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Abstract

Pan-sharpening aims to generate a high-resolution mul-
tispectral (HRMS) image by integrating the spectral in-
formation of a low-resolution multispectral (LRMS) image
with the texture details of a high-resolution panchromatic
(PAN) image. It essentially inherits the ill-posed nature
of the super-resolution (SR) task that diverse HRMS im-
ages can degrade into an LRMS image. However, existing
deep learning-based methods recover only one HRMS im-
age from the LRMS image and PAN image using a deter-
ministic mapping, thus ignoring the diversity of the HRMS
image. In this paper, to alleviate this ill-posed issue, we pro-
pose a flow-based pan-sharpening network (PanFlowNet)
to directly learn the conditional distribution of HRMS im-
age given LRMS image and PAN image instead of learning a
deterministic mapping. Specifically, we first transform this
unknown conditional distribution into a given Gaussian dis-
tribution by an invertible network, and the conditional dis-
tribution can thus be explicitly defined. Then, we design an
invertible Conditional Affine Coupling Block (CACB) and
further build the architecture of PanFlowNet by stacking
a series of CACBs. Finally, the PanFlowNet is trained by
maximizing the log-likelihood of the conditional distribu-
tion given a training set and can then be used to predict
diverse HRMS images. The experimental results verify that
the proposed PanFlowNet can generate various HRMS im-
ages given an LRMS image and a PAN image. Addition-
ally, the experimental results on different kinds of satel-
lite datasets also demonstrate the superiority of our Pan-
FlowNet compared with other state-of-the-art methods both
visually and quantitatively.

1. Introduction
With the rapid development of satellite sensors, remote

sensing images have become widely used in various appli-
cations, such as environmental monitoring [4], classifica-
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(a) Traditional deep learning-based approaches generate an HRMS
image from LRMS and PAN images through deterministic map-
ping.

(b) Our proposed PanFlowNet can learn the conditional distribu-
tion of HRMS images, and thus it can generate diverse HRMSs
from LRMS and PAN images as well as noise.

Figure 1: Comparison between traditional deep learning-
based methods and our proposed PanFlowNet.

tion [8], and target detection [18, 56]. Satellites capture
multispectral (MS) and panchromatic (PAN) images simul-
taneously with complementary information for each modal-
ity that PAN images have a high spatial solution [21] and
MS images contain rich spectral information [43]. MS sen-
sors reduce the spatial resolution while ensuring spectral
richness for MS images [55]. To obtain an MS image with
both high spectral and spatial resolution, the pan-sharpening
technique that aims to fuse the MS and PAN images has at-
tracted a large amount of attention.

The past decades have witnessed the explosive growth
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of research works in the pan-sharpening field. In terms of
the quality of the generated fusion results, the focuses have
been mainly on model-based [43, 45, 36] and deep learning
(DL)-based [14, 20, 46, 48, 53, 12] methods. Model-based
methods usually optimize a mathematical model that pre-
serves spectral and spatial information, and most of them
follow the assumption that the PAN image (or its gradi-
ent) can be modelled as a linear combination among all
bands (or their gradients) of high-resolution multispectral
(HRMS) images. However, they are highly dependent on
the assumptions about the relationship between HRMS and
PAN images [3]. Unfortunately, previous work did not ac-
curately establish this relationship, which limits the fur-
ther improvement of pan-sharpening. Besides, the model-
based methods are challenging in optimization, limiting
their practical applications.

In the era of deep learning, convolutional neural net-
works (CNN) have emerged as a significant tool for pan-
sharpening. CNN-based methods train the network by
minimizing the distance between the fused result and the
HRMS reference image. Because of the strong nonlinear fit-
ting ability of neural networks, this kind of method always
achieves excellent performance. However, pan-sharpening
is essentially an ill-posed problem since a given LRMS
image can be degraded from infinitely many compatible
HRMS images. This poses severe challenges when design-
ing DL-based pan-sharpening approaches. Although exist-
ing CNN-based methods can obtain excellent results, they
only learn a deterministic mapping from LRMS and PAN
images to HRMS images, as shown in Fig. 1a, and thus the
ill-posed issue is not well addressed.

