
Efficient 3D Semantic Segmentation with Superpoint Transformer

Damien Robert1, 2

damien.robert@ign.fr

Hugo Raguet3

hugo.raguet@insa-cvl.fr

Loic Landrieu2,4

loic.landrieu@enpc.fr

1CSAI, ENGIE Lab CRIGEN, France
2 LASTIG, IGN, ENSG, Univ Gustave Eiffel, France

3INSA Centre Val-de-Loire Univ de Tours, LIFAT, France
4LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, France

Abstract

We introduce a novel superpoint-based transformer ar-
chitecture for efficient semantic segmentation of large-scale
3D scenes. Our method incorporates a fast algorithm to par-
tition point clouds into a hierarchical superpoint structure,
which makes our preprocessing 7 times faster than existing
superpoint-based approaches. Additionally, we leverage a
self-attention mechanism to capture the relationships be-
tween superpoints at multiple scales, leading to state-of-the-
art performance on three challenging benchmark datasets:
S3DIS (76.0% mIoU 6-fold validation), KITTI-360 (63.5%
on Val), and DALES (79.6%). With only 212k parameters,
our approach is up to 200 times more compact than other
state-of-the-art models while maintaining similar perfor-
mance. Furthermore, our model can be trained on a single
GPU in 3 hours for a fold of the S3DIS dataset, which is
7× to 70× fewer GPU-hours than the best-performing meth-
ods. Our code and models are accessible at github.com/
drprojects/superpoint_transformer.

1. Introduction
As the expressivity of deep learning models increases

rapidly, so do their complexity and resource requirements
[15]. In particular, vision transformers have demonstrated
remarkable results for 3D point cloud semantic segmentation
[61, 41, 18, 25, 36], but their high computational require-
ments make them challenging to train effectively. Addition-
ally, these models rely on regular grids or point samplings,
which do not adapt to the varying complexity of 3D data: the
same computational effort is allocated everywhere, regard-
less of the local geometry or radiometry of the point cloud.
This issue leads to needlessly high memory consumption,
limits the number of points that can be processed simultane-
ously, and hinders the modeling of long-range interactions.

Superpoint-based methods [29, 26, 23, 45] address the

104 105 107
60

70

75
SPT

SPT-nano

SPG

KPConv

Stratified Trans.

RandLaNet

Point Trans.

MinkowskiNet

Deep
View
Agg

PointNeXt

S

B

L
XL

100h

25h
5h

Training time
(GPU-h)

Model Size

m
Io

U
6-

Fo
ld

Figure 1: Model Size vs. Performance. We visualize the
performance of different methods on the S3DIS dataset (6-
fold validation) in relation to their model size in log-scale.
The area of the markers indicates the GPU-time to train on a
single fold. Our proposed method Superpoint Transformer
(SPT) achieves state-of-the-art with a reduction of up to 200-
fold in model size and 70-fold in training time (in GPU-h)
compared to recent methods. The even smaller SPT-nano
model achieves a fair performance with 26k parameters only.

limitation of regular grids by partitioning large point clouds
into sets of points— superpoints—which adapt to the local
complexity. By directly learning the interaction between su-
perpoints instead of individual points, these methods enable
the analysis of large scenes with compact and parsimonious
models that can be trained faster than standard approaches.
However, superpoint-based methods often require a costly
preprocessing step, and their range and expressivity are lim-

1

ar
X

iv
:2

30
6.

08
04

5v
2

 [
cs

.C
V

]
 1

2
A

ug
 2

02
3

github.com/drprojects/superpoint_transformer
github.com/drprojects/superpoint_transformer

ited by their use of local graph-convolution schemes [51].
In this paper, we propose a novel superpoint-based trans-

former architecture that overcomes the limitations of both
approaches, see Figure 1. Our method starts by partition-
ing a 3D point cloud into a hierarchical superpoint struc-
ture that adapts to the local properties of the acquisition at
multiple scales simultaneously. To compute this partition
efficiently, we propose a new algorithm that is an order of
magnitude faster than existing superpoint preprocessing al-
gorithms. Next, we introduce the Superpoint Transformer
(SPT) architecture, which uses a sparse self-attention scheme
to learn relationships between superpoints at multiple scales.
By viewing the semantic segmentation of large point clouds
as the classification of a small number of superpoints, our
model can accurately classify millions of 3D points simulta-
neously without relying on sliding windows. SPT achieves
near state-of-the-art accuracy on various open benchmarks
while being significantly more compact and able to train
much quicker than common approaches. The main contribu-
tions of this paper are as follows:

• Efficient Superpoint Computation: We propose a new
method to compute a hierarchical superpoint structure for
large point clouds, which is more than 7 times faster than
existing superpoint-based methods. Our preprocessing time
is also comparable or faster than standard approaches, ad-
dressing a significant drawback of superpoint methods.
• State-of-the-Art Performance: Our model reaches per-

formance at or close to the state-of-the-art for three open
benchmarks with distinct settings: S3DIS for indoor scan-
ning [3], KITTI-360 for outdoor mobile acquisitions [32],
and DALES for city-scale aerial LiDAR [55].
• Resource-Efficient Models: SPT is particularly resource-

efficient as it only has 212k parameters for S3DIS and
DALES, a 200-fold reduction compared to other state-of-
the-art models such as PointNeXt [44] and takes 70 times
fewer GPU-h to train than Stratified Transformer [25]. The
even more compact SPT-nano reaches 70.8% 6-Fold mIoU
on S3DIS with only 26k parameters, making it the smallest
model to reach above 70% by a factor of almost 300.

2. Related Work
This section provides an overview of the main inspira-

tions for this paper, which include 3D vision transformers,
partition-based methods, and efficient learning for 3D data.

3D Vision Transformers. Following their adoption for
image processing [10, 34], Transformer architectures [56]
designed explicitly for 3D analysis have shown promising
results in terms of performance [61, 18] and speed [41, 36].
In particular, the Stratified Transformer of Lai et al. uses
a specific sampling scheme [25] to model long-range inter-
actions. However, the reliance of 3D vision transformers
on arbitrary K-nearest or voxel neighborhoods leads to high

memory consumption, which hinders the processing of large
scenes and the ability to leverage global context cues.

Partition-Based Methods. Partitioning images into super-
pixels has been studied extensively to simplify image analy-
sis, both before and after the widespread use of deep learning
[1, 54]. Similarly, superpoints are used for 3D point cloud
segmentation [40, 33] and object detection [19, 11]. Super-
PointGraph [29] proposed to learn the relationship between
superpoints using graph convolutions [51] for semantic seg-
mentation. While this method trains fast, its preprocessing is
slow and its expressivity and range are limited, as it operates
on a single partition. Recent works have proposed ways
of learning the superpoints themselves [26, 23, 53], which
yields improved results but at the cost of an extra training
step or a large point-based backbone [24].

Hierarchical partitions are used for image processing
[2, 59, 60] and 3D analysis tasks such as point cloud com-
pression [12] and object detection [7, 31]. Hierarchical ap-
proaches for semantic segmentation use Octrees with fixed
grids [39, 48]. On the contrary, SPT uses a multi-scale hi-
erarchical structure that adapts to the local geometry of the
data. This leads to partitions that conform more closely
to semantic boundaries, enabling the network to model the
interactions between objects or object parts.

Efficient 3D Learning. As 3D scans of real-world scenes
can contain hundreds of millions of points, optimizing the ef-
ficiency of 3D analysis is an essential area of research. Point-
NeXt [44] proposes several effective techniques that allow
simple and efficient methods [43] to achieve state-of-the-art
performance. RandLANet [22] demonstrates that efficient
sampling strategies can yield excellent results. Sparse [16]
or hybrid [35] point cloud representations have also helped
reduce memory usage. However, by leveraging the local sim-
ilarity of dense point clouds, superpoint-based methods can
achieve an input reduction of several orders of magnitude,
resulting in unparalleled efficiency.

3. Method
Our method has two key components. First, we use an

efficient algorithm to segment an input point cloud into
a compact multi-scale hierarchical structure. Second, a
transformer-based network leverages this structure to classify
the elements of the finest scale.

3.1. Efficient Hierarchical Superpoint Partition
We consider a point cloud C with positional and radiomet-

ric information. To learn multiscale interactions, we compute
a hierarchical partition of C into geometrically-homogeneous
superpoints of increasing coarseness; see Figure 2. We first
define the concept of hierarchical partitions.

2

(a) Input point cloud (b) Ground truth labels

(c) First partition level (d) First superpoint-graph

(e) Second partition level (f) Second superpoint-graph

Figure 2: Superpoint Transformer. Our method takes as
input a point cloud a) and computes its hierarchical parti-
tion into geometrically homogeneous superpoints at multiple
scales: c) and e). For all partition levels, we construct su-
perpoint adjacency graphs d) and f), which are used by an
attention-based network to classify the finest superpoints.

