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Abstract

Solving multiple visual tasks using individual models can
be resource-intensive, while multi-task learning can con-
serve resources by sharing knowledge across different tasks.
Despite the benefits of multi-task learning, such techniques
can struggle with balancing the loss for each task, leading
to potential performance degradation. We present a novel
computation- and parameter-sharing framework that bal-
ances efficiency and accuracy to perform multiple visual
tasks utilizing individually-trained single-task transformers.
Our method is motivated by transfer learning schemes to
reduce computational and parameter storage costs while
maintaining the desired performance. Our approach in-
volves splitting the tasks into a base task and the other
sub-tasks, and sharing a significant portion of activations
and parameters/weights between the base and sub-tasks
to decrease inter-task redundancies and enhance knowl-
edge sharing. The evaluation conducted on NYUD-v2 and
PASCAL-context datasets shows that our method is superior
to the state-of-the-art transformer-based multi-task learn-
ing techniques with higher accuracy and reduced compu-
tational resources. Moreover, our method is extended to
video stream inputs, further reducing computational costs
by efficiently sharing information across the temporal do-
main as well as the task domain. Our codes are available at
https://github.com/sarashoouri/EfficientMTL.

1. Introduction

In various computer vision applications, it is required to
obtain a comprehensive understanding of the visual scene
by performing multiple tasks based on a single input image.
These tasks often involve performing dense or pixel-wise
predictions such as semantic segmentation, depth estimation,
surface normal estimation, etc., for practical applications
in autonomous driving, robotics, and augmented or virtual
reality (AR/VR) [68]. Traditionally, these tasks are tackled
individually by training a separate neural network dedicated
to each task. However, this single-task learning can lead

Figure 1: Parameter and activation sharing across task and
temporal domains. First, the base task produces its activa-
tions at time t, then passes them to sub-tasks bk to share
the computation across the task domain. Also, the base task
activations at time t are shared with time t+ 1 to reduce the
computation across the temporal domain.

to redundant computation and parameters, particularly for
highly correlated tasks, losing the opportunity to perform
faster inference as desired in real-time applications [59].

Multi-task learning (MTL) [6, 16, 34, 70, 73] has been
actively explored as a solution to this problem, which learns
a single unified model to perform multiple tasks simulta-
neously. This approach allows the model to learn com-
mon representations and patterns from multiple supervised
tasks [74], resulting in a more memory- and computation-
efficient structure than employing multiple single-task net-
works. Additionally, multi-task networks can potentially
enhance the performance of all tasks by leveraging the cross-
task knowledge-sharing mechanism [59]. Due to the benefits
of multi-task learning, numerous multi-task structures have
been proposed to improve task-wise interactions in dense
visual scene understanding [43, 65, 59, 75, 77, 42, 18]. The
recent success of transformer models in many downstream
vision tasks [37, 13, 78, 61, 49, 38] has led to the emergence
of transformer-based multi-task networks [51, 2, 68, 7, 44],
aimed at improving multi-task performance even further.
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However, MTL poses several potential drawbacks com-
pared to single-task learning: (1) Simultaneously learning
different tasks using a unified model can lead to unbalanced
task competition and suboptimal performance for some tasks
if the model fails to build a shared representation that gen-
eralizes to all tasks [17]. (2) Balancing the loss between
different tasks can be challenging due to the varying scales
of task-specific loss terms, especially when the number of
tasks increases [11, 9]. Although multiple task-balancing
approaches have been proposed [30, 9, 35] to address this
problem, recent studies [60] have shown that performance
still becomes worse than individually-trained single-task net-
works. (3) MTL requires ground truth labels for all tasks per
training sample, which is limiting because such annotations
for certain tasks (e.g., semantic segmentation) may not al-
ways be available for the same input sample. It also often
does not allow easily adding new tasks without retraining
the entire model from scratch.

To alleviate the above limitations, we propose a solution
that leverages the strength of both single-task and multi-task
learning techniques, integrating the concept of knowledge-
sharing. Our approach draws inspiration from [10], which
initially introduced the idea of efficient deep learning model
communication through knowledge-sharing. In our work,
we extend this concept to effectively execute multiple con-
current visual tasks taking the same input. We employ
individually-trained single-task networks to maintain the
desired performance and prevent unbalanced task competi-
tion. At the same time, we introduce a novel parameter- and
computation-sharing strategy to facilitate knowledge-sharing
and enhance inference efficiency. Our method focuses on
transformer models that have shown outstanding results in
vision tasks. First, we divide all tasks into a base task and
multiple sub-tasks, where all task-specific networks adopt
a common transformer structure as the backbone. Next,
we train a single network for the base task independently.
Then, to share the inter-task information, we reuse not only
weights but also activations from the base task to train each
sub-task. The weight-sharing concept is motivated by re-
cent parameter-efficient transfer learning techniques [26, 21].
Specifically, we view the weights of sub-task models as the
sum of weights from the base task and a delta weight matrix,
and apply ℓ0 regularization to encourage sparsity in the delta
weight matrix as in the Diff-pruning [21] approach. We then
fix the positions of non-zero elements of the delta weight
matrix and fine-tune them to make the activation difference
between the base task and sub-task also sparse by adopting
ℓ1 regularization. As a result, the pre-computed activations
from the base task can be shared and passed to sub-task
networks during the inference. This reduces computation
cost as the remaining operations for sub-tasks only involve
sparse matrix-matrix multiplications, as shown in Figure
1. Our proposed computation-sharing scheme significantly

reduces the number of non-zero parameters for sub-tasks
while allowing knowledge sharing between the main task
and each sub-task. Extensive experiments on NYUD-v2 and
Pascal-Context benchmarks demonstrate that our method
outperforms state-of-the-art multi-task transformers, exhibit-
ing fewer parameters and FLOPs counts to attain comparable
or superior task accuracy.