To solve the above issues and generate more diverse re-
alistic images, in this paper, we propose a novel neural ar-
chitecture for pan-sharpening, called PanFlowNet, which
directly learns the conditional distribution of the HRMS im-
age given the input LRMS image and PAN image instead
of learning a deterministic mapping. Specifically, we first
transform a sample of the unknown conditional distribution
into a sample of a given Gaussian distribution using an in-
vertible network. Thus the conditional distribution can be
explicitly defined by the product of the Gaussian distribu-
tion and the determinant of the Jacobian matrix. To build
the invertible network, we first design an invertible Con-
ditional Affine Coupling Block (CACB) and then stack a
series of CACBs to construct the network architecture of
PanFlowNet. Finally, our PanFlowNet can be trained by
minimizing the negative log-likelihood of the conditional
distribution on a training set. Once the training is finished,
we can generate diverse HRMSs by inputting the LRMS
and PAN images as well as different noise samples of the
given Gaussian distribution into the PanFlowNet, as shown
in Fig. 1b.

In summary, the contributions of our work are as follows:

• We propose a flow-based deep network (i.e., Pan-
FlowNet) for pan-sharpening. This network can accu-
rately learn the conditional distribution of HRMS im-
ages given the corresponding LRMS and PAN images.
To the best of our knowledge, this is the first attempt
to learn an explicit distribution by employing the gen-
erative flow model for the pan-sharpening task.

• The proposed PanFlowNet can generate diverse
HRMSs given the LRMS and PAN images as well as
the Gaussian noise sample and thus can alleviate the
ill-posed issue to some extent. Besides, the generated
HRMS images are diverse since each HRMS image fo-
cuses on a different detailed part of the ground truth.

• We extend the vanilla flow model to a probabilistic
multi-conditional flow model to adapt to the multi-
conditionality of the pan-sharpening task. Extensive
experiments over different satellite datasets demon-
strate that our method can outperform existing state-
of-the-art approaches both visually and quantitatively.

2. Related work
2.1. Classic pan-sharpening methods

The traditional methods of pan-sharpening can be clas-
sified into three main categories: component substitution
(CS)- [9, 41, 22], multi-resolution analysis (MRA)- [37, 45,
40, 34], and variational optimization (VO)- [19, 44, 13, 3,
10] based methods. The common CS methods [9, 41, 22]
project the original MS image into a transform domain and
then replace the separated spatial components with PAN im-
ages. The typical MRA methods [40, 34] inject the spatial
details extracted by the multiresolution decomposition tech-
niques from PAN images into the up-sampled MS images.
The VO methods [3, 10] are concerned because of the fine
fusion effects on pan-sharpening. In addition, some hybrid
methods take advantage of multiple methods to complement
each other [57, 28]. Most model-based methods assume
that the PAN image (or its gradient) can be modelled as a
linear combination among all bands (or their gradients) of
the HRMS image. However, this reduces the intensity fi-
delity of the HRMS image since various sensors mounted
on satellites have extremely diverse response characteristics
to objects [55].

2.2. Deep learning based pan-sharpening methods

Due to the highly nonlinear fitting capacity of the con-
volutional neural network, PNN [35] models the relation-
ship between PAN, LRMS, and HRMS images using three
convolutional layers, achieving a significant improvement
compared with other classical methods. Inspired by PNN,
a large number of CNN-based pan-sharpening studies [7,
51, 50] have emerged recently. For instance, PANNet [53]