Definition 1 Hierarchical Partitions. A partition of a set
X is a collection of subsets ofX such that each element ofX
is in one and only one of such subsets. P := [P0, · · · ,PI]
is a hierarchical partition of X if P0 = X , and Pi+1 is a
partition of Pi for i ∈ [0, I − 1].

Throughout this paper, all functions or tensors related to
a specific partition level i are denoted with an exponent i.

Hierarchical Superpoint Partitions. We propose an ef-
ficient approach for constructing hierarchical partitions of
large point clouds. First, we associate each point c of C
with features fc representing its local geometric and radio-
metric information. These features can be handcrafted [17]
or learned [26, 23]. See the Appendix for more details on
point features. We also define a graph G encoding the adja-
cency between points usually based on spatial proximity, e.g.
k-nearest neighbors.

We view the features fc for all c of C as a signal f de-
fined on the nodes of the graph G. Following the ideas of
SuperPoint Graph [29], we compute an approximation of f
into constant components by solving an energy minimization
problem penalized with a graph-based notion of simplicity.

The resulting constant components form a partition whose
granularity is determined by a regularization strength λ > 0:
higher values yield fewer and coarser components.

For each component of the partition, we can compute the
mean position (centroid) and feature of its elements, defining
a coarser point cloud on which we can repeat the partitioning
process. We can now compute a hierarchical partition P :=
[P0, · · · ,PI] of C from a list of regularization strengths
λ1, · · · , λI . First, we set P0 as the point cloud C and f0 as
the point features f . Then, for i = 1 to I , we compute (i) a
partition Pi of f i−1 penalized with λi; (ii) the mean signal
f i for all components of Pi. The coarseness of the resulting
partitions [P0, · · · ,PI] is thus strictly increasing. See the
Appendix for a more detailed description of this process.

Hierarchical Graph Structure. A hierarchical partition
defines a polytree structure across the different levels. Let p
be an element of Pi. If i ∈ [0, I − 1], parent(p) is the com-
ponent of Pi+1 which contains p. If i ∈ [1, I], children(p)
is the set of components of Pi−1 whose parent is p.

Superpoints also share adjacency relationships with super-
points of the same partition level. For each level i ≥ 1, we
build a superpoint-graph Gi by connecting adjacent compo-
nents of Pi, i.e. superpoints whose closest points are within a
distance gap ϵi > 0. For p ∈ Pi, we denote N (p) ⊂ Pi the
set of neighbours of p in the graph Gi. More details on the
superpoint-graph construction can be found in the Appendix.

Hierarchical Parallel ℓ0-Cut Pursuit. Computing the hi-
erarchical components involves solving a recursive sequence
of non-convex, non-differentiable optimization problems on
large graphs. We propose an adaptation of the ℓ0-cut pursuit
algorithm [28] to solve this problem. To improve efficiency,
we adapt the graph-cut parallelization strategy initially intro-
duced by Raguet et al. [46] in the convex setting.

3.2. Superpoint Transformer
Our proposed SPT architecture draws inspiration from

the popular U-Net [50, 14]. However, instead of using grid,
point, or graph subsampling, our approach derives its differ-
ent resolution levels from the hierarchical partition P .

General Architecture. As represented in Figure 3, SPT
comprises an encoder with I stages and a decoder with I − 1
stages: the prediction takes place at the level P1 and not
on individual points. We start by computing the relative
positions x of all points and superpoints with respect to
their parent. For a superpoint p ∈ Pi, we define xi

p as the
position of the centroid of p relative to its parent’s. The
coarsest superpoints of PI have no parent and use the center
of the scene as a reference centroid. We then normalize these
values so that the sets {xi

p|p ∈ children(q)} have a radius of
1 for all q ∈ Pi+1. We compute features for each 3D point by

3

T 1
enc

T 2
enc

T 1
dec

P2

P1

P0

to coarser partition

to finer partition

intra-level
transformer

Figure 3: Superpoint Transformer. We represent our pro-
posed architecture with two partitions levels P1 and P2. We
use a transformer-based module to leverage the context at
different scales, leading to large receptive fields. We only
classify the superpoints of the partition P1 and not individual
3D points, allowing fast training and inference.

using a multi-layer perceptron (MLP) to mix their relative
positions and handcrafted features: g0 := ϕ0

enc([x
0, f0]),

with [·, ·] the channelwise concatenation operator.
Each level i ≥ 1 of the encoder maxpools the features of

the finer partition level i− 1, adds relative positions xi and
propagates information between neighboring superpoints in
Gi. For a superpoint p in Pi, this translates as:

gip = T i
enc ◦ ϕi

enc

([
xi
p, max

q∈children(p)

(
gi−1
q

)])
(1)

with ϕi
enc an MLP and T i

enc a transformer module explained
below. By avoiding communication between the 3D points
of P0, we bypass a potential computational bottleneck.

The decoder passes information from the coarser partition
level i+1 to the finer level i. It uses the relative positions xi

and the encoder features gi to improve the spatial resolution
of its feature maps hi [50]. For a superpoint p in partition
Pi with 1 ≤ i < I − 1, this can be expressed as:

hi
p = T i

dec ◦ ϕi
dec

([
xi
p, g

i
p, h

i+1
parent(p)

])
(2)

with hI = gI , ϕi
dec an MLP, and T i

dec an attention-based
module similar to T i

enc.

Self-Attention Between Superpoints. We propose a vari-
ation of graph-attention networks [57] to propagate informa-
tion between neighboring superpoints of the same partition
level. For each level of the encoder and decoder, we as-
sociate to superpoint p ∈ Pi a triplet of key, query, value
vectors Kp, Qp, Vp of size Dkey, Dkey and Dval. These values

are obtained by applying a linear layer to the corresponding
feature map m after GraphNorm normalization [5].

We then characterize the relationship between two su-
perpoints p, q of Pi adjacent in Gi by a triplet of fea-
tures akey

p,q, a
que
p,q, aval

p,q of dimensions Dkey, Dkey and Dval, and
whose computation is detailed in the next section. Given a su-
perpoint p, we stack the vectors akey

p,q, a
que
p,q, aval

p,q for q ∈ N (p)

in matrices Akey
p , Aque

p , Aval
p of dimensions | N (p)| ×Dkey or

| N (p)| ×Dval. The modules T i
enc and T i

dec gather contextual
information as follows:

[T (m)]p
+
= att(Q⊺

p ⊕Aque
p ,KN (p)+Akey

p , VN (p)+Aval
p) , (3)

with +
= a residual connection [20], ⊕ the addition operator

with broadcasting on the first dimension, and KN (p) the
matrix of stacked vectors Kq for q ∈ N (p). The attention
mechanism writes as follows:

att(Q,K, V) := V ⊺ softmax

(
Q⊙K1√
| N (p)|

)
, (4)

with ⊙ the Hadamard termwise product and 1 a column-
vector with Dkey ones. Our proposed scheme is similar
to classic attention schemes with two differences: (i) the
queries adapt to each neighbor, and (ii) we normalize the
softmax with the neighborhood size instead of the key di-
mension. In practice, we use multiple independent attention
modules in parallel (multi-head attention) and several con-
secutive attention blocks.

3.3. Leveraging the Hierarchical Graph Structure
The hierarchical superpoint partition P can be used for

more than guidance for graph pooling operations. Indeed,
we can learn expressive adjacency encodings capturing the
complex adjacency relationships between superpoints and
employ powerful supervision and augmentation strategies
based on the hierarchical partitions.

Adjacency Encoding. While the adjacency between two
3D points is entirely defined by their distance vector, the
relationships between superpoints are governed by additional
factors such as their alignment, proximity, and difference in
sizes or shapes. We characterize the adjacency of pairs of
adjacent superpoints of the same partition level using a set
of handcrafted features based on: (i) the relative positions of
centroids, (ii) position of paired points in each superpoints,
(iii) the superpoint principal directions, and (iv) the ratio
between the superpoints’ length, volume, surface, and point
count. These features are efficiently computed only once
during preprocessing.

For each pair of superpoints (p, q) adjacent in Gi, we
jointly compute the concatenated akey

p,q, a
que
p,q, aval

p,q by applying
an MLP ϕi

adj to the handcrafted adjacency features defined
above. Further details on the superpoint-graph construction
and specific adjacency features are provided in the Appendix.

4

Hierarchical Supervision. We propose to take advantage
of the nested structure of the hierarchical partition P into
the supervision of our model. We can naturally associate
the superpoints of any level i ≥ 1 with a set of 3D points
in P0. The superpoints at the finest level i = 1 are almost
semantically pure (see Figure 6), while the superpoints at
coarser levels i > 1 typically encompass multiple objects.
Therefore, we use a dual learning objective: (i) we predict
the most frequent label within the superpoints of P1 , and
(ii) we predict the label distribution for the superpoints of
Pi with i > 1. We supervise both predictions with the
cross-entropy loss.

Let yip denote the true label distribution of the 3D points
within a superpoint p ∈ Pi, and ŷip a one-hot-encoding of
its most frequent label. We use a dedicated linear layer
at each partition level to map the decoder feature gip to a
predicted label distribution zip. Our objective function can
be formulated as follows:

L =
∑
p∈P1

−N1
p

| C |
H(ŷ1p, z

1
p)+

I∑
i=2

∑
p∈Pi

µiN i
p

| C |
H(yip, z

i
p) , (5)

where µ2, · · · , µI are positive weights, N i
p represents the

number of points within a superpoint p ∈ Pi, and |C| is the
total number of points in the point cloud, and H(y, z) =
−
∑

k∈K yk log(zk) and K the class set.

Superpoint-Based Augmentations. Although our ap-
proach classifies superpoints rather than individual 3D points,
we still need to load the points of P0 in memory to em-
bed the superpoints from P1. However, since superpoints
are designed to be geometrically simple, only a subset of
their points is needed to characterize their shape. There-
fore, when computing the feature g1p of a superpoint p of
P1 containing n points with Eq. (1), we sample only a por-
tion tanh(n/nmax) of its points, with a minimum of nmin.
This sampling strategy reduces the memory load and acts
as a powerful data augmentation. The lightweight version
of our model SPT-nano goes even further. It ignores the
points entirely and only use handcrafted features to embed
the superpoints of P1, thus avoiding entirely the complexity
associated with the size of the input point cloud P0.

To further augment the data, we exploit the geometric
consistency of superpoints and their hierarchical arrange-
ment. During the batch construction, we randomly drop
each superpoint with a given probability at all levels. Drop-
ping superpoints at the fine levels removes random objects
or object parts, while dropping superpoints at the coarser
levels removes entire structures such as walls, buildings, or
portions of roads, for example.

Table 1: Partition Configuration. We report the point count
of different datasets before and after subsampling, as well as
the size of the partitions.

Dataset Points Subsampled | P1 | | P2 |

S3DIS [3] 273m 32m 979k 292k
DALES [55] 492m 449m 14.8m 2.56m
KITTI-360 [32] 919m 432m 16.2m 2.98m

4. Experiments
We evaluate our model on three diverse datasets described

in Section 4.1. In Section 4.2, we evaluate our approach in
terms of precision, but also quantify the gains in terms of
pre-processing, training, and inference times. Finally, we
propose an extensive ablation study in Section 4.3.

4.1. Datasets and Models
Datasets. To demonstrate its versatility, we evaluate SPT
on three large-scale datasets of different natures.
S3DIS [3]. This indoor dataset of office buildings contains
over 274 million points across 6 building floors—or areas.
The dataset is organized by individual rooms, but can also
be processed by considering entire areas at once.
KITTI-360 [32]. This outdoor dataset contains more than
100 k laser scans acquired in various urban settings on a mo-
bile platform. We use the accumulated point clouds format,
which consists of large scenes with around 3 million points.
There are 239 training scenes and 61 for validation.
DALES [55]. This 10 km2 aerial LiDAR dataset contains
500 millions of points across 40 urban and rural scenes,
including 12 for evaluation.

We subsample the datasets using a 3cm grid for S3DIS,
and 10cm for KITTI-360 and DALES. All accuracy metrics
are reported for the full, unsampled point clouds. We use a
two-level partition (I = 2) with µ2 = 50 for all datasets and
select the partition parameters to obtain a 30-fold reduction
between P1 and P0 and a further 5-fold reduction for P2.
See Table 1 for more details.

Models. We use the same model configuration for all three
datasets with minimal adaptations. All transformer modules
have a shared width Dval, a small key space of dimension
Dkey = 4, 16 heads, with 3 blocks in the encoder and 1
in the decoder. We set Dval = 64 for S3DIS and DALES
(210k parameters), and Dval = 128 (777k parameters) for
KITTI360. See the Appendix and our open repository for
the detailed configuration of all modules.

We also propose SPT-nano, a lightweight version of our
model that does not compute point-level features but operates
directly on the first partition level P1. The value of the
maxpool over points in Eq. (1) for i = 1 is replaced by f1,
the aggregated handcrafted point features at the level 1 of

5

In
pu

t
Pa

rt
iti

on
P
2

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

(a) S3DIS (b) KITTI-360 (c) DALES

Figure 4: Qualitative Results. We represent input samples (with color or intensity) of our approach and its predictions for all
three datasets. Additionally, we show the coarsest partition level and demonstrate how superpoints can accurately capture the
contours of complex objects and classify them accordingly. Black points are unlabeled in the ground truth.

the partition. This model never considers the full point cloud
P0 but only operates on the partitions. