
Inherent Redundancy in Spiking Neural Networks

Man Yao1,2,3∗, Jiakui Hu4,2*, Guangshe Zhao1†, Yaoyuan Wang5, Ziyang Zhang5, Bo Xu2, Guoqi Li2†

1School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an, China
2Institute of Automation, Chinese Academy of Sciences, Beijing, China

3Peng Cheng Laboratory, Shenzhen, China
4Peking University Health Science Center, Peking University, Beijing, China

5Advanced Computing and Storage Lab, Huawei Technologies Co Ltd.
manyao@stu.xjtu.edu.cn, jkhu29@stu.pku.edu.cn, zhaogs@mail.xjtu.edu.cn, guoqi.li@ia.ac.cn

Abstract

Spiking Neural Networks (SNNs) are well known as a
promising energy-efficient alternative to conventional ar-
tificial neural networks. Subject to the preconceived im-
pression that SNNs are sparse firing, the analysis and opti-
mization of inherent redundancy in SNNs have been largely
overlooked, thus the potential advantages of spike-based
neuromorphic computing in accuracy and energy efficiency
are interfered. In this work, we pose and focus on three
key questions regarding the inherent redundancy in SNNs.
We argue that the redundancy is induced by the spatio-
temporal invariance of SNNs, which enhances the efficiency
of parameter utilization but also invites lots of noise spikes.
Further, we analyze the effect of spatio-temporal invari-
ance on the spatio-temporal dynamics and spike firing of
SNNs. Then, motivated by these analyses, we propose an
Advance Spatial Attention (ASA) module to harness SNNs’
redundancy, which can adaptively optimize their membrane
potential distribution by a pair of individual spatial atten-
tion sub-modules. In this way, noise spike features are ac-
curately regulated. Experimental results demonstrate that
the proposed method can significantly drop the spike fir-
ing with better performance than state-of-the-art SNN base-
lines. Our code is available in https://github.com/
BICLab/ASA-SNN .

1. Introduction
By mimicking the spatio-temporal dynamics behaviors

of biological neurons, Spiking Neural Networks (SNNs)
pose a paradigm shift in information encoding and transmit-
ting [36, 37]. Spiking neurons only fire when the membrane
potential is greater than the threshold (Figure 1a), in theory,
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these complex internal dynamics make the representation
ability to spiking neurons more powerful than existing arti-
ficial neurons [31]. Moreover, spike-based binary commu-
nication (0/1 spike) enables SNNs to be event-driven when
deployed on neuromorphic chips [3, 34], i.e., performing
cheap synaptic Accumulation (AC) and bypassing compu-
tations on zero inputs or activations [6, 4].

For a long time, when referring to spike-based neuro-
morphic computing, people naturally believe that its com-
putation is sparse due to the event-driven feature. Sub-
ject to this preconceived impression, although it is gener-
ally agreed that sparse spike firing is the key to achieving
high energy efficiency in neuromorphic computing, there is
a lack of systematic and in-depth analysis of redundancy in
SNNs. Existing explorations are limited to specific meth-
ods of dropping spike counts. For instance, several al-
gorithms have been proposed to exploit spike-aware spar-
sity regularization and compression by adding a penalty
function[5, 52, 54, 51, 33, 25], designing network structures
with fewer spikes using neural architecture search tech-
niques [32, 24], or developing data-dependent models to
regulate spike firing based on the input data [48, 50]. Gen-
erally, employing these methods to reduce spikes incurs a
loss of accuracy or significant additional computation.

In this work, we provide a novel perspective to under-
stand the redundancy of SNNs by analyzing the relation-
ship between spike firing and spatio-temporal dynamics of
spiking neurons. This analysis could be extended by asking
three key questions. (i) Which spikes are redundant? (ii)
Why is there redundancy in SNNs? (iii) How to efficiently
drop the redundant spikes?

To perfectly demonstrate redundancy in SNNs, we select
event-based vision tasks to observe spike responses. Event-
based cameras, such as the Dynamic Vision Sensor (DVS)
[27], are a novel class of bio-inspired vision sensors that
only encode the vision scene’s brightness change informa-
tion into a stream of events (spike with address information)
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for each pixel. As shown in Figure 1b, the red and green
dots represent pixels that increase and decrease in bright-
ness, respectively, and the gray areas without events indi-
cate no change in brightness. However, although the infor-
mation given in the input is human gait without background,
some spike features extracted by the vanilla SNN focus on
background information. As depicted in Figure 1c, the spik-
ing neurons in the noise feature map fire a large number of
spikes in the background region, which are redundant.