utilizes ResNet’s residual learning module, MSDCNN [54]
adds multi-scale modules based on residual connection,
SRPPNN [5] refers to the design idea of SRCNN [17],
and Wang et al. [47] adopted U-shaped network. More-
over, WSDFNet [25] propagates shallow features scaled
by adaptive skip weightier, and Ma et al. [33] proposes
an unsupervised framework based on GAN. Additionally,
some model-driven CNN models with clear physical mean-
ing emerge, such as MHNet [49], Proximal PanNet [6],
PanCSC-Net [7], MADUN [58], GPPNN [52]. Although
all these DL-based pansharpening approaches achieve ex-
cellent performance, they all only learn a deterministic map-
ping from the LRMS and PAN image to the HRMS image,
thus ignoring the ill-posed issue of the pansharpening task.

2.3. Flow-based methods

Flow-based generative models have shown an excellent
ability to explicitly learn the probability density function
of data. A sequence of invertible transformations gener-
ally constructs them to map a base distribution to a com-
plex one [38, 24, 39, 27]. Several unconditional genera-
tive flow models have emerged that extend the early flow
models to multiscale architectures with split couplings that
allow for efficient inference and sampling. For example,
Dinh et al. [15] proposes to stack non-linear additive cou-
pling and other transformation layers as the flow model
NICE. Inspired by NICE, Dinh et al. [16] propose RealNVP,
which upgrades additive coupling to affine coupling with-
out loss of invertibility and achieves better performance.
After that, Kingma et al. [26] propose 1×1 convolution to
replace the fixed permutation layer in RealNVP and suc-
ceed in synthesizing realistic-looking images. Likewise,
various conditional flow models have appeared aiming at
conditional image synthesis [42, 2]. Lugmayr et al. pro-
posed SRFlow [32] to generate diverse high-resolution im-
ages conditioned on low-resolution ones. Abdal et al. [1]
sampled latent vectors based on given attributes and fed
the vectors to the StyleGANgenerator to synthesize high-
quality images. Compared with the aforementioned meth-
ods, especially SRFlow [32], our approach has several dif-
ferences. Firstly, our approach is specifically proposed for
the pan-sharpening task. Secondly, unlike the flow models
for traditional image inverse problems that have no extra
guided image information, e.g., SRFlow, the flow model of
pansharpening requires embedding the guided PAN image
information and thus poses an issue of how to inject the de-
tailed texture information of PAN image into the network.

3. Proposed method

In this section, we first introduce our proposed proba-
bilistic flow model for pan-sharpening in detail. Then, we
design a network to implement this model.

3.1. Probabilistic flow model for pan-sharpening

The goal of pan-sharpening is to recover the high-
resolution multispectral (HRMS) image H ∈ RH×W×B
from a given low-resolution multispectral (LRMS) image
L ∈ Rh×w×B under the guidance of a high resolution
panchromatic (PAN) image P, where h = H/s,w = W/s,
and s is a resolution factor.

As aforementioned, the pan-sharpening task is essen-
tially an ill-posed problem since the LRMS image may
be degraded from an infinite amount of HRMSs. How-
ever, most current deep learning-based pan-sharpening ap-
proaches learn a deterministic mapping f : (L,P) 7−→ H,
which receives the LRMS image L and the PAN image P
as input and outputs only one possible HRMS image H.
To alleviate the ill-posed issue, this work aims to learn
the conditional distribution of the HRMS image H, i.e.,
PH|L,P(H|L,P;θ), given the LRMS image L and the PAN
image P, which is a more difficult task since the conditional
distribution model can generate infinite possible HRMS im-
ages, instead of just predicting a single HRMS image output
by a deterministic mapping. Next, we will propose a prob-
abilistic flow method to learn the conditional distribution
PH|L,P(H|L,P;θ) given an LRMS-PAN-HRMS training
set D = {(Lj ,Pj ,Hj)}mj=1.