Furthermore, we extend our method to the temporal do-
main to leverage the sparsity of differences between consec-
utive video frames, as shown in Figure 1. Similar to the task
domain, we employ ℓ1 regularization to force the activation
differences between consecutive (time domain) frames to be-
come sparse. As a result, during the inference of a sub-task
at time t, it can exploit either the temporal domain or task
domain sparsity to reuse activations from the same sub-task
at time t− 1 (temporal activation sharing) or the main task
at time t (task domain activation sharing). A simple strategy
is then applied to combine these two sources of activation
sharing for maximum efficiency and computation savings.

Our contributions can be summarized as follows:
• We propose a novel activation-and parameter-sharing

scheme to reduce the computation and storage redun-
dancy to perform multiple dense/pixel-wise vision tasks
with transformer models.

• We extend our computation-sharing method to video in-
puts and use a simple strategy to combine the activation-
sharing sources between the task and temporal domains
to maximize inference efficiency.

• We perform extensive experiments on NYUD-v2 and
Pascal-Context datasets to quantify the advantage of our
proposed method in both performance and efficiency
compared to prior multi-task learning methods.

2. Related Work

2.1. Multi-task for Scene Understanding

Multi-task learning (MTL) has made significant progress
in several vision applications [6, 16, 32, 30], such as joint
object detection and semantic segmentation [19, 23], and
3D recognition [66, 67]. Due to the benefits of MTL, vari-
ous works have explored its use in multi-task dense scene
understanding, where all the tasks require pixel-wise pre-
dictions [15, 43] based on convolutional neural networks
(CNN) [18, 3, 42]. Specifically, Cross-Stitch [43] enables
soft feature fusion by utilizing a linear combination of the
activations in each layer of task-specific networks. PAD-Net
[65] first generates multi-modal auxiliary predictions and
then uses a spatial attention strategy to distill information
from the initial predictions. MTI-Net [59] extends the idea
of PAD-Net by proposing a multi-scale multi-modal distil-
lation procedure to refine the feature propagation, leading
to unique task interactions at each individual scale. On the
other hand, PAP [75] and PSD [77] learn global and local



Figure 2: Illustration of the proposed method for multi-task processing for video inputs. Xbk,t
l , δXbk,t

l , and ∆Xbk,t
l represent

the input activation, delta task activation, and delta temporal activation of layer l for task bk at time t, respectively. For a
keyframe at t, the base task shares the parameter and activation computation with sub-tasks to improve the efficiency of the
sub-task transformer models. For a non-keyframe at t+1, the base task first borrows the temporal activation from the previous
frame at t and then passes the calculated task activation to sub-tasks for layer [1, l] at t + 1. For the remaining layers of
[l + 1, L] at t+ 1, the sub-tasks reuse the temporal activation from the previous time t to further reduce the computation.

affinities across tasks, and use them to refine the features
for each task iteratively. Recently, the transformer model
has also been applied to multi-task learning [7, 44, 51, 2],
replacing CNNs for superior performance in several vision
tasks [37, 13, 1, 4, 46, 48, 57, 62]. For instance, InvPT
[68] leverages vision transformers as the backbone and ex-
plores self-attention for better spatial and task interaction,
achieving state-of-the-art results for multi-task visual scene
understanding.

Our approach differs from prior multi-task learning meth-
ods which mainly focus on enhancing cross-task interaction.
Specifically, we utilize individually-trained single-task net-
works with a novel computation-sharing scheme to improve
inference efficiency while preserving their performances to
outperform prior multi-task learning methods.

2.2. Parameter-Efficient Transfer learning

Transfer learning and multi-task learning are two comple-
mentary machine learning paradigms that share a common
goal of improving model efficiency through knowledge trans-
fer. Transfer learning can be viewed as a specialized case of
multi-task learning, where the knowledge (i.e., extracted fea-
tures) is transferred from a source task or domain to improve
performance on a related target task. This technique has
been widely adopted in various applications, including com-
puter vision [5, 45, 54], natural language processing (NLP)

[20, 28, 76, 50, 36, 53], and speech recognition [56, 55].
The most common transfer learning methods for transformer-
based models involve training a shared model, and then either
fine-tuning model parameters or using linear probes with ad-
ditional multi-layer perceptron (MLP) models [64, 58, 14]
for individual tasks. The fine-tuning method can maintain
high performance at the cost of high computational com-
plexity for large transformers [47], whereas linear probing
exhibits relatively low performance with reduced complexity
[33, 31, 72, 22]. Recently, there have been several research
efforts focused on improving the parameter efficiency for
transformers in NLP [26, 21, 27, 69, 29]. For example,
Adapter [26] addresses this challenge by employing addi-
tional task-specific trainable modules after the feedforward
network in each layer of the shared transformer architecture.
Diff-pruning [21] further improves parameter efficiency by
learning sparse task-specific difference (‘diff’ or ‘delta’) vec-
tors to be added to the shared parameters. LoRA [27] takes a
similar approach but decomposes the task-specific difference
vector as a low-rank matrix. Parameter-efficient transfer
learning has also been studied for vision transformers [24].
Unlike these prior methods that mainly focus on improving
parameter efficiency, our approach extends the existing meth-
ods to improve both parameter and computation efficiency
when multiple pixel-level tasks are performed on a single
still image or consecutive video frames.