Unfortunately, noise features exist widely in both tem-
poral and spatial dimensions, but exhibit some interesting
regularities. We argue that the underlying reason for this
phenomenon is due to a fundamental assumption of SNNs,
known as spatio-temporal invariance[22], which enables
sharing weights for every location across all timesteps. This
assumption improves the parameter utilization efficiency
while boosting the redundancy of SNNs. Specifically, by
controlling the input time window of event streams, we
can clearly observe the temporal and spatial changes of the
spike features extracted by the SNN (see Figure 2). In the
spatial dimension, there are many similar noise features,
which can be referred to as ghost features [15, 16]. In the
temporal dimension, although the information extracted by
SNN changes at different timesteps, the spatial position of
the noise spike feature is almost the same.

Recently, several works [14, 13, 12] have investigated
the information loss caused by SNNs when quantizing con-
tinuous membrane potential values into discrete spikes. In-
spired by these works, we transformed our problem “the
relationship between spike firing and spatio-temporal dy-
namics of spiking neurons” to investigate the relationship
between membrane potential distribution and redundant
spikes. Motivated by the observations that redundancy is
highly correlated with spike feature patterns and neuron lo-
cation, we present the Advanced Spatial Attention (ASA)
module for SNNs, which can convert noise features into
normal or null (without spike firing) features by shifting the
membrane potential distribution. We conduct extensive ex-
periments using a variety of network structures to verify the
superiority of our method on five event-based datasets. Ex-
perimental results show that the ASA module can help SNN
reduce spikes and improve task performance concurrently.
For instance, on the DVS128 Gait-day dataset[41], at the
cost of negligible additional parameters and computations,
the proposed ASA module decreases the baseline model’s
spike counts by 78.9% and increases accuracy by +5.0%.
We summarize our contributions as follows:

1) We provide the first systematic and in-depth analysis
of the inherent redundancy in SNNs by asking and an-
swering three key questions, which are crucial to the
high energy efficiency of spike-based neuromorphic
computing but have long been neglected.
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Figure 1: (a) Spatio-temporal dynamics of spiking neu-
rons with binary spike input and output, synaptic weight
w, membrane potential U(t), threshold Vth and hard re-
set membrane potential Vreset. (b) An example of an event
stream. (c) Examples of changes in the spike responses of
vanilla SNN and ASA-SNN, in terms of Membrane Poten-
tial Distribution (MPD) and spike feature. Each pixel value
on the spike feature represents the firing rate of a neuron.
Noise spike feature fires lots of spikes while concentrating
on insignificant background information (large area red).
The ASA module can shift the spike pattern of SNNs to
drop spike counts by optimizing the MPD.

2) For the first time, we relate the redundancy of SNNs
to the distribution of membrane potential, and design a
simple yet efficient advanced spatial attention to help
SNN optimize the membrane potential distribution and
thus reduce redundancy.

3) Extensive experimental results show that the proposed
ASA module can improve SNNs’ performance and
significantly drop noise spikes concurrently. This
inspires us that two of the most important nature
of spike-based neuromorphic computing, bio-inspired
spatio-temporal dynamics and event-driven sparse
computing, can be naturally incorporated to achieve
better performance with lower energy consumption.



2. Related work

Event-based vision and spike-based neuromorphic
computing. Due to the unique advantages of high temporal
resolution, high dynamic range, etc., DVS has broad appli-
cation prospects in special visual scenarios, such as high-
speed object tracking [55], low-latency interaction [1], etc.
Event-based vision is one of the typical advantage appli-
cation scenarios of SNNs, which can process event streams
event-by-event to achieve minimum latency [10], and can be
smoothly deployed on neuromorphic chips to realize ultra-
low energy cost by spike-based event-driven sparse comput-
ing [37, 35, 36, 6]. As an example, a recent edge comput-
ing device called Speck1 integrates an SNN-enabled asyn-
chronous neuromorphic chip with a DVS camera [10]. Its
peak power is mW level, and latency is ms level. In this
work, we investigate the SNNs’ inherent redundancy by us-
ing a variety of event-based datasets to further explore their
enticing potential for accuracy and energy efficiency.

Attention in SNNs. Attention methods were included
in deep learning with tremendous success and were moti-
vated by the fact that humans can focus on salient vision
information in complicated scenes easily and efficiently. A
popular research direction is to present attention as an aux-
iliary module to boost the representation capacity of ANNs
[20, 44, 47, 26, 11]. In line with this idea, Yao et al. [48]
first suggested using an extra plug-and-play temporal-wise
attention module for SNNs to bypass a few unnecessary
input timesteps. Subsequently, a number of works were
given to utilize multi-dimensional attention modules for
SNNs, including temporal-wise, spatial-wise , or channel-
wise simultaneously [30, 58, 53, 50, 49], where Yao et al.
[50] highlighted that attention could aid SNNs in reduc-
ing spike firing while enhancing accuracy. However, to
produce attention scores and refine membrane potentials,
multi-dimensional attention inevitably adds a lot of extra
computational burden to SNNs. In this work, we exclu-
sively employ spatial attention, which is inspired by the in-
vestigation of the redundancy of SNNs.