Since the conditional distribution PH|L,P(H|L,P;θ) is
unknown, we thus resort to the probabilistic flow model,
which uses an invertible function fθ(·) to parametrize the
conditional distribution. In this conditional setting, fθ(·)
can map a LRMS-PAN-HRMS image pair to a latent vari-
able z, namely

z = fθ(H;L,P), (1)

where fθ(H;L,P) is required to be invertible for the first
argument H given the LRMS image L and the PAN image
P. Therefore, the HRMS image H can then be exactly ob-
tained from the latent variable z as

H = f−1θ (z;L,P), z ∼ Pz(·), (2)

where z is a sample of the latent variable distribution Pz(·).
For simplicity, the latent variable z is always assumed to be
a simple Gaussian distribution z ∼ Pz(z) = N (z|0, Is),
where Is is the identity matrix, s is the dimension of z,
and s equals to HWB in order to guarantee fθ to be in-
vertible. In this setting, the probability density function
PH|L,P(H|L,P;θ) can then be accurately defined by us-
ing the change-of-variables formula, namely

PH|L,P(H|L,P;θ)=Pz(fθ(H;L,P))

∣∣∣∣det∂fθ(H;L,P)

∂H

∣∣∣∣ ,
(3)

where ∂fθ(H;L,P)
∂H is the Jacobian matrix of function fθ(·)

at H and det(·) is the determinant function. In this work,



Figure 2: The network architecture of our PanFlowNet consists of a series of invertible Conditional Affine Coupling Blocks
(CACBs). The PanFlowNet can directly learn the distribution of HRMS images from Gaussian noise conditioned on LRMS
and PAN images.

we choose fθ(·) such that its determinant of the Jacobian
is easily computed. Specifically, we utilize an inverse neu-
ral network (INN) to implement fθ(·), and the detailed de-
sign of the INN is presented in the next section. Based on
Eq. (3), we can learn the parameter of fθ by minimizing the
negative log-likelihood (NLL) of training pair (L,P,H) as
follows:

L(θ;L,P,H) = − logPH|L,P(H|L,P;θ)

= − logPz(fθ(H;L,P))− log

∣∣∣∣det ∂fθ(H;L,P)

∂H

∣∣∣∣ . (4)

Further, to guarantee the second term in Eq. (4) tractable,
we decompose fθ into a sequence of N invertible lay-
ers, i.e., fθ = fNθ f

N−1
θ · · · f1θ , where fnθ is the nth in-

vertible layer, which receives feature hn of the preivous
layer as input and generates hn+1 as output, i.e., hn+1 =
fnθ (h

n;L,P). Based on Eq. (1), we can easily know that
h1 = H and hN+1 = z. Additionally, we encode the in-
formation of LRMS image L and PAN image P into each
invertible layer fnθ by regarding them as conditional input,
which can compensate for detail and structure information
to each layer.

By utilizing the chain rule and the multiplicative prop-
erty of the determinant, we can compute the NLL objective
in Eq. (4) as follows:

L(θ;L,P,H)

=− logPz(fθ(H;L,P))−
N−1∑
n=0

log

∣∣∣∣det∂fnθ (hn;L,P)

∂hn

∣∣∣∣ . (5)

Therefore, the final objective function on the training set D
is defined as Lfinal(θ) =

∑m
j=1 L(θ;Lj ,Pj ,Hj). To en-

sure each layer invertible and fast computation of the log-

determinant of the Jacobian ∂fn
θ

∂hn , we need to carefully de-
sign the network architecture of each layer. This will be
discussed in the next section.

Once the optimal parameter θ∗ of the invertible net-
work fθ is learned, we can sample an HRMS from
PH|L,P(H|L,P;θ∗) as follows:

H = f−1θ∗
(z;L,P), z ∼ N (z|0, Is). (6)

Since we can sample infinite HRMS images, a vital issue
is posed that which sample we should choose in practical
application. In this paper, we propose a maximum proba-
bility criterion, i.e., the HRMS image corresponding to the
maximum probability of PH|L,P(H|L,P;θ∗) calculated by
Eq.(2) is selected. The proposed criterion is used in all the
experiments.