3. Proposed Method

The proposed approach is designed to enable the efficient
processing of multiple dense (per pixel) tasks from a single
input image. The approach is further optimized for video
sequences to balance accuracy and efficiency, reducing com-
putational costs by exploiting either the task or temporal
domain sparsity as depicted in Figure 2. We first formalize
the problem for the algorithm and then present a general
framework that leverages activation reuse across the task or
temporal domain.

3.1. Framework Overview

Problem formulation: The proposed multi-task model,
G, is designed to perform a set of m visual tasks, B =
{b1, b2, . . . , bm}, on a single input image I . It generates
the task outputs, ŷ = {ŷb1 , ŷb2 , . . . , ŷbm}, for each task
in B. Here we assume per-pixel tasks such as semantic
segmentation or depth estimation. The model can be further
applied to a set of video frames {I1, . . . IT }, where It is
the input frame at time t. Hence, the model output for
the frame at time t can be represented as G(It) → ŷt =
{ŷb1,t, ŷb2,t, . . . , ŷbm,t}.

We begin by dividing the desired tasks into a base task
and the other sub-tasks. Without loss of generality, suppose
b1 is the base task and the remaining tasks, {b2, . . . , bm},
are the sub-tasks. To perform each task, we define separate
single-task networks and leverage transfer learning tech-
niques to initialize the parameters of the sub-tasks using the
base model and then fine-tune each model for a task-specific
objective.

Suppose a training dataset Dbk = {In, yn}Nn=1 is given
for a single network for task bk. We seek to determine
the optimal parameters wbk for that model by solving the
following optimization problem:

min
wbk

1

N

N∑
n=1

Cbk(f bk(In;w
bk), yn) + λR(wbk), (1)

where f bk(.;wbk) represents a task-specific network, Cbk(.)
is a task-specific loss function, and R(.) is an optional reg-
ularization term with a hyperparameter λ. For the network
f bk , we use a vision transformer [13, 37] as the backbone,
Ebk , followed by a small task-specific CNN head, Hbk . That
is, f bk(.) = Hbk(Ebk(.)) holds. While it is beneficial to
have a separate model for each sub-task, such an approach
can be inefficient due to the high memory and computation
requirements during both training and inference, making it
impractical for resource-constrained real-world applications.
To address this issue, our method applies delta weight, delta
temporal activation, and delta task activation pruning tech-
niques to the Ebk for all existing sub-tasks as described in
Sec. 3.2 and 3.3. The CNN head Hbk for each sub-task is
trained without exploiting delta weight/activation sparsity.

Transformer backbone Ebk : The transformer model
consists of two fundamental computation elements in each
layer: a multi-head self-attention module and a feedforward
network (FFN). The multi-head self-attention module calcu-
lates the inter-dependencies between different positions in
the input data through the following equations:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO

where headi = Attention(XWQ, XWK , XWV ),

Attention(Q,K, V ) = softmax(QK⊤/
√
D)V,

(2)

where X ∈ RP×D is the activation input that has P en-
tries of D dimension, {WQ,WK ,WV } ∈ RD×D, and
WO ∈ RDh×D are model parameters, and h is the num-
ber of heads. An FFN is applied to the multi-head output
of the self-attention layers. It contains two linear projec-
tions {WF1,WF2} ∈ RD×D, connected by a GELU [25]
non-linearity σ, and it can be expressed as FFN(X) =
σ(XWF1)WF2. Therefore, each transformer block contains
4h + 2 linear projections, each with a computational com-
plexity of O(PD2). On the other hand, the calculation of
the self-attention module, represented as Attention(.), has
a complexity of O(P 2D). As such, reducing the compu-
tations for linear projections can be equally important as
reducing the calculation of the self-attention module. The
objective of our technique is to reduce the complexity of
linear projections.

Framework: For simplicity, we describe the proposed
activation reuse method for an arbitrary linear projection
of a vision transformer block. Given the input activa-
tion Xb1,t

in and weight matrix W b1 for the base task b1 at
time t, the model first generates the outputs without acti-
vation reuse such that Xb1,t

out = Xb1,t
in W b1 . For sub-task

bk, the model first learns a sparse task-specific delta weight
matrix δW bk and forms the final task-specific weight as
W bk = W b1 + δW bk , reusing the weights from the main
task. This approach reduces the storage requirements of
each sub-task by only storing the sparse δW bk instead of
the dense matrix W bk . However, the activation computation
for bk involves Xbk,t

out = Xbk,t
in (W b1 + δW bk), which has

the same (or higher due to weight additions) complexity as
the base task. To reduce the complexity, the computation is
reformulated by introducing a delta task activation matrix,
δXbk,t

in = Xbk,t
in − Xb1,t

in with a goal to remove inter-task
redundancies by making δXbk,t

in sparse. This allows for
activation sharing from the base task b1 to sub-task bk, re-
sulting in a more efficient calculation, which can be written
as:

Xbk,t
out = (Xb1,t

in + δXbk,t
in ) (W b1 + δW bk)

= Xb1,t
in W b1 + δXbk,t

in (W b1 + δW bk) +Xb1,t
in δW bk .

