, top) and low ASM (green loop, bottom). The individuals in
the red loop are difficult to locate while the crowds in the green loop are easy to count.

of unlabeled images, semi-supervised crowd counting is to
train models with both labeled and unlabeled images. The
key is to make the best use of unlabeled images. To this
end, one effective approach is pseudo-labeling. A pseudo-
labeling method assigns to unlabeled data “pseudo-labels”,
which are often model predictions. These pseudo-labeled
data will be added to the training set to improve the model.
The improved model will then produce better and more
pseudo-labels. The model training and pseudo-label gen-
eration can enhance each other in a mutual manner.

The challenge of the above process is to decide which
pseudo-labels are trustworthy. As the model is imperfect,
its predictions can be noisy. Picking up too many pseudo-
labels will inject noise and derail the training. On the other
hand, an overly conservative strategy may not fully utilize
the unlabeled data and cannot maximize the potential of
the model. A useful measure for selecting pseudo-labels is
uncertainty [47]. One may choose model predictions with
lower uncertainty, hoping that these “certain” predictions
are more likely to be correct.

In this paper, we propose a novel uncertainty estimation
method for the crowd counting problem and incorporate it
into the semi-supervised learning framework. In Sec. 3.1,
we propose to explicitly train uncertainty estimation using
labeled data. This way, the uncertainty is more reliable and
can be used to select high-quality pseudo-labels. The train-
ing is based on a surrogate function that approximates the
true uncertainty. We propose a novel surrogate function for
crowd counting in Sec. 3.2. Finally, we introduce the semi-
supervised learning framework in Sec. 3.3.

3.1. Uncertainty Calibration Using Labeled Data

Our method estimates uncertainty through supervision.
This is in contrast with previous semi-supervised crowd
counting works [34, 29], which directly calculate uncer-
tainty on unlabeled data based on model prediction consis-

tency. These previous methods, without direct supervision,
can make unreliable uncertainty estimations without being
noticed, leading to sub-optimal models.

An overview of our method is illustrated in Fig. 1(g).
Our model takes an image patch as input. It has two
branches: one for prediction, and one for uncertainty es-
timation. The two branches share the same feature extrac-
tor; this ensures that the uncertainty estimation is based on
reliable high-level information and thus generalizes well to
unseen data. During training, our model not only predicts
on each unlabeled patch, but also generates uncertainty val-
ues for patches. The predictions with low uncertainty will
be chosen as pseudo-labels and be added to the training set
to refine the model. To ensure the quality of the generated
uncertainty, we use labeled data as supervision to train the
uncertainty estimation branch.

The key question is to find an appropriate measure of un-
certainty on labeled data. In other words, we need a good
“surrogate function” as the “ground truth” uncertainty. We
draw inspiration from previous work on the classification
task. Moon et al. [36] introduce an uncertainty surrogate
function by counting the frequency of correct predictions of
snapshot models at different training epochs. The intuition
is that a model should be more uncertain on a sample if it
is often misclassified. When it comes to the crowd count-
ing task, we need to design a special metric to measure how
“correct” a prediction is. To this end, we propose a novel
similarity measure between ground truth and prediction. We
accumulate the similarity across different training epochs.
Details of the proposed surrogate function, called Accumu-
lated Spatial Matching Distance (ASM), will be presented
in Sec. 3.2.

As illustrated in Fig. 1(g), during model training, we not
only provide supervision on model prediction, but also su-
pervise the uncertainty branch by comparing its output with
the surrogate function. This will ensure that the model can



be generalized well to unlabeled data, and produces reliable
uncertainty for pseudo-label selection.
Pairwise ranking loss for uncertainty supervision. To
train the uncertainty branch, we propose a pairwise ranking
loss. The loss ensures that the rank of uncertainty output
is consistent with the rank of uncertainty surrogate. Com-
pared with the numeric values of the surrogate function, the
ranking is more stable and reliable. This is why ranking loss
can achieve better performance than pointwise loss, e.g., L1
loss. In particular, we use lambdaloss [56] as follows:

Luncer =
∑

ai>aj

|ai − aj | log2(1 + e−(κi−κj)) (1)

where ai is the batch min-max normalized ASM on patch
Ii, and κi is the model’s uncertainty output on patch Ii.
The loss will incur a large penalty for a pair of patches with
ai > aj yet κi < κj . The loss is also weighted by |ai−aj |,
i.e., the absolute ASM difference between i and j.

3.2. Surrogate for Uncertainty Calibration

In this section, we propose a novel measure of similar-
ity between prediction and ground truth for each training
patch. Since our focus is to measure the quality of pedes-
trian point set predictions, we cannot directly use previous
similarity measures which compare density maps [52]. We
propose match-distance-based metric to compare the pre-
dicted and ground truth pedestrian point sets. Intuitively,
we find an optimal matching between the two point sets,
and the matching distance is used as the similarity measure.
For each unmatched point, we add a constant penalty. The
penalty constant should be proportional to the image patch
size, essentially the worst possible matching distance be-
tween any two points. See Fig. 2(a) for an illustration.

Formally, the proposed similarity between two given
pedestrian point sets, P = {pi ∈ R2 | i = 1, . . . , NP } and
Q = {qi ∈ R2 | i = 1, . . . , NQ}. Without loss of general-
ity, we assume NP ≤ NQ. We define the spatial matching
distance between them as

dist(P,Q) =
M(P,Q) +H(P,Q)

NQ
, (2)

in which M(P,Q) and H(P,Q) are the matching distance
and the penalty for unmatched points in Q. Formally,

M(P,Q) = min
γ∈Γ(P,Q)

∑
p∈P

∥p− γ(p)∥2 (3)

H(P,Q) = (NQ −NP ) · C, (4)

in which Γ is the set of all possible one-to-one mappings
from P to Q. We choose the penalty C for each unmatched
point in Q to be the diagonal length of the image patch, i.e.,
C =

√
height2 +width2. In practice, for an image patch,

I , given a prediction pedestrian point set Pred(I) and a

1
3

1
9

(a) Discrete Wasserstein (b) Ours & Hungarian

Figure 3: Distance between prediction (red) and GT (black).
Discrete Wasserstein gives a fractal mass to each point and
matches all of them (blue lines). Our method only conducts
one-to-one matching. Unmatched points get a large penalty.
Hungarian loss drops unmatched points.

ground truth pedestrian point set GT (I), we simply pick
the one with the smaller cardinality as P , and the other as
Q. For convenience, we will abuse the notation and denote
the distance as dist(Pred(I), GT (I)).

Due to the stochastic nature of deep learning optimizer,
the prediction on a single epoch may not be reliable. We sta-
bilize the proposed spatial matching distance by accumulat-
ing over snapshot models at different training epochs. For-
mally, our accumulated spatial matching distance (ASM)
for a training patch, I , is as follows:

ASM(I) =
1

T

T∑
t=1

dist(Predt(I), GT (I)) (5)

where Predt(I) is the model predictions at the t-th training
epoch. T is the total number of training epochs. Intuitively,
a patch has a lower ASM if it has a better prediction more
frequently. A better prediction means the predicted pedes-
trian point set is better matched with the ground truth points.
As shown in Fig. 2 (b) and (c), our ASM can be a fairly good
surrogate for uncertainty estimation.
Difference between Hungarian loss [49] & discrete
Wasserstein distance. The key difference is two-fold.
First, our method is the very first to use such loss for the pur-
pose of uncertainty estimation. We have empirically estab-
lished how powerful it is in semi-supervised crowd counting
tasks. Second, from a technical point of view, these meth-
ods are not penalizing unmatched points while our method
does. The Hungarian loss drops unmatched points as false
proposals. The discrete Wasserstein distance treats points
as masses and matches them despite a cardinality discrep-
ancy (see Fig. 3). Therefore, these methods do not fit our
task; we expect a prediction with significantly fewer/more
points than GT to have a large uncertainty/penalty.
Why patch uncertainty is better than pixel uncertainty?
Pixel-wise uncertainty only uses local information. It is
similar to an image segmentation uncertainty map, in which
only pixels near object boundaries have high uncertainty.
Similarly, as illustrated in Fig. 5 (Pixel Uncertainty col-
umn), the pixel-wise uncertainty map has high uncertainty
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Figure 4: The pipeline of model training for crowd counting and uncertainty estimation. The cached image goes through the
feature extractor and uncertainty branch for generating uncertainty scores. These uncertainty scores are supervised by ASM
using uncertainty ranking loss. The training image patches are cropped from training images at random locations, and their
extracted features are fed into the counting branch for generating the coordinates and probability scores of individuals, which
are supervised by ground truth through crowd counting loss.