Membrane Potential Distribution in SNNs. Rectify-
ing MPD is crucial for SNN training because SNNs are
more vulnerable to gradient vanishing or explosion since
spikes are discontinuous and non-differentiable. Around
this point, researchers have made many advances in SNN
training, such as normalization techniques [56, 46], short-
cut design [21, 7], extension with more learnable parameter
[8, 38], distribution loss design [14, 13], etc. We here, in
contrast to prior publications, concentrate on the connec-
tion between MPD and redundancy, a topic that is typically
disregarded in the SNN community.

1https://www.synsense-neuromorphic.com/products/speck/

3. SNN Redundancy Analysis
3.1. SNN Fundamentals

The basic computational unit of a SNN is the spiking
neuron, which is the abstract modeling of the dynamics
mechanism of biological neuron [18]. The Leaky Integrate-
and-Fire (LIF) model [31] is one of the most commonly
used spiking neuron models since it establishes a good bal-
ance between the simplified mathematical form and the
complex dynamics of biological neurons. We describe the
LIF-SNN layer in its iterative representation version form
[45]. First, the LIF layer will perform the following inte-
gration operations,

U t,n = Ht−1,n +Xt,n, (1)

where n ∈ {1, · · · , N} and t ∈ {1, · · · , T} denote the
layer and timestep, U t,n means the membrane potential
which is produced by coupling the spatial feature Xt,n and
the temporal information Ht−1,n, and Xt,n can be done by
convolution operations,

Xt,n = BN
(
Conv

(
W n,St,n−1

))
, (2)

where BN(·) and Conv(·) mean the batch
normalization[23] and convolution operation respec-
tively, W n is the weight matrix, St,n−1(n ̸= 1) is a spike
tensor from the last layer that only contain 0 and 1, and
Xt,n ∈ Rcn×hn×wn . Then, the fire and leaky mechanism
inside the spiking neurons are respectively executed as

St,n = Hea
(
U t,n − Vth

)
, (3)

and

Ht,n = VresetS
t,n +

(
βU t,n

)
⊗

(
1− St,n

)
, (4)

where Vth is the threshold to determine whether the output
spike tensor St,n should be spike or stay as zero, Hea(·) is
a Heaviside step function that satisfies Hea (x) = 1 when
x ≥ 0, otherwise Hea (x) = 0, Vreset denotes the reset
potential which is set after activating the output spike, and
β = e−

dt
τ < 1 reflects the decay factor, τ is the membrane

time constant, and ⊗ denotes the element-wise multiplica-
tion. When the entries in U t,n are greater than the threshold
Vth, the spatial output of spike sequence St,n will be acti-
vated (Eq. 3). Meanwhile, the entries in U t,n will be reset
to Vreset, the temporal output Ht,n should be decided by
Xt,n since 1 − St,n must be 0. Otherwise, the decay of
U t,n will be used to transmit the Ht,n, since the St,n is 0,
which means there is no activated spike output (Eq. 4).

3.2. Redundancy Analysis

We first define various terms to appropriately represent
redundancy in SNNs, as below.



Definition 1. Spike Firing Rate (SFR): We input all the
samples on the test set into the network and count the spike
distribution. We define a Neuron’s SFR (N-SFR) at the t-th
timestep as the ratio of the number of samples generating
spikes on this neuron to the number of all tested samples.
Similarly, at the t-th timestep, we define the SFR of a Chan-
nel (C-SFR) or this Timestep (T-SFR) as the average of the
SFR values of all neurons in this channel or the entire net-
work at this timestep. We define the Network Average SFR
(NASFR) as the average of T-SFR over all timesteps T .

Definition 2. Spike features. We input all the samples on
the test set into the network and define the average output of
a channel at the t-th timestep as a spike feature, with each
pixel’s value being N-SFR.

Definition 3. Ghost features. There are numerous
feature map pairs that resemble one another like ghosts
[15, 16]. We call these feature maps ghost features.

Definition 4. Spike patterns. Spike features display a va-
riety of patterns, and various patterns extract different types
of information. We empirically refer to the features that fo-
cus on background information as the noise pattern since
there is no background information in the input, and collec-
tively refer to other features as the normal pattern.

Based on these definitions, we investigate the redun-
dancy of SNNs in four granularities: spatial, temporal,
channel, and neuron.