(3)

As expressed in Eq. (3), our method borrows the activa-
tion computation from the base task Xb1,t

in W b1 for sub-tasks



and executes only sparse matrix-matrix multiplications in Eq.
(3) rather than performing a dense matrix-matrix multiplica-
tion Xbk,t

in W bk . Thus, the new calculation of a sub-task is
reduced to Xbk,t

Re = δXbk,t
in (W b1 + δW bk) +Xb1,t

in δW bk ,
where δW bk and δXbk,t

in are sparse matrices. This not only
increases the speed of executing the sub-tasks but also re-
duces the number of required (non-zero) parameters. Addi-
tionally, to ensure that the Xbk,t

Re remains sparse for the next
layer, we set a per-block task-specific threshold thbk such
that the activations whose absolute values are less than the
predefined threshold thbk are set to zero before being passed
to the next layer. The final output activation can be written
as:

Xbk,t
out = Xb1,t

out +Q(Xbk,t
Re , thbk), (4)

where Q(X, th) is an operator to substitute all elements less
than th in X with zero.

Eq. (3) and (4) enable the activation sharing across dif-
ferent task domains (from b1 to bk). The same activation-
sharing idea can also be applied to the temporal domain so
that activations are shared from time t to time t+ 1 for the
same task in B. Given the input activation Xbk,t

in and weight
matrix W bk for an arbitrary task bk, we first perform the
linear projection at time t to obtain Xbk,t

out = Xbk,t
in W bk .

To reduce the complexity for the next time step t + 1, we
introduce a delta temporal activation matrix ∆Xbk,t+1

in =

Xbk,t+1
in −Xbk,t

in and exploit temporal redundancies by mak-
ing ∆Xbk,t+1

in
* sparse. Hence, the calculation of task bk at

time t+ 1 can be optimized by borrowing activations from
time t, as follows:

Xbk,t+1
out = Xbk,t+1

in W bk = (Xbk,t
in +∆Xbk,t+1

in )W bk

= Xbk,t
in W bk +∆Xbk,t+1

in W bk .
(5)

Similar to the task domain, we can remove the dense
matrix-matrix multiplication Xbk,t+1

in W bk by reusing the
activations from the previous time step t, and only process
∆Xbk,t+1

in W bk which is a sparse matrix-matrix multiplica-
tion, as in Eq. (5).

In the following sections, we will describe our strategy
to prune the delta weight, delta task activation, and delta
temporal activation to be as sparse as possible. Moreover, we
will explain how the task- and temporal-domain activation
sharings are combined to minimize the task complexity.

3.2. Learning and pruning delta weight

To simplify, we consider the collection of all linear
layers in a transformer block as a set, denoted by Φ =
{W 1

Q,W
1
K ,W 1

V , . . . ,W
h
Q,W

h
K ,Wh

V ,WO,WF1,WF2}.
Given the weights of the sub-task bk and the base task
b1, we aim to learn a sparse delta weight matrix that can

*We use ∆X and δX for matrix differences across temporal and task
domains, respectively.

reparameterize the task-specific model as Φbk = Φb1+δΦbk .
In this reparameterization, the weight of the base task Φb1

remains fixed during the fine-tuning process, only updating
δΦbk for the target sub-task. To promote sparsity in δΦbk ,
we follow the approach of Diff-pruning [21] and apply
ℓ0 regularization to δΦbk . Hence, the optimization loss
function in Eq. (1) is modified to:

min
δΦbk

1

N

N∑
n=1

Cbk(f bk(In; Φ
b1 + δΦbk), yn) +Rw(δΦ

bk), (6)

where Rw(δΦ
bk) is defined such that:

Rw(δΦ
bk) = λw∥vec(δΦbk)∥0 = λw

∑
j

1{δΦbk
j ̸= 0}, (7)

where δΦbk
j is the jth element of δΦbk . Since this regular-

ization term is non-differentiable, we adopt a gradient-based
learning approach that uses a relaxed binary mask matrix
as described in [21, 40]. This involves defining a binary
mask M bk for sub-task bk and relaxing it into a continuous
space using a stretched Hard-Concrete distribution [63, 41],
allowing a differentiable gradient path. The resulting mask
is then element-wise multiplied with the dense delta weight
matrix δΦbk to produce a sparsified version.

3.3. Pruning delta task and temporal activations

Delta task and temporal activation: Similarly, we de-
fine X as a set of the activation inputs of all linear layers
in a transformer block. Hence, the activation input differ-
ence between the base task b1 and the sub-task bk at time
t is represented by δX bk,t. Our goal is to prune these acti-
vation differences to minimize inter-task redundancies, as
discussed in Sec. 3.1. To encourage the sparsity in δX bk,t,
we fix the position of non-zero elements of the delta weight
δΦbk , and then fine-tune non-zero delta weights by apply-
ing regularization to the activation differences. As δX bk,t

depends on both the input image and task-specific weight
matrix, it is challenging to follow the same approach used
in delta weight pruning and learn a fixed binary mask which
applies to all inputs. Thus, as an alternative approach, we
use ℓ1 regularization (also known as Lasso), which utilizes a
Laplacian-like distribution to increase the amounts of small
values. The delta task activation regularization Ra1 with a
coefficient of λa1 is defined as follows:

Ra1(δX bk,t) = λa1∥vec(δX bk,t)∥1 = λa1

∑
j

|δX bk,t
j |, (8)

where δX bk,t
j is jth element of δX bk,t.

The same technique extends to the temporal redundancy
pruning (Sec. 3.1) to sparsify the delta temporal activation
within the same (sub-)task. Consider ∆X bk,t+τ as the acti-
vation input difference between time t and t+ τ for task bk.



Table 1: Performance comparison on PASCAL-Context (left) and on NYUD-v2 (right). ‘↑’: higher better, ‘↓’: lower better.