3.2. Network architecture

3.2.1 Overall network architecture

The model must span a variety of possible HRMS images
instead of just predicting a single HRMS output. Our in-
tention is to learn the parameters θ of the distribution in a
data-driven manner, given a training set.

In this section, we follow the design of the Probabilistic
Flow Model to produce an invertible neural network (INN)
with Conditional Affine Coupling Blocks (CACBs). Specif-
ically, we build PanFlowNet by stacking a series of invert-
ible layers. As shown in Fig. 2, PanFlowNet consists of
several flow blocks, and each flow block is composed of a
reversible CACB. A CACB corresponds to one step of the
transformation process fnθ . For each flow layer, the trans-
formation process is considered as follows.

Let hn be a latent feature variable in a series of invertible
transformations. The goal of flow layer fnθ is to generate



hn+1 with the guidance of LRMS and PAN images as

hn+1 = fnθ (hn;L,P). (7)

The inverse process of flow layer gnθ takes hn+1 as input
and uses LRMS and PAN as conditions to generate hn, and
the process can be expressed as follows:

hn = gnθ (hn+1;L,P). (8)

We follow the design of Eq. 7 and Eq. 8 to provide a CACB
as fnθ and the reverse as gnθ . In the next subsection, we will
present the structural design of the CACB.

3.2.2 Conditional affine coupling block

The network architecture of the invertible layer requires
careful design in order to ensure well-conditioned re-
versibility and a tractable Jacobian determinant. This chal-
lenge was first addressed in [15, 16] and has recently in-
spired significant interest. Our method is an extension of the
affine coupling block architecture established in [16]. As
shown in Fig. 2, each flow block is a reversible block con-
sisting of two complementary affine coupling layers, which
splits its input hn into two parts, i.e., hn=[h1

n, h2
n], and

applies affine transformations with coefficients exp(si) and
ti, i = 1, 2 to them. Specifically, the affine transformation
is defined as follows:

h1
n+1 = h1

n � exp
(
s1
(
h2
n

))
+ t1

(
h2
n

)
, (9)

h2
n+1 = h2

n � exp
(
s2
(
h1
n+1

))
+ t2

(
h1
n+1

)
, (10)

where � is element-wise multiplication. This affine trans-
formation has a triangular Jacobian matrix, and thus its
determinant is easy to calculate. Additionally, the output
[h1
n+1,h

2
n+1] are concatenated again and then passed to the

next coupling block. The internal functions si(·) and ti(·)
can be represented by arbitrary neural networks and are only
evaluated in the forward direction. This affine transforma-
tion in Eq. (9) and Eq. (10) are easily to invertible, namely

h2
n =

(
h2
n+1 − t2

(
h1
n+1

))
� exp

(
s2
(
h1
n+1

))
, (11)

h1
n =

(
h1
n+1 − t1

(
h2
n

))
� exp

(
s1
(
h2
n

))
, (12)

where � is element-wise division. As shown in [16], the
logarithm of the Jacobian determinant for such a coupling
block is simply the sum of s1(·) and s2(·) over image di-
mensions. In the conditional setting that L and P are re-
garded as conditional input of si(·) and ti(·), i = 1, 2, the
affine transformation is still invertible since its invertibility
is not related with the sub-networks sj(·) and tj(·). Thus,
we generate the input for s(·) and t(·) by concatenating the
condition data L and P with the latent feature h, which
will not affect the invertibility of this affine transformation.
Fig. 3 shows the conditional affine coupling layer, which is

Figure 3: HIN Block is used to implement si(·) and ti(·)

an extension of the affine coupling layer presented above.
In our implementation, si(·) and ti(·) in the fnθ are imple-
mented by HIN Block [11].