between dense and sparse regions. But inside a dense re-
gion or inside a sparse region, the uncertainty is low despite
the prediction quality. On the other hand, our method uses
a patch-wise matching-based surrogate function for uncer-
tainty. It is reliable even inside dense or sparse regions.
Implementation details: patch bank. It is a common
practice in crowd counting to extract patches at random lo-
cations during training. These random patches are differ-
ent across different training epochs. Thus we cannot accu-
mulate their matching distances. To address this issue, we
choose a fixed patch extraction strategy. We cut input im-
ages into a fixed set of patches, and store all these patches
into a patch bank. During training, for every patch in the
bank, we accumulate their matching distance as a surrogate
measure for uncertainty. These patches are randomly drawn
to train the model within each training batch. As shown in
Fig. 4, a cached image patch with size 128 × 128 is fed
into a model for generating 4 uncertainty outputs. Each out-
put represents the uncertainty of the corresponding 64× 64
patch region. The uncertainty outputs are supervised by
normalized ASM through uncertainty ranking loss. Train-
ing image patches, cropped from training images randomly,
are used to train the model for crowd counting.

3.3. Semi-Supervised Crowd Counting

During training, our method starts with a labeled data set
DL and an unlabeled data set DU . As the training continues,
unlabeled data with low uncertainty are assigned pseudo-
labels, constituting a pseudo-labeled data set, DPseudo.

We use two models: a teacher model, ftea, and a stu-
dent model, fstu. The teacher model makes predictions
on unlabeled data set. It generates predictions and esti-
mates uncertainties for all unlabeled patches. Predictions

with low uncertainty are chosen as pseudo-labels. These la-
bels, together with their corresponding patches, are added
to DPseudo. Both DL and DPseudo are used for training.
Meanwhile, the student model continuously learns from the
training set to make predictions and estimate uncertainty.
To train the student model to predict, we use a standard
crowd counting loss, Lpred, which is backbone dependent.
To train the student model to estimate uncertainty, we use
the uncertainty loss Luncer, as defined in Eq. 1. Altogether,
the student model is trained with the loss

L(fstu,D) = Lpred(fstu,DL) + Luncer(fstu,DL)+

λ1Lpred(fstu,DPseudo), (6)

in which the weight λ1 is tuned empirically. Note that while
both labeled and pseudo-labeled data are used to train pre-
diction, we only use the original labeled data to train uncer-
tainty, in order to ensure a reliable uncertainty estimation.

We use the same backbone for both the teacher and
the student models. In particular, we use P2PNet [48]
and its associated prediction loss, Lpred. Both models
are initialized with the weights pre-trained on ImageNet.
We follow the common practice in semi-supervised learn-
ing [47, 50] and update the teacher model based on the stu-
dent model through the exponential mean average (EMA)
strategy. With this strategy, the teacher network is more
stable and reliable. We depend on its prediction and uncer-
tainty estimation to generate pseudo-labels.

We conclude this subsection by explaining our strategy
of pseudo-label generation. At every training epoch, we ap-
ply the teacher model to all unlabeled data, generating pre-
dictions and uncertainties. For each data (image patch), we
compare its uncertainty with a preset uncertainty threshold,



ut. We select all patches with < ut uncertainty and their
predictions as the pseudo-labeled set. See Fig. 1 for illus-
trations. Empirically, we adjust the threshold ut as training
progresses. We start with a warm up period, during which
we only train the student model with labeled patches. After
the warm up period, we use a linearly increasing thresh-
old ut to select pseudo-labeled patches and add them to the
training set. This ensures the pseudo-label generation to
be conservative in the beginning and more aggressive later,
when the model is more reliable. When adding pseudo-
labeled patches, we also apply strong augmentation, i.e.,
cutout. More details are provided in the supplementary.
Model architecture details. We use the first 13 convolution
layers of model VGG-16 bn [42] as the features extractor.
The features are fed into two branches: the counting branch
is the same as in [48]. The uncertainty branch comprises of
convolution layers with ReLU activations. The final layer
uses a sigmoid activation to generate the uncertainty.