Observation 1. In the spatial granularity, there are lots
of ghost features in the spike response.

Redundancy is inevitable in over-parameterized neural
networks. For instance, from the perspective of feature
maps, there are many ghost features in Conv-based ANNs
(CNNs) [15, 57]. The same is true for SNNs, as demon-
strated in Figure 2a. Plotting all spike features at the same
timestep, we see that certain features concentrate on back-
ground information with a huge region of red, while others
concentrate on gait information with a large area of blue,
and ghost features can be seen in both patterns.

Observation 2. In the temporal granularity, T-SFR at
different timesteps does not change much.

Given that each timestep shares the weight of 2D con-
volution for spatial modeling, the level of redundancy has
increased significantly for SNNs that do temporal model-
ing. To show this, we give spike features of the same chan-
nel at various timesteps in Figure 2b. We see that for a
fixed channel, the features derived at various timesteps dif-
fer, i.e., the human gait shifts progressively to the right as
the timestep increases. Interestingly, the same channel’s
spike features—almost all of which is background informa-
tion or all of which is information on human gait—are es-
sentially the same at different timesteps. This demonstrates
that spatio-temporal invariance will result in similar spike
features at different timesteps. It also implies that redun-
dancy in SNNs is linearly connected to timesteps.

…
𝑡

𝑡 = 3 𝑡 = 13 𝑡 = 23 𝑡 = 33

Input

𝑐 = 2 𝑐 = 14 𝑐 = 26

𝑐 = 38 𝑐 = 50 𝑐 = 61

(a)

(b)

Figure 2: Inherent redundancy in SNNs exists in both spa-
tial and temporal granularities, originating from network
over-parameterization and spatio-temporal invariance, re-
spectively. (a) spike features (averaging the spike tensors
St,n over all samples) of different channels at the same
timestep. Each pixel indicates the firing rate of a spiking
neuron. The bluer the pixel, the closer the firing rate is to
0; the redder the pixel, the closer the firing rate is to 1. In
the noise features, the background region is big and nearly
totally red, indicating that many spikes are produced. (b)
spike features of the same channel at different timesteps.

Observation 3. In the channel granularity, the C-SFR is
closely related to the spike patterns learned by this channel.
In the neuron granularity, the N-SFR is tightly linked to the
location of neurons.

We zoom in to highlight two typical spike features that
pertain to various patterns in Figure 1c. We see that the two
features have substantially different C-SFRs. The spike fea-
ture of the noise pattern fires many spikes while focusing
on trivial background information. By contrast, the spike
feature of the normal pattern with lower C-SFR focuses
on salient gait information in a condensed region. Further-
more, the N-SFRs of neurons in the background region of
normal features are almost zero, but the N-SFRs of neurons
in the same region in noise features are very high.

Definition 5. Membrane Potential Distribution (MPD).
We input all the samples on the test set into the network. In
the c-th channel of the n-th layer, we count the membrane
potential values of all neurons at the t-th timestep. We can
represent the membrane potential distribution of the channel
by a 2D histogram, where the horizontal axis is the value of
the membrane potential, and the vertical axis is the number
of neurons located in a certain window.

Observation 4. Membrane potential distributions are
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Figure 3: Details of ASA-SNN. The ASA module is divided
into two steps: (b) Channel separation and (c) Group-based
SA, and consists of four functions, g1(·), g2(·), fS1(·), and
fS2(·).

highly correlated with spike patterns.
Note, to facilitate the analysis of the effect of the pro-

posed method on the MPD and the spike feature, we discuss
them in detail later in Section 5.4.

4. Methodology

Motivation. We can infer the following three empirical
conclusions from : (1) Features can basically be separated
into noise, and normal patterns; (2) The quality of the fea-
ture is determined by the MPD of the channel; (3) The fir-
ing of spiking neurons is related to their location. Based
on these observations, we concentrate our optimization on
the MPD of each channel, i.e., performing spatial attention.
Meanwhile, considering that all features have two patterns,
we exploit independent spatial attention to optimize them
separately, called advanced spatial attention.