4. Experiments
4.1. Datasets and evaluation metrics

In this section, we conduct several experiments to ver-
ify the effectiveness of our proposed PanFlowNet on three
satellite image datasets, i.e., WorldView II, WorldView III,
and GaoFen2. For each dataset, we have hundreds of image
pairs, and the MS images are cropped into patches with the
size of 32 × 32, and the size of corresponding PAN images
is 128 × 128. Each patch is normalized into 0 to 1.

Four assessment metrics are used to evaluate the perfor-
mance, including peak signal-to-noise ratio (PSNR), Struc-
tural similarity (SSIM), Erreur Relative Globale Adimen-
sionnelle de Synthese (ERGAS), and Spectral angle mapper
(SAM). The first three metrics measure spatial distortion,
and the fourth measures spectral distortion.

4.2. Implement details

We implement our PanFlowNet in the PyTorch frame-
work. As the paired training samples are not available, we
construct the paired training datasets using the Wald proto-
col [46]. To increase training efficiency, we first pre-train
our model using an L1 loss for 1000 epochs and then train
the whole network using only the loss for 100 epochs. In the
training stage, we employ ADAM optimizer with β1 = 0.9,
β2 = 0.999 to update the network parameters for 1000
epochs with a batch size of 4. The learning rate is initialized
with 5e−5 and is decayed by multiplying 0.5 for every 200
epochs. In the inference stage, we randomly select a Gaus-
sian noise. All the experiments are conducted on NVIDIA
GeForce GTX 3080Ti GPU.

4.3. Effectiveness verification

To verify the effectiveness of the flow-based modelling
methodology in our proposed PanFlowNet, we sample dif-
ferent HRMS images from the distribution of HRMS once
the PanFlowNet has been trained. Specifically, we use dif-
ferent noise samples to generate the HRMS, and the quan-



Figure 4: The visualization results are used to validate the effectiveness of our proposed PanFlowNet. The first row visualizes
different HRMS images generated from different noises and gives LRMS and PAN images on the WorldView-II dataset. The
second row visually shows the differences in the detailed parts that each HRMS image focuses on ground truth.

Table 1: Experimental results of all the competing methods on the three benchmark datasets. The best and the second best
values are highlighted in bold and underline, respectively.

WorldView II WorldView III GaoFen2
Methods Params

PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓ PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓ PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓
SFIM - 34.1297 0.8975 0.0439 2.3449 21.8212 0.5457 0.1208 8.973 36.906 0.8882 0.0318 1.7398

Brovey - 35.8646 0.9216 0.0403 1.8238 22.5060 0.5466 0.1159 8.2331 37.7974 0.9026 0.0218 1.372
GS - 35.6376 0.9176 0.0423 1.8774 22.5608 0.547 0.1217 8.2433 37.226 0.9034 0.0309 1.6736
IHS - 32.1601 0.9812 10.3010 26.40 22.5579 0.5354 0.1266 8.3616 38.1754 0.9100 0.0243 1.5336

GFPCA - 34.5581 0.9038 0.0488 2.1411 22.3344 0.4826 0.1294 8.3964 37.9443 0.9204 0.0314 1.5604
PNN 0.0689 40.7550 0.9624 0.0259 1.0646 29.9418 0.9121 0.0824 3.3206 43.1208 0.9704 0.0172 0.8528

PANNET 0.0688 40.8176 0.9626 0.0257 1.0557 29.6840 0.9072 0.0851 3.4263 43.0659 0.9685 0.0178 0.8577
MSDCNN 0.2390 41.3355 0.9664 0.0242 0.994 30.3038 0.9184 0.0782 3.1884 45.6874 0.9827 0.0135 0.6389
SRPPNN 1.7114 41.4538 0.9679 0.0233 0.9899 30.4346 0.9202 0.0770 3.1553 47.1998 0.9877 0.0106 0.5586
GPPNN 0.1198 41.1622 0.9684 0.0244 1.0315 30.1785 0.9175 0.0776 3.2593 44.2145 0.9815 0.0137 0.7361

Ours 0.0873 41.8584 0.9712 0.0224 0.9335 30.4873 0.9221 0.0751 3.1142 47.2533 0.9884 0.0103 0.5512

Table 2: PSNR values of PanFlowNet with different noises.