Method Semseg Parsing Saliency Normal Boundary
mIoU ↑ mIoU ↑ maxF ↑ mErr ↓ odsF ↑

ASTMT [42] 68.00 61.10 65.70 14.70 72.40
PAD-Net [65] 53.60 59.60 65.80 15.30 72.50
MTI-Net [59] 61.70 60.18 84.78 14.23 70.80

ATRC [3] 62.69 59.42 84.70 14.20 70.96
ATRC-ASPP [3] 63.60 60.23 83.91 14.30 70.86

ATRC-BMTAS [3] 67.67 62.93 82.29 14.24 72.42
InvPT (ViT-B) [68] 77.33 66.62 85.14 13.78 73.20

Ours (ViT-B) 78.24 71.71 85.28 13.65 78.6

Method Semseg Depth Normal Boundary
mIoU ↑ RMSE ↓ mErr ↓ odsF ↑

Cross-Stitch [43] 36.34 629.0 20.88 76.38
PAP [75] 36.72 617.8 20.82 76.42
PSD [77] 36.69 624.6 20.87 76.42

PAD-Net [65] 36.61 627.0 20.85 76.38
MTI-Net [59] 45.97 536.5 20.27 77.86

ATRC [3] 46.33 536.3 20.18 77.94
InvPT (ViT-B) [68] 50.30 536.7 19.00 77.60

Ours (ViT-B) 50.46 533.2 18.42 77.89

Table 2: Performance and complexity of our proposed method with different levels of sharing on (a) PASCAL-Context dataset
and (b) NYUD-v2 for a single image.

(a) Performance results for Pascal-Context dataset.

Method Semseg Parsing Saliency Normal Boundary Param (M) Memory (Mb)
Total Base-task Per Sub-task

mIoU ↑ mIoU ↑ maxF ↑ mErr ↓ odsF ↑ FLOPs (G) FLOPs (G) FLOPs (G)

Single Task (ST) 78.24 73.85 85.33 13.32 79.9 438.02 1776 585.15 120.53 116.15
InvPT 77.33 66.62 85.14 13.78 73.2 176.35 705 412.17 82.43 82.43

Ours + weight sharing 78.24 73.16 85.42 13.34 79.9 114.02 482 585.15 120.53 116.15
Ours + weight + act sharing 78.24 71.71 85.28 13.65 78.6 114.02 482 295.84 120.53 43.76

(b) Performance results for NYUD-v2 dataset.

Method Semseg Depth Normal Boundary Param (M) Memory (Mb)
Total Base-task Per Sub-task

mIoU ↑ RMSE ↓ mErr ↓ odsF ↑ FLOPs (G) FLOPs (G) FLOPs (G)

Single Task (ST) 50.48 521.5 17.26 77.84 366.64 1452 314.14 75.20 79.64
InvPT 50.30 536.7 19.00 77.6 160.57 643 229.43 57.35 57.35

Ours + weight sharing 50.46 529.6 17.62 77.84 122.46 477 314.14 75.20 79.64
Ours + weight + act sharing 50.46 533.2 18.42 77.89 122.46 477 186.88 75.20 37.22

To encourage sparsity in ∆X bk,t+τ , we define the delta tem-
poral activation regularization Ra2 with a coefficient of λa2

such that Ra2(∆X bk,t+τ ) = λa2∥vec(∆X bk,t+τ )∥1. We
apply temporal regularization to τ ∈ [−2, 2] and reformulate
the optimization problem accordingly:

min
δΦbk

1

NT

T∑
t=1

N∑
n=1

Cbk(f bk(Itn; Φ
b1 +M bk δΦbk), ytn)

+Ra1(δX bk,t) +
2∑

τ=−2

Ra2(∆X bk,t+τ ).

(9)

Activation re-use combination from both domains: To
efficiently combine activations from both the task and tempo-
ral domains, we compare the computational complexities of
two approaches per layer. While the base task can only reuse
activations across the temporal domain, sub-tasks can access
activations from both sources: using either δXbk,t

in as in Eq.
(3) or using ∆Xbk,t+1

in as in Eq.(5). Suppose the (average)
density (ratio of non-zero values) of the delta weight, delta
task activation, and delta temporal activation for layer l is
denoted by Sl

w, Sl
a1, and Sl

a2, respectively. Then, Eq. (3)
requires (Sl

w + Sl
a1)PD2 multiplications, while Eq. (5) re-

quires (Sl
a2)PD2 multiplications. Thus, if Sl

w +Sl
a1 < Sl

a2,
it is more efficient to reuse activations across the task do-
main. Conversely, if Sl

a2 ≤ Sl
w + Sl

a1, it is more reasonable
to reuse activations from the previous frame of the same

(sub-)task. We observed that the first few layers tend to be
more sparse in the task domain, while the remaining layers
are more sparse in the temporal domain. After evaluating Sl

w,
Sl
a1, and Sl

a2 for all layers in each sub-task bk, we determine
the layer boundary lbk so that the task domain activation
reuse is performed for layers l ≤ lbk , and temporal domain
activation reuse is utilized for the remaining layers.

4. Experiments
Dataset: We evaluate our algorithm on two popular

scene understanding datasets, NYUD-v2 [52] and PASCAL-
Context [8]. NYUD-v2 contains 1,449 indoor scene images
with annotations for semantic segmentation (40 classes),
depth estimation, surface normal estimation, and edge de-
tection tasks, including 795 images for training and 654 for
testing. PASCAL-Context covers indoor and outdoor scenes
and comprises 4,998 training and 5,105 testing images, pro-
viding the labels for human parsing, semantic segmentation
(21 classes), saliency estimation, edge detection, and surface
normal estimation. For video input, we limit our analysis to
the NYUD-v2 dataset, as PASCAL-Context does not provide
images for different time frames.