4. Experiments
In this paper, we conduct extensive experiments on five

public datasets to evaluate the effectiveness of our method:
ShanghaiTech Part-A and Part-B [64], UCF-QNRF [10],
NWPU-Crowd [53], JHU-Crowd++ [45, 46]. More imple-
mentation details can be found in Appendix.

Method Ratio Part A Part B
MAE RMSE MAE RMSE

SUA [34] 50% 68.5 121.9 14.1 20.6
GP [44] 25% 91 149 - -
MT [50] 10% 94.5 156.1 15.6 24.5
L2R [26] 10% 90.3 153.5 15.6 24.4

IRAST [29] 10% 86.9 148.9 14.7 22.9
IRAST+SPN [29] 10% 83.9 140.1 - -

AL-AC [65] 10% 80.4 138.8 12.7 20.4
PA [59] 10% 72.79 111.61 12.03 18.70

DAcount [20] 10% 74.9 115.5 11.1 19.1
Ours 10% 70.76 116.62 9.71 17.74

Table 1: Results on the ShanghaiTech dataset.

Data processing. During training, we randomly scale in-
put images with scaling range [0.7, 1.3] and crop patches of
size 128 × 128. The cropped patches are randomly flipped
with a probability of 0.5. For some datasets with very high
resolution images, e.g., QNRF-Crowd, JHU-Crowd++ and
NWPU-Crowd, we rescale the images so the max sizes of
images are shorter than a certain length. Following the set-
tings in P2PNet [48], for QNRF-Crowd, JHU-Crowd++,
and NWPU-Crowd, this length is 1408, 1430, and 1920.
Evaluation metrics. We use two very common metrics,
Mean Absolute Error (MAE) and Root Mean Squared Error

(RMSE), to evaluate the model performance.
Hyperparameters. Here we estimate the uncertainty for
64 × 64 image patches. Thus the penalty constant is C =
64

√
2. Our method is trained by Adam [14] with a mini-

batch size of 8 using a learning rate of 1e-5 for the param-
eters of the feature extractor and 1e-4 for the rest model
parameters. The weight λ1 is set as 0.3. The uncertainty
surrogates for images in the bank are updated every training
cycle on unlabeled images.
Baselines. To show how our proposed semi-supervised
approach can better utilize unlabeled images and boost
performance on crowd counting, we compare its perfor-
mance against SOTA methods from three tracks: semi-
supervised learning (SSL), active learning (ACL), and
partial-supervised learning (PAL).

4.1. Results

In this part, we compare our semi-supervised method,
trained with only 10% of the ground truth labels, to various
baselines and show the superiority of our method through
evaluation metrics MAE and RMSE. More experiment re-
sults can be found in Appendix.
ShanghaiTech. The ShanghaiTech dataset is constructed
by two subsets: Part-A and Part-B. The images of Part-A
contain dense crowds collected from the Internet. The Part-
B images are acquired from a street in Shanghai, which has
relatively sparse crowds. Our method achieves superior per-
formance on both Part-A and Part-B, especially in the MAE
metric. Tab. 1 indicates that our method can handle both
congested and sparse crowds properly and utilize the infor-
mation from unlabeled images in a good manner.
UCF-QNRF. UCF-QNRF is a challenging crowd counting
dataset due to the diversity of viewpoints, crowd densities,
and lighting conditions. Our method has a very good per-
formance on this dataset. The results in Tab. 2 indicate that
our method is robust to the distribution of the complex back-
ground and can generate reliable pseudo-labels under multi-
ple scene situations, achieving lower MAE and RMSE over
SOTA semi-supervised methods.
JHU-Crowd++. JHU-Crowd++ is a large-scale crowd
counting dataset containing images with weather-based
degradations and multiple environmental conditions. Our
method achieves better results than all baselines on both
MAE and RMSE with DACount [20] at a close second. The
results shown in Tab. 3 reflect that our method can utilize
the crowd information in unlabeled images efficiently un-
der various scenarios.
NWPU-Crowd. NWPU-Crowd is a massive crowd count-
ing dataset containing images with highly congested crowds
and large appearance variations. As shown in Tab. 4, our
method has the best results among weakly supervised al-
gorithms. Besides, our method reduces MAE by 39.1%



Method Type Ratio MAE RMSE
SUA [34] SSL 50% 130.3 226.3
GP [44] SSL 25% 147 226

IRAST [29] SSL 20% 135.6 233.4
MT [50] SSL 10% 145.5 250.3
L2R [26] SSL 10% 148.9 249.8
PA [59] PAL 10% 128.13 218.05

DACount [20] SSL 10% 109.0 187.2
Ours SSL 10% 104.04 164.25

Table 2: Results on the UCF-QNRF.

Method Type Ratio MAE RMSE
SUA [34] SSL 50% 80.7 290.8
MT [50] SSL 10% 90.2 319.3
L2R [26] SSL 10% 87.5 315.3
PA [59] PAL 10% 129.65 400.47

DACount [20] SSL 10% 75.9 282.3
Ours SSL 10% 74.87 281.69

Table 3: Results on JHU-Crowd++.

Method Type Ratio MAE RMSE
MT [50] SSL 50% 129.8 515.0
L2R [26] SSL 50% 125.0 501.9
SUA [34] SSL 50% 111.7 443.2
PA [59] PA 10% 178.70 1080.43

Ours SSL 10% 108.78 458.02

Table 4: Results on NWPU-Crowd.
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Figure 5: Qualitative results on ShanghaiTech Part-A. The ”Prediction” column shows our prediction results. The ”Uncer-
tainty” column shows our patch-wise uncertainty, in which yellow represents low uncertainty. The ”Density” column is the
density map generated by Meng et al. [34] and the ”Pixel uncertainty” column shows their pixel uncertainty.

and RMSE by 57.6% compared with the partial annotation-
based method (PA) [59].

The results show that our semi-supervised method con-
sistently outperforms the state-of-the-art semi-supervised,
partial-annotation, and active learning methods. This re-
flects that our uncertainty estimation is efficient for filtering
out low-quality pseudo-labels. Hence, our semi-supervised
framework can utilize the information in unlabeled images
more effectively. Sample results are in Fig. 5.

4.2. Ablation Studies

We conduct experiments to illustrate the effectiveness of
each component in our method and the effect of changing
hyperparameters and experiment settings.

The proportion of labeled images. In the previous sec-
tion, we conduct experiments with 10% labeled images on
ShanghaiTech Part-A. To show the effect of labeled image
ratio on the performance of our method, here we use extra
experiment results on 5% and 40% labeled images to vali-
date our method. As shown in Tab. 5, our method achieve
better performance than baselines despite the ratio of the
labeled images. These results indicate our method can uti-
lize unlabeled images efficiently with different proportions

of labeled images.

Method Type Ratio Part A
MAE RMSE

MT [50] SSL 5% 104.7 156.9
L2R [26] SSL 5% 103.0 155.4

GP SSL 5% 102.0 172.0
PA [59] PAL 5% 79.42 123.60

DAcount [20] SSL 5% 85.4 134.5
ours SSL 5% 74.48 127.51

MT [50] SSL 40% 88.2 151.1
L2R [26] SSL 40% 86.5 148.2

DAcount [20] SSL 40% 67.5 110.7
Ours SSL 40% 64.74 109.56

Table 5: The ablation study results of labeled ratio on the
ShanghaiTech dataset.

Components. Here we use experiments on 10% Shang-
haiTech Part-A to verify the effectiveness of components for
our method. The results are shown in Tab. 7. Sup.only is the
result of the model trained only with supervised counting
loss. The result using supervised counting loss and uncer-



tainty loss is shown in Sup.+uncer. There is little improve-
ment in counting performance using our uncertainty loss.
To verify the effectiveness of Lambdaloss, here we use L1
loss to supervise the learning process of uncertainty estima-
tion. The results indicate the uncertainty estimation learned
with Lambdaloss is more reliable and thus achieves better
results. Besides, we also conduct experiments for strong
augmentation and EMA. As shown in W/o strong, the lack
of strong augmentation has a negative effect on the model
performance. The results of W/o EMA indicate EMA is im-
portant for utilizing pseudo-labels during the training. An
ablation study shows that Hungarian loss has worse per-
formance than our spatial matching distance (Hungarian in
Tab. 7).