Noise PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓
noise 1 41.8561 0.971218 0.0223989 0.933770
noise 2 41.8581 0.971229 0.0223936 0.933516
noise 3 41.8579 0.971224 0.0223922 0.933545
noise 4 41.8563 0.971216 0.0223946 0.933642
noise 5 41.8583 0.971228 0.0223937 0.933529
noise 6 41.8552 0.971204 0.0224002 0.933823

titative experimental results are shown in Table 2. From
Table 2, it can be seen that there exist some differences
between the restored HRMS. These differences mainly at-
tribute to the different noises. Additionally, we also present
the qualitative results in Fig. 4, from which we can observe
that the generated HRMS images from different noises are
very similar, but there still exist some differences in their
fine details, which indicates that the generated different

HRMS images will focus on different detailed parts of the
ground-truth1.

4.4. Comparison with the state-of-the-arts

In this section, to verify the effectiveness of our proposed
PanFlowNet, we compare PanFlowNet with ten competitive
methods, including five classical methods (i.e., SFIM [31],
Brovey [22], GS [29], IHS [23], and GFPCA [30]) and five
DL-based methods (i.e., PNN [35], PANNET [53], MS-
DCNN [54], SRPPNN [5], and GPPNN [52]), which our
method is conducted by randomly selected Gaussian noise
for inference.

Parameter numbers vs. model performance. The
comparison results between parameter number and model
performance are shown in Table 1, from which it can be
seen that our network is able to achieve a good trade-off and

1More results will be presented in the supplementary material.



Figure 5: Visual comparison of all the competing methods on WorldViewII. The last row visualizes the error maps and
average errors between the pan-sharpening results and the ground truth.

Table 3: Non-reference metrics on full-resolution dataset.

PAN PANNET MSDCNN SRPPNN GPPNN Ours
Dλ ↓ 0.0746 0.0737 0.734 0.0767 0.0782 0.0665
Ds ↓ 0.1164 0.1224 0.1151 0.1162 0.1253 0.1113

QNR ↑ 0.8191 0.8143 0.8215 0.8173 0.8073 0.8257

perform best with comparably fewer parameters compared
to other deep learning-based methods.

Evaluation on full-resolution scene. In order to com-
pare the generalization of methods, we further perform ex-
periments on an additional real-world full-resolution dataset
of 200 samples obtained by the GaoFen2 satellite for eval-
uation. Due to the lack of ground-truth MS images in real-
world full-resolution scenes, we measure the model’s per-
formance using commonly used three non-reference met-
rics: the spectral distortion index Dλ, the spatial distor-
tion index Ds, and the quality without reference QNR.
The quantitative comparisons between representative CNN-
based methods and our method are shown in Table 3. The
lower Dλ, Ds and the higher QNR correspond to the bet-
ter image quality where the best results are remarked by red
bold. From Table 3, our methods surpass other competitive
Pan-sharpening methods in all the indexes, which shows its
generalization ability.
Quantitative results. The comparison results of 10 bench-
mark methods over three satellite datasets are reported in
Table 1, where the best and the second best values are high-
lighted in red bold and blue underline, respectively. As can
be seen clearly, our proposed method achieves the best over-
all results over other competing methods over all the satel-
lite datasets. This confirms, to a certain extent, the effec-
tiveness and flexibility of our method.
Qualitative results. We also show the visual results of one

Table 4: PSNR values of PanFlowNet with different num-
ber of stages on WorldViewII. The best and the second best
values are highlighted in bold and underline, respectively.