Evaluation Metrics: As in InvPT [68], semantic seg-
mentation and human parsing are evaluated with mean Inter-
section over Union (mIoU), surface normal estimation with
mean error (mErr), depth estimation with root mean square



error (RMSE) in millimeter, edge detection with optimal-
dataset-scale F-measure (odsF), and saliency detection with
maximum F1 score (maxF).

Training Details: We perform our experiments using the
ViT-B transformer [13] pre-trained on ImageNet-22K [12] as
the backbone, with a patch size of 16× 16 pixels. Training
on the NYUD-v2 dataset is conducted using a batch size of
64, distributed across 5 NVIDIA A40 single-precision GPUs,
taking approximately 24 hours. The AdamW optimizer [39]
is utilized, with a learning rate of 1 × 10−4 and a weight
decay rate of 1× 10−6. For the PASCAL-Context dataset,
a batch size of 6, a learning rate of 5× 10−5, and a weight
decay rate of 1 × 10−6 are used. Training on this dataset
is performed on 6 NVIDIA A40 single-precision GPUs,
taking around 40 hours. Both datasets are trained using a
polynomial learning rate scheduler [71].

Our approach considers ‘semantic segmentation’ as the
base task and all other tasks as sub-tasks. To train these
tasks, we first train the base task and store the weights and
intermediate activations as the base weights and activations.
Then, we follow a three-step training procedure for the sub-
tasks. First, the sparse delta weight matrices are learned for
each sub-task with ℓ0 regularization on delta weights. Then,
the model is fine-tuned for a few epochs, and the learned
delta weight is updated to improve performance. Finally, the
ℓ1 regularization is applied to the difference of intermediate
activations for each batch, and the non-zero delta weights
are updated to balance the performance and delta activation
sparsity. For video inputs, the ℓ1 regularization is applied to
both delta task and temporal activations.

4.1. Single Image Evaluation For Multi-task

Model Baselines and Variants: We define the following
baseline and model variants for the evaluation: (i) ‘Multi-
task learning (MTL)’ represents a state-of-the-art (SOTA)
baseline multi-task approach that comprises a shared encoder
and multiple task-specific decoders which are jointly opti-
mized. The current SOTA MTL baseline, InvPT [68], uses
a transformer as the encoder, while others typically employ
a CNN as the backbone. (ii) ‘Single-task learning (ST)’
has a common transformer backbone plus a task-specific
small CNN head model structure for each task which is in-
dependently trained for task-specific parameters (for both
backbone and head models) without using the delta weight
and delta activation pruning methods. (iii) ‘Ours + weight
sharing’ is similar to the ST model but adds delta weight
pruning to share transformer weights between the base and
sub-tasks. (iv) ‘Ours + weight + act sharing’ indicates our
proposed method that also utilizes transformer activation
sharing in the task domain.

Qualitative results: Figure 3 presents sample visualiza-
tions from the proposed model for the PASCAL-Context
dataset. We compare these results with the current SOTA

InvPT [68] to demonstrate the superiority of our model. The
visual comparison reveals that our model produces more
accurate predictions compared to InvPT, particularly for se-
mantic segmentation, human parsing, and edge detection
tasks. Additional visualization results can be found in the
supplemental material.

Quantitative results: Evaluation results for PASCAL-
Context dataset and NYUD-v2 dataset are summarized in
Table 1 (left) and Table 1 (right), respectively. The tables
illustrate that our method outperforms prior approaches, in-
cluding InvPT [68]. We compare the FLOPs, number of
parameters, required memory to store model parameters, and
performance of each task against the ‘ST’ model and the
SOTA transformer-based MTL method InvPT in Table 2 (a)
and (b). Notice that our base task (semantic segmentation)
performance is similar to that of the ‘ST’ method since it
does not use weight or activation sharing. For the PASCAL-
Context dataset, our proposed model (‘weight + act sharing’)
outperforms InvPT while reducing the FLOPs and parame-
ters by 49.44% and 74.0%, respectively, compared to the
‘ST’ model. Table 2 (a) specifies the FLOPs required for
each base and sub-task, indicating that adding a new sub-
task requires only 37.6% FLOPs of the ‘ST’ model. For
the NYUD-v2 dataset, we first evaluate the model with a
single image without enabling temporal activation reuse to
isolate the gain of the task activation reuse strategy. Table
2 (b) shows that our method reduces the FLOPs and param-
eters by 40.5% and 66.6% compared to the ‘ST’ model
while achieving comparable/better results than the InvPT
baseline. To evaluate the required memory, we adopt the
CSR (Compressed Sparse Row) method to store the sparse
delta weight matrices. This approach efficiently stores only
the non-zero elements and their corresponding positions,
making it a suitable choice for our approach. The memory
storage comparison results are presented in Table 2, further
showcasing the memory-saving benefits of our approach.
Figure 4 shows the overall delta weight and delta task activa-
tion sparsity for all sub-tasks in the Pascal-Context dataset
(left) and the NYUD-v2 dataset (right). It reveals that hu-
man parsing and edge detection are more closely related to
the base task, hence their sparsities are higher than other
sub-tasks.