Method Ratio Part A
MAE RMSE

W/o filtering 10% 83.28 172.97
Softmax 10% 75.47 129.35

ACD 10% 71.90 122.03
AWD 10% 72.47 126.12

w/o average 10% 71.47 120.07
Ours 10% 70.76 116.62

Table 6: The ablation
study results of Uncertainty
estimation on the Shang-
haiTech Part-A.

Method Ratio Part A
MAE RMSE

Sup.only 10% 77.74 125.86
Sup.+uncer. 10% 74.84 122.95

L1 loss 10% 72.60 117.72
W/o strong 10% 72.77 124.64
W/o EMA 10% 75.38 124.48
Hungarian 10% 72.95 121.24

ours 10% 70.76 116.62

Table 7: The ablation study
results of components on
the ShanghaiTech Part-A.

Uncertainty estimation. We study the effect of uncer-
tainty estimation on our semi-supervised method. Here we
show the superiority of our uncertainty estimation method
through experiments on 10% ShanghaiTech Part-A. We
have three baselines for uncertainty estimation: w/o fil-
tering, softmax, accumulated counting difference (ACD),
and accumulated Wasserstein distance (AWD). W/o filter-
ing here represents the baseline without filtering out high
uncertainty patches. Softmax is the patch uncertainty es-
timation calculated by the mean confidence scores of the
point proposals in each image patch. ACD is the uncer-
tainty surrogate defined by substituting our spatial match-
ing distance with the absolute counting difference between
ground truth and prediction. AWD uses discrete Wasser-
stein distance instead of spatial matching distance to mea-
sure the localization difference. To deal with the case when
prediction (ground truth) counting is zero and ground truth
(prediction) counting is non-zero for AWD, we apply pun-
ishment on such case by constructing a super-pixel, the dis-
tance of which to all ground truth points is penalty con-
stant C. As shown in Tab. 6, our method achieves the best
performance among all baselines, which reflects that our
uncertainty estimation is reliable for choosing high-quality
pseudo-labels. From the result of W/o filtering, we know
the noisy pseudo-labels are detrimental to the training pro-
cess and can lead to inferior results. Due to the severe
overconfidence problem, the pseudo-labels generated with

softmax are still noisy. ACD ignores the location informa-
tion of individuals in crowds, which is critical for estimat-
ing model uncertainty. As discussed in Sec. 3.2, limited by
the drawback of discrete Wasserstein distance in evaluating
point distribution difference for crowd counting, the perfor-
mance of AWD is thus worse than our method. In Tab. 7
w/o average, we show the necessity of accumulating sptial
matching distance during training.
Hyperparameters. In Tab. 8, we study the effect of the
weight λ1 in Eq. 6, the maximum value of uncertainty
threshold ut, and patch size for uncertainty estimation. We
can see our method is not sensitive to those hyperparame-
ters. Our method achieves fairly good performance with the
perturbation of hyperparameters.

Patch size λ1 max ut Ratio MAE RMSE
8 0.3 0.6 10% 76.31 126.19

16 0.3 0.6 10% 77.47 133.69
32 0.3 0.6 10% 71.37 116.74
64 0.3 0.6 10% 70.76 116.62
128 0.3 0.6 10% 75.41 119.94
64 0.1 0.6 10% 72.73 120.18
64 0.2 0.6 10% 71.79 119.50
64 0.3 0.6 10% 70.76 116.62
64 0.4 0.6 10% 72.09 124.64
64 0.5 0.6 10% 70.98 122.00
64 0.3 0.8 10% 73.15 127.48
64 0.3 0.7 10% 71.82 120.23
64 0.3 0.6 10% 70.76 116.62
64 0.3 0.5 10% 73.11 122.18
64 0.3 0.4 10% 72.87 124.39

Table 8: The ablation study results of hyperparameters on
the ShanghaiTech Part-A.