Method. As shown in Figure 3a, we implement our
ASA module in two steps. We first exploit a channel sep-
aration technique to separate all features into two comple-

mentary groups based on their importance. Then individual
SA sub-modules are performed on the two groups of fea-
tures. Suppose Xn =

[
· · · ,Xt,n, · · ·

]
∈ RT×cn×hn×wn

is an intermediate feature map as input tensor, this two-step
process can be summarized by the following equations:

M1,M2 = g2(g1(X
n)), (5)

X
n
= fS1(X

n ⊗M1)⊕ fS2(X
n ⊗M2), (6)

where M1,M2 ∈ RT×cn×1×1 are the complementary
mask (separation) maps that contain only 0 and 1 elements,
g1(·) is a function that assesses the channel’s importance,
g2(·) is the separation policy function used to generate mask
maps for feature grouping, fS1(·) and fS2(·) are SA func-
tions with the same expression, X

n
is the output feature

tensor which has the same size as Xn. During multiplica-
tion, the mask score are broadcast (copied) along the tempo-
ral and channel dimensions accordingly. Finally, compared
with U t,n of vanilla SNN in Eq. 1, the new membrane po-
tential behaviors of ASA-SNN layer follow

U t,n = Ht−1,n +X
t,n

. (7)

Empirically, the design of g1(·) is critical to the task
accuracy, as well as the number of additional parameters
and computations. The classic channel attention models in
CNNs [20, 44, 39, 47, 26] generally judge the importance
of the channel by fusing the global degree information (max
pooling) and local significance information (average pool-
ing) of the features. Inspired by these works, here we design
two schemes for g1(·), one that is learnable (ASA-1) and the
other that directly judges importance based on pooled infor-
mation (ASA-2).

As shown in Figure 3b, temporal-channel features are
aggregated by using both average-pooling and max-pooling
operations, which infer two different tensors F avg,Fmax ∈
RT×cn×1×1.

In ASA-1, we get the importance map M by

M ′ =
1

2
⊗ (F avg +Fmax)+α⊗F avg +γ⊗Fmax, (8)

M = σ
(
W n

2 (ReLU(W n
1 (M

′)))) , (9)

where α and γ are trainable parameters which are initialised
with 0.5, σ means the sigmoid function, W n

1 ∈ RT
r ×T

and W n
2 ∈ RT×T

r are trainable parameters independent at
each layer, and r represents the dimension reduction factor.
Note, M ′,M ∈ RT×cn×1×1, we share W n

1 and W n
2 on

the channel dimension.
In ASA-2, we set M = M ′ directly. Then, we get M1

and M2, denoting the important and sub-important channel
indexes respectively, by combining the y-th largest values
of two dimensions in M . Specifically, the pseudo-code of
g2(·) is represented by



# X: input feature [N, T, C, H, W]

# k: 0.5 * C

def select_max(X, dim="C", k=k):

mask = zeros_like(X)

mask[topk(X, dim=dim, k=k)] = 1

return mask

def mask(X, k):

mask_c = select_max(X, dim="C", k=k)

mask_t = select_max(X, dim="T", k=k)

mask = (mask_c + mask_t) / 2

return where(mask == 0.5, 1, 0)

After obtaining Xn
1 = Xn⊗M1 and Xn

2 = Xn⊗M2,
we perform individual SA module to optimize them. As
shown in Fig. 4, the SA is follow [44]:

fS(·) = σ(f3×3([MaxPool(·);AvgPool(·)])), (10)

where AvgPool(·),MaxPool(·) ∈ R1×1×hn×wn , f3×3

represents a convolution operation with the filter size of
3 × 3, fS(·) ∈ R1×1×hn×wn is the 2-D spatial attention
scores, and we set fS1(·) = fS2(·) = fS(·).

[MaxPool; AvePool]

C2D
(𝟑 × 𝟑)

×

T, C

H

W

T, C

H

W

Vanilla Spatial Attention (SA) Module

Figure 4: Diagram of spatial attention module. As illus-
trated, the spatial attention exploits two outputs that are
pooled along the temporal-channel axis and forward them
to a 3× 3 convolution layer.

5. Experiments
For an event stream, we exploit the frame-based repre-

sentation [48, 8] as the preprocessing method to convert it
into an event frame sequence. Suppose the interval between
two frames (i.e., temporal resolution) is dt and there are T
frames (i.e., timesteps), the length of the input event stream
is tlat = dt×T millisecond. After processing these divided
frames through SNN, a prediction can then be retrieved.

5.1. Experimental Setup

We evaluate our method on five datasets, all generated
by recording actions in real scenes. DVS128 Gesture [1],
DVS128 Gait-Day [41], and DVS128 Gait-Night [42] were
captured by a 128x128 pixel DVS128 camera. As their
names imply, Gesture comprises hand gestures, while Gait-
day and Gait-night include human gaits in daylight and at

Dataset Model Acc.(%) NASFR

Gesture

LIF-SNN [48] 91.3 0.176

+ ASA (Ours) 95.2(+3.9) 0.038(-78.4%)

LIF-SNN [8] 95.5 0.023

+ ASA (Ours) 97.7(+2.2) 0.018(-21.7%)

Gait-day
LIF-SNN [48] 88.6 0.214

+ ASA (Ours) 93.6(+5.0) 0.045(-78.9%)

Gait-night
LIF-SNN [48] 96.4 0.197

+ ASA (Ours) 98.6(+2.2) 0.126(-36.0%)

DailyAction
-DVS

LIF-SNN [8] 92.5 0.017

+ ASA (Ours) 94.6(+2.1) 0.013(-23.5%)

HAR-DVS
Res-SNN-18 [7] 45.5 0.206

+ ASA (Ours) 47.1(+1.6) 0.183(-11.2%)

Table 1: Main results of vanilla vs. ASA- SNNs (ASA-1).
Except for HAR-DVS, reported accuracies are average of
five replicates.

night, respectively. DailyAction-DVS [29] and HAR-DVS
[40] are acquired by a DAVIS346 camera with a spatial res-
olution of 346x260, of which HAR-DVS has 300 classes
and 107,646 samples and is currently the largest event-
based human activity recognition (HAR) dataset. The raw
HAR-DVS exceeds 4TB. The authors convert each event
stream into frames and randomly sample 8 frames to form
a new HAR-DVS for ease of processing.

We execute the baseline for each group of ablation trials,
then plug the proposed ASA to run the model again (Ta-
ble 1). Each group of trials for vanilla and ASA- SNNs em-
ployed the same hyper-parameters, training methods, and
other training conditions2. In all experiments, we exploit a
total of three baselines with different structures. We care-
fully selected baselines for various datasets to examine the
relationship between the spike firing, the dataset, and the
network structure. One is the shallow three-layer Conv-
based LIF-SNN presented in [48, 50]. The other is a deeper
five-layer Conv-based LIF-SNN, following [8]. Finally, the
Res-SNN-18 [7] in the SpikingJelly framework3 is used to
verify the large datasets.

5.2. Ablation Study for ASA Module

In terms of accuracy and NASFR, We present the main
results in Table 1. ASA-SNN achieves higher task accu-
racy with lower spike firing in all ablation studies. The
performance and energy gains are more noticeable, particu-
larly when the network structure is small. For example, in

2Details of datasets and training are given in the Supplementary.
3https://github.com/fangwei123456/spikingjelly



the Gait-day, plugging the ASA module into a three-layer
SNN [48] can reduce the spike counts by 78.9% and im-
prove the performance by +5.0 percent. This is crucial for
the deployment of SNN algorithms on neuromorphic chips,
which usually have strict memory limitations [3, 34, 36].
The ASA module also performs well on the deep Res-SNN.
For instance, on HAR-DVS, the ASA-SNN outperforms the
original SNN +1.7 percent while firing fewer spikes. In ad-
dition, we provide more ablation studies on the ASA mod-
ule in the Supplementary.

Although it is beyond the scope of this work, by observ-
ing results in Table 1, we raise another complex and im-
portant question: “What factors affect the redundancy of
SNN?” Intuitively, we could exploit NASFR as a redun-
dancy indicator for SNNs. We argue that the NASFR of
SNNs depends on various factors, the core of which in-
cludes dataset size, network size, spiking neuron types, etc.
For instance, on Gesture, the NASFRs in three-layer [48]
and five-layer vanilla SNN [8] are 0.176 and 0.023, respec-
tively. Empirically, vanilla SNN’s NASFR also affects the
function of the ASA module, where SNNs with more redun-
dancy may be easier to reduce spikes. We hope that these
observations will inspire more theoretical and optimization
work on redundancy.

5.3. Comparison with the State-of-the-Art

In Table 2, we make a comprehensive comparison with
prior works in terms of input temporal window and accu-
racy. Since some datasets were created recently, there is
a lack of benchmarks in the field of SNNs. In this paper,
we benchmark these datasets using models from the open-
source framework SpikingJelly and fill in the correspond-
ing accuracies in Table 1 and Table 2. We can see that on
four small datasets, ASA-SNN can produce SOTA or com-
parable performance. Compared to GCN methods [41, 42]
with full input, we observe that SNNs can always achieve
higher performance with less input (i.e., smaller dt × T ).
Moreover, on the largest HAR-DVS dataset, our Top-1 ac-
curacy is 47.1% based on Res-SNN-18, which is compa-
rable to the ANN-based benchmark results from 46.9% to
51.2%. This is a reasonable result since SNNs employ bi-
nary spikes, generally gaining higher energy efficiency at
the expense of accuracy.

5.4. Comparison with Other Attention SNNs

In this work, based on redundancy analysis, we design
the ASA module, which only performs spatial attention. As
mentioned, the current practice of attention mechanisms in
SNNs [50, 30, 58, 49] is dominated by multi-dimensional
composition. An easily overlooked fact is that adding atten-
tion modules inevitably introduces additional computation.
These extra computations are trivial in CNNs, but require
special care in SNNs, as otherwise the energy advantage

Dataset Methods dt× T Acc. (%)

Gesture

12 layers CNN [1] 1× 120 92.6

PLIF-SNN [8] 300× 20 97.6

Res-SNN-18 [48] 375× 16 97.9

MA-SNN [50] 300× 20 98.2

This Work 300× 20 97.7

Gait-day

EV-Gait GCN [41] 4400× 1 89.9

TA-SNN [48] 15× 60 88.6

3D GCN [42] 1500× 1 86.0

MA-SNN [50] 15× 60 92.3

This Work 15× 60 93.6

Gait-night

TA-SNN [48] 15× 60 96.4

3D GCN [42] 5500× 1 96.0

This Work 15× 60 98.6

DailyAction
-DVS

HMAX-SNN [28] - 76.9

Motion-SNN [29] - 90.3

PLIF-SNN [8] 120× 36 92.5

This Work 120× 36 94.6

HAR-DVS

Res-CNN-18 [17] T = 8 49.2

ACTION-Net [43] T = 8 46.9

TimeSformer [2] T = 8 50.8

SlowFast [9] T = 8 46.5

ES-Transformer [40] T = 8 51.2

Res-SNN-18 [7] T = 8 45.5

This Work T = 8 47.1

Table 2: The comparison between the proposed methods
and existing SOTA techniques on five event-based vision
datasets. Note, all the results of the ANN models in HAR-
DVS in this table are taken from [40]. (Bold: the best)

of attention SNNs is lost. Specifically, the energy shift be-
tween vanilla and attention SNNs can be computed as

∆E = EMAC ·∆MAC − EAC ·∆AC , (11)

where EMAC = 4.6pJ and EAC = 0.9pJ represent the
energy cost of Multiply-and-Accumulate (MAC) and AC
operation [19], ∆MAC and ∆AC represent the additional
MAC operation and the reduced AC number caused by the
attention modules, respectively (detailed energy evaluation
is in the Supplementary). We need to try our best to make
the benefit (EAC ·∆AC) outweigh the cost (EMAC ·∆MAC).



Model Acc. (%) Params (↑) NASFR ∆MAC (↑)

Vanilla SNN [48] 88.6 2,323,531 0.214 -

+ SA [50] 89.5(+0.9) +294 0.091(-57.4%) +14.3M

+ TCSA [50] 92.3(+3.7) +24,126 0.045(-78.9%) +27.3M

+ ASA-1 (Ours) 93.6(+5.0) +10,914 0.045(-78.9%) +2.6M

+ ASA-2 (Ours) 89.6(+1.0) +114 0.088(-58.9%) +2.6M

Vanilla SNN [48] 91.3 2,323,531 0.176 -

+ SA [50] 92.6(+1.3) +294 0.073(-58.5%) +14.3M

+ TCSA [50] 96.5(+5.2) +24,126 0.029(-83.5%) +27.3M

+ ASA-1 (Ours) 95.2(+3.9) +10,914 0.038(-78.4%) +2.6M

+ ASA-2 (Ours) 94.4(+3.1) +114 0.050(-71.6%) +2.6M

Table 3: Effect of Different attention modules in three-layer
SNN[48] on Gait-day (the above table) and Gesture (the be-
low table) with dt = 15, T = 60.

𝑡 = 3 𝑡 = 13 𝑡 = 23 𝑡 = 33

𝑐 = 2 𝑐 = 14 𝑐 = 26

𝑐 = 38 𝑐 = 50 𝑐 = 61

(a)

(b)

Figure 5: Spike features in ASA-SNN. (a) Spike features of
different channels at the same timestep. (b) Spike features
of the same channel at different timesteps.

In Table 3, we compare the number of extra parame-
ters and computations needed for various attention mod-
ules. We see that ASA module is a cost-effective solution,
less ∆MAC (just 2.4M), better or comparable performance.
For instance, a 78.9% decrease in spike firing results in a
65% reduction in energy consumption in the TCSA-SNN
[50] but a 76% reduction in our ASA-SNN. The ASA-2
design, which only adds 114 parameters to obtain a nice
performance improvement on Gesture, is highlighted lastly
(albeit it is not stable).

5.5. Result Analysis

Spike patterns in ASA-SNNs. We re-examine the spike
response in ASA-SNNs as we did in Section 3.2. In the spa-
tial granularity, the spike patterns in ASA-SNNs are altered.
As shown in Figure 5a, there are almost no noise features,

Noise pattern Variance

PTD

𝑉!"