Ablation study: We explore the impact of ℓ0 and ℓ1
regularization coefficients on the performance, computa-
tion, and memory storage reduction for each task in both
PASCAL-Context and NYUD-v2 datasets. To determine
the optimal values of λw and λa1, we conduct a com-
prehensive hyperparameter search, sweeping λw in the
range of [1 × 10−8, 10 × 10−8] and λa1 in the range of
[1 × 10−10, 10 × 10−10]. Figure 5 shows the performance
of the human parsing task with different values of λw and
λa1. As expected, increasing λw saves more parameters but
reduces accuracy by 0.30%. Similarly, increasing λa1 saves



Figure 3: Qualitative comparison with the previous SOTA InvPT and ‘ST’ model on PASCAL-Context dataset. Examples of
the regions where our model outperforms InvPT are shown with yellow circles.

Figure 4: Overall delta weight and delta task activation
sparsity for the Pascal-Context dataset (left) and the NYUD-
v2 dataset (right).

Figure 5: The impacts of λw and λa1 on the human parsing
task for Pascal-context dataset.

more computations at the cost of decreased accuracy by
1.24%. For each sub-task, we select the optimal λw and λa1

to balance computation/memory storage and task-specific
performance.

In addition, we evaluate the impact of using a different
backbone network by replacing the ViT-B transformer model
with the Swin-B [37] model. This evaluation is performed
for both the InvPT baseline and our proposed method with
semantic segmentation (‘Semseg’) as the base task. Further-
more, we compare the performance of our method when
human parsing (‘Parsing’) is selected as the base task, aim-
ing to demonstrate the effectiveness of our approach when
choosing an alternative task as the base. The results on the
Pascal-context dataset are shown in Table 3. When all ap-
proaches use Swin-B, our method (weight & act sharing)
with the ‘Semseg’ as the base task outperforms InvPT base-
line, exhibiting significantly reduced FLOPs and parameters

(by 45.73% and 71.07%) compared to the ‘ST’ model.
Similarly, our method with the ‘Parsing’ as the base task
surpasses the InvPT baseline, exhibiting substantial reduc-
tions in FLOPs and parameters (by 42.16% and 71.03.%,
respectively) compared to the ‘ST’ model. It is also evident
that the ‘Semseg’ task delivers slightly better performance
as the base task. We attribute this improvement to the fact
that segmentation is a highly informative task, generating
powerful activations and features that can be effectively gen-
eralized to other computer vision tasks.

4.2. Video Frame Evaluation

Now, we evaluate the temporal activation-sharing method
using the NYUD-v2 dataset. As discussed in Sec 3.3, we
first evaluate the sparsity ratios of all layers for a task and
then determine the optimal layer boundary for sharing mode
switching. Specifically, for task bk, we leverage the task-



Table 3: Performance of our method when the base task is
segmentation ‘Semgseg’ or ‘Parsing‘ on Pascal-context dataset
using Swin-B as the transformer backbone (replacing ViT-B).

Method Semseg Parsing Saliency Normal Boundary Param FLOPs
mIoU ↑ mIoU ↑ maxF ↑ mErr ↓ odsF ↑ (M) (G)

ST 79.1 71.6 84.6 13.5 76.0 516.1 444.3
InvPT 77.5 66.8 83.6 14.6 73.0 187.2 384.7

Ours w/Semseg base 79.1 70.0 84.2 14.3 74.5 149.3 241.1
Ours w/Parsing base 77.5 71.6 84.1 14.4 74.4 149.5 257.0

Table 4: Performance of our method using temporal and task
activation re-use technique for NYUD-v2 dataset.

Method Semseg Depth Normal Boundary Param FLOPs
mIoU ↑ RMSE ↓ mErr ↓ odsF ↑ (M) (G)

ST 50.48 521.5 17.26 77.84 366.64 314.14
InvPT 50.30 536.7 19.00 77.6 160.57 229.43

Ours + Task act 50.46 533.2 18.42 77.89 122.46 186.88
Ours + Task act
+ Temporal act 50.40 532.41 18.42 77.79 122.46 107.87

domain activation sharing for the first lbk layers and subse-
quently switch to the temporal-domain activation sharing for
the remaining layers. Figure 6 shows the sparsity compari-
son between the delta task and temporal activations for depth
estimation, surface normal estimation, and edge detection
tasks to determine the sharing mode switching boundary lbk .

As the frames in the NYUD-v2 dataset are sparsely anno-
tated (e.g., only every 20th frame is annotated), we evaluate
the performance of annotated ground truth (GT) frames by
considering all possible interval offsets between the start
(keyframe) and GT frames within the range of [0, 4] and
record the averaged performance and FLOPs. To assess the
impact of task and temporal activation combinations, we
evaluate the following model variants: (i) ‘ST’, (ii) ‘InvPT’,
(iii) ‘+ Task act’ using only task domain activation reuse
for all frames; and (iv) ‘+ Task act + Temporal act’ which
is the proposed model using the combination of temporal
and task activation sharing strategy. The proposed model
employs the same computation as the ‘+ Task act’ model for
a keyframe (it appears up to 4 frames earlier than the GT
frame) but reduces the computation of base and sub-tasks
for non-keyframes. Table 4 compares the performance and
FLOPs of these variants. We observe that the proposed ap-
proach significantly reduces FLOPs by 42.3% and 65.7%
compared to ‘+ Task act’ and ‘ST’ models, respectively.

Figure 6: The sparsity comparison between delta task and
temporal activation for NYUD-v2 dataset.

5. Discussion
Calculating the actual inference speed of deep learning

models on available computing platforms is a critical factor
in evaluating performance. However, due to the utiliza-
tion of sparse matrix-matrix multiplications in our proposed
approach, measuring the true speedup requires a special-
ized sparse linear algebra processor or hardware accelerator,

which is not yet readily available for commercial platforms.
As a practical alternative, we analyze the required FLOPs
to estimate the speedup potential. While FLOPs provide a
reasonable comparison metric, we acknowledge that they
may not fully represent the actual speed gains achieved. This
calls for future work to develop a sparsity-aware transformer
accelerator that will allow us to quantify the true speedup
achieved by our approach.