5. Conclusion
In this work, we introduce a novel patch-wise

uncertainty estimation for pseudo-labeling-based semi-
supervised crowd counting. Our method trains the uncer-
tainty estimator directly through a surrogate function calcu-
lated on labeled patches. As for the uncertainty surrogate
function, we use a spatial matching distance between pre-
dictions and ground truth labels. Our method provides re-
liable uncertainty estimation, thus helping to select pseudo-
labels to improve the model training in a semi-supervised
fashion. The evaluation of our proposed semi-supervised
method on several popular crowd counting benchmarks
shows that our method consistently achieves superior per-
formance compared to SOTA semi-supervised methods.
Acknowledgements. We thank the anonymous reviewers
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A. Appendix

Append. A.1 shows quality results about which high un-
certain patches are filtered out.

Append. A.2 shows that our method is reliable even with
only 5% labeled samples.

Append. A.3 provides more ablation study results.
Append. A.4 illustrates the implementation details of

choosing pseudo-labels.

A.1. Illustrate which pseudo-labels were selected
and which inaccurate ones were filtered out.

Fig. 6 shows results on unlabeled samples. Green
dots are predictions and red rectangles are high-uncertainty
patches. On the left, we found a high-uncertainty patch
within the sparse region, containing only one false positive
(on the traffic light). In the middle and right samples, the
high-uncertainty patches contain many false negatives due
to occlusion or dark shades.

Figure 6: Qualitative results on uncertainty filtering.

A.2. Is 5% labeled data enough for training reliable
uncertainty estimator?

Empirical results show that 5% labeled data is sufficient
to achieve superior performance on ShanghaiTech A (main
paper Tab. 5 & Tab. 9) and B (Tab. 10) datasets.

Method Ratio Part A
MAE RMSE

sup.only 5% 88.48 162.42
w/o filtering 5% 111.39 174.87

softmax 5% 94.64 155.65
Ours 5% 74.48 127.51

Table 9: The ablation study results of 5% labeled data.

A.3. Extra ablation study results.

In this section, we show the effectiveness of our method
under 5% and 40% labeled images on the ShanghaiTech
part-B dataset with extra ablation study experiments. As
shown in Tab. 10, our method achieves better performance
under both 5% and 40% labeled image scenarios. This indi-
cates our method can obtain superior performance for semi-
supervised crowd counting under various labeled ratios on
different datasets.

In Fig. 7, we show additional ablation study results.
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Figure 7: The hyperparameter ablation study results on
ShanghaiTech B and UCF-QNRF.

A.4. Details of pseudo-labeling

Here we show the details of linearly increasing uncer-
tainty threshold ut for choosing pseudo-labels:

ut = startunc+
endunc− startunc

endep− startep
(t− startep)

where ut is the uncertainty threshold for choosing image
patches, i.e., the image patches with uncertainty estimation
higher than ut are blanked out, and t is the current epoch
number. The increase of ut begins at epoch startep and
ends at epoch endep. The uncertainty threshold increases
from startunc to endunc. By using this strategy, we can
utilize high-quality model predictions at different training
stages properly.

Since it takes several training iterations for multitask
model to capture valid crowd and uncertainty information,
we start leveraging unlabeled information from 10th epoch
i.e. startep = 10. The model predictions on unlabeled
images are error-prone, thus uncertainty threshold at the be-
ginning startunc is 0.1. Besides, we have endep = 130
and endunc = 0.6.

Method Type Ratio Part B
MAE RMSE

MT [50] SSL 5% 19.3 33.2
L2R [26] SSL 5% 20.3 27.6
GP [44] SSL 5% 15.7 27.9
PA [59] PAL 5% 16.50 25.28

DAcount [20] SSL 5% 12.6 22.8
ours SSL 5% 11.03 20.93

MT [50] SSL 40% 15.9 25.7
L2R [26] SSL 40% 16.8 25.1

DAcount [20] SSL 40% 9.6 14.6
Ours SSL 40% 7.79 12.70

Table 10: The ablation study results of labeled ratio on the
ShanghaiTech part-B dataset.

A.5. Implementation details

In practice, for the convenience of implementation, we
use (1 - batch normalized ASM) as a surrogate to train the
uncertainty branch, and the model confidence output will be
used to filter out unreliable patches.