Stages (K) PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓
1 38.2469 0.9471 0.0344 1.4294
2 40.7152 0.9639 0.0255 0.9935
3 41.2664 0.9674 0.0236 0.9935
4 41.8584 0.9712 0.0224 0.9335

image from the WorldView II dataset in Fig. 5 to evaluate
the effectiveness of our method. From the first two rows of
Fig. 5, we can see that the visual result of our PanFlowNet
is obviously better than other competing methods. To make
the visual advantage clear, the images in the last row are
the error maps and the average errors between the output
pan-sharpened results and the ground truth. Compared with
other competing methods, our PanFlowNet has the mini-
mum spatial and spectral distortions. As for the error maps,
it is noted that our proposed method has the smallest av-
erage error compared to other comparison methods while
being the closest to ground truth. The state-of-the-art per-
formance of our method demonstrates the effectiveness of
the proposed PanFlowNet2.

4.5. Ablation study

We conduct ablation studies to further validate the ef-
fectiveness of our model under different configurations, in-
cluding different numbers of CACB in the model, different
condition settings, and different parameter sharing settings.
The number of CACB. To explore the impact of the num-
ber of CACB (i.e., K) in our PanFlowNet, we conduct the

2More qualitative results are presented in the supplementary material.



Table 5: The results of different configurations on WorldViewII. The best and the second best values are highlighted in bold
and underline, respectively. (PS: Parameters Sharing)

Configuration L P PS PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓
I # # ! 31.3136 0.9033 0.0840 3.2813
II ! # ! 36.1760 0.9058 0.0315 1.6287
III # ! ! 40.8503 0.9647 0.0253 1.0539
IV ! ! # 42.0865 0.9719 0.0215 0.9062

PanFlowNet(Ours) ! ! ! 41.8584 0.9712 0.0224 0.9335

Figure 6: Intermediate visual results of different numbers of CACB in our PanFlowNet on WorldViewII. The last row
visualizes the error maps and average errors between the pan-sharpening results and the ground truth.

experiment with a varying number of parameters K. Table
4 shows the results of different K from 1 to 4. It can be
seen that the PSNR performance increases as the number
of stages increases. For easy observation, we also visualize
obtained HRMS images for different numbers of CACB in
Fig. 6, from which we can see that the visual results and
the error maps are the best when the number of CACB is 4.
Thus we choose K = 4 in all the experiments.

Influence of different condition. In the pan-sharpening
task, two conditions exist for our method (L and P), and
here, we employ an ablation study to explore the effective-
ness of these two conditions. As shown in Tab. 5, we can see
that the best performance improvement is achieved when
both conditions are available, while the absence of any con-
dition leads to the worst performance due to the fact that it
becomes a purely generative task.

Parameter sharing. We evaluate the scenario where the
parameters are not shared when K = 16. In other words,
the parameters of different CABAs in PanFlowNet are no
longer shared. From Table 5, we can see that the perfor-
mance of the model will be improved to some extent with-
out parameter sharing, but it is not a good choice for reduc-
ing the model complexity. In our experiment, we still adopt
the parameter sharing technique.

4.6. Limitation

Our work has several limitations. The generated HRMS
images are diverse, and different HRMS images with differ-
ent properties are sampled. For this diversity, our method
has weak controllability for such different properties of
HRMS images and cannot readily generate the HRMS im-
ages that match our desired properties, such as generating
HRMS images with higher SSIM. In future work, we will
try to add controllable elements to control the generated
HRMS images so that they can satisfy our demand.

5. Conclusion

In this paper, we proposed a novel neural network archi-
tecture used for pan-sharpening called PanFlowNet. Specif-
ically, we introduce a flow-based deep network for pan-
sharpening, and this network is capable of accurately learn-
ing the distribution of realistic HRMS images condition on
the LRMS and PAN images. To the best of our knowl-
edge, this is the first attempt to employ generative meth-
ods to learn the distribution of HRMS samples for the pan-
sharpening task. The trained network can generate diverse
HRMSs by inputting different noises. Extensive experimen-
tal results demonstrate the effectiveness and superiority of
the proposed network.
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