6. Conclusion
This paper presents a novel computation- and parameter-

sharing scheme for transformer-based multiple visual tasks
that are concurrently performed on the same input. Moti-
vated by recent transfer learning techniques, our scheme
reuses the weights and activations of the base task by train-
ing sub-tasks with sparse weight and activation differences
via ℓ0 and ℓ1 regularization. As a result, the activations from
the base task can be shared with all sub-tasks, reducing both
parameter and computation redundancy significantly. Ad-
ditionally, the proposed scheme is extended to video inputs
to further reduce computation redundancy in the temporal
domain. Evaluation results confirm that our method attains
better/comparable performance with fewer parameters and
FLOPs than state-of-the-art multi-task learning methods.
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[3] David Brüggemann, Menelaos Kanakis, Anton Obukhov, Sta-
matios Georgoulis, and Luc Van Gool. Exploring relational



context for multi-task dense prediction. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 15869–15878, 2021. 2, 6

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. In European con-
ference on computer vision, pages 213–229. Springer, 2020.
3

[5] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. Ad-
vances in neural information processing systems, 33:9912–
9924, 2020. 3

[6] Rich Caruana. Multitask learning. Machine learning,
28(1):41–75, 1997. 1, 2

[7] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping
Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and
Wen Gao. Pre-trained image processing transformer. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12299–12310, 2021. 1, 3

[8] Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja Fidler,
Raquel Urtasun, and Alan Yuille. Detect what you can: De-
tecting and representing objects using holistic models and
body parts. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 1971–1978, 2014.
6

[9] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and An-
drew Rabinovich. Gradnorm: Gradient normalization for
adaptive loss balancing in deep multitask networks. In In-
ternational conference on machine learning, pages 794–803.
PMLR, 2018. 2

[10] Ziqian Chen, Ling-Yu Duan, Shiqi Wang, Yihang Lou, Tiejun
Huang, Dapeng Oliver Wu, and Wen Gao. Toward knowl-
edge as a service over networks: A deep learning model
communication paradigm. IEEE Journal on Selected Areas
in Communications, 37(6):1349–1363, 2019. 2

[11] Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong,
Henrik Kretzschmar, Yuning Chai, and Dragomir Anguelov.
Just pick a sign: Optimizing deep multitask models with gradi-
ent sign dropout. Advances in Neural Information Processing
Systems, 33:2039–2050, 2020. 2

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009. 7

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Transform-
ers for image recognition at scale. In International Conference
on Learning Representations, 2021. 1, 3, 4, 7

[14] Simon Shaolei Du, Wei Hu, Sham M Kakade, Jason D Lee,
and Qi Lei. Few-shot learning via learning the representation,
provably. In International Conference on Learning Represen-
tations, 2020. 3

[15] David Eigen and Rob Fergus. Predicting depth, surface nor-
mals and semantic labels with a common multi-scale convolu-

tional architecture. In Proceedings of the IEEE international
conference on computer vision, pages 2650–2658, 2015. 2

[16] Theodoros Evgeniou and Massimiliano Pontil. Regular-
ized multi–task learning. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 109–117, 2004. 1, 2

[17] Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil,
and Chelsea Finn. Efficiently identifying task groupings
for multi-task learning. Advances in Neural Information
Processing Systems, 34:27503–27516, 2021. 2

[18] Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, and Alan L
Yuille. Nddr-cnn: Layerwise feature fusing in multi-task
cnns by neural discriminative dimensionality reduction. In
Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 3205–3214, 2019. 1, 2

[19] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
580–587, 2014. 2

[20] Mitchell A Gordon, Kevin Duh, and Nicholas Andrews. Com-
pressing bert: Studying the effects of weight pruning on trans-
fer learning. ACL 2020, page 143, 2020. 3

[21] Demi Guo, Alexander Rush, and Yoon Kim. Parameter-
efficient transfer learning with diff pruning. In Annual Meet-
ing of the Association for Computational Linguistics, 2021.
2, 3, 5

[22] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
9729–9738, 2020. 3

[23] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 2

[24] Xuehai He, Chunyuan Li, Pengchuan Zhang, Jianwei Yang,
and Xin Eric Wang. Parameter-efficient fine-tuning for vision
transformers. arXiv preprint arXiv:2203.16329, 2022. 3

[25] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 4

[26] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In International Conference on Machine
Learning, pages 2790–2799. PMLR, 2019. 2, 3

[27] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-
rank adaptation of large language models. In International
Conference on Learning Representations, 2022. 3

[28] Zhiqi Huang, Lu Hou, Lifeng Shang, Xin Jiang, Xiao Chen,
and Qun Liu. Ghostbert: Generate more features with cheap
operations for bert. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 6512–6523, 2021.
3

[29] Rabeeh Karimi Mahabadi, James Henderson, and Sebastian
Ruder. Compacter: Efficient low-rank hypercomplex adapter



layers. Advances in Neural Information Processing Systems,
34:1022–1035, 2021. 3

[30] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task
learning using uncertainty to weigh losses for scene geometry
and semantics. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7482–7491,
2018. 2

[31] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do
better imagenet models transfer better? In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 2661–2671, 2019. 3

[32] Abhishek Kumar and Hal Daumé III. Learning task grouping
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