PTD=0.5, Var=0.81

𝑉!"

Pattern 
A
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Pattern 
B

PTD=-1.0, Var=0.30

𝑉!"

Pattern 
C

PTD=0.1, Var=0.58

𝑉!"
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D

(a) Spike patterns in vanilla SNNs.
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(b) Spike patterns in ASA-SNNs.

Figure 6: When the ASA is plugged, the spike pattern shifts
in membrane potential distribution and spike feature.

but some null features without spikes appear. In the tem-
poral granularity, spatial-temporal invariance still holds. As
depicted in Figure 5b, spike features of the same channel at
different timesteps are similar.

Membrane Potential Distribution (MPD) and spike
pattern. We already know that the redundancy in SNNs
depends directly on the learned spike patterns. Therefore,
we are interested in the question of “how the spike feature
changes”, which can help us understand the dynamics in-
side the network and inspire future work. Here we ana-
lyze the relationship between the MPD and the spike feature
(pattern). We define the following indicator.

Definition 6. Peak-to-threshold distance (PTD). We
picked out the highest three pillars in membrane poten-
tial distribution and obtained the peak interval by averag-
ing these pillars’ membrane potential intervals. We then
define peak-to-threshold distance as the difference between
the center point of the peak interval and the threshold.

Observation 5. The PTD and Variance of membrane
potential distribution of a channel can be exploited to mea-
sure the quality of the spike feature extracted by this chan-
nel to a certain extent. When the value of PTD is near 0 or
greater than 0, it indicates that the membrane potential of
most spiking neurons on a map is to the right of the thresh-
old. Consequently, most neurons have a relatively high neu-
ron spike firing rate, and intuitively, the pattern learned by
the channel is background noise since the key information is
usually located within a small area. The variance measures
the degree of focus. In the same or similar normal pattern



of the same model, the larger the variance, the clearer the
edge information of the learned feature.

Accordingly, as shown in Figure 6, we show how the
spike feature follows the MPD. Specifically, in vanilla
SNNs (Figure 6a), spike features and MPDs in Patterns A
and B appear to be in a complementary relationship, cor-
responding to perfect focus on the background and object
regions, respectively. If the PTD is maintained constant,
as the variance gradually decreases, the information in the
edge regions of the background and object begins to blur, as
shown in Patterns C and D.

Then we compare the shifts in spike features of vanilla
and ASA-SNNs. Obviously, peak regions of the MPDs
across all channels in ASA-SNNs are located to the left
of the threshold (Figure 6b), i.e., PTD < 0. This indi-
cates that one channel does not fire a lot of spikes after the
ASA module has optimized the MPD. That is, the MPD is
highly compact, which implies that the edge information of
the spike feature is clearer.

By combining the two indicators PTD and variance, we
can quickly determine what a ”good” spike feature’s MPD
should be. For instance, as shown in Pattern B of ASA-
SNNs, both the PTD and variance values should fall within
an appropriate range, neither too high nor too low.

Model Gesture Gait-day HAR-DVS

Vanilla SNN 0.158 0.362 0.584
ASA-SNN 0.024 0.031 0.339

Table 4: Comparison of QEs on vanilla and ASA-SNNs.

Information loss. As discussed in [14, 13], a good
MPD can reduce information loss, which arises from the
quantization error (QE) introduced by converting the analog
membrane potential into binary spikes. Similar to [14, 13],
we define the QE as the square of the difference between
the membrane potential and its corresponding quantization
spike value. The proposed ASA module concurrently op-
timizes the PTD and variance of MPDs in vanilla SNNs,
which significantly reduces the information loss caused by
the spike quantization (see Table 4). It is evident from a
comparison of Figure 6a and b that each channel’s MPD
grows thinner (the variance becomes smaller). In this work,
the reduced variance implies that the edge information in
the spike feature is clearer from the perspective of feature
visualization. By contrast, from the perspective of QE, it
implies that the information loss becomes less.

6. Conclusions

In this work, three key questions are exploited to analyze
the redundancy of SNNs, which are usually ignored in other
prior works. To answer these questions, we present a new
perspective on the relationship between the spatio-temporal

dynamics and the spike firing. These findings inspired us
to develop a simple yet efficient advanced spatial attention
module for SNNs, which harnesses the inherent redundancy
in SNNs by optimizing the membrane potential distribution.
Experimental results and analysis show that the proposed
method can greatly reduce the spike firing and further im-
prove performance. The new insight onto SNN redundancy
not only reveals the unique advantages of spike-based neu-
romorphic computing in terms of bio-plausibility, but may
also bring some interesting enlightenment to the following-
up research on efficient SNNs.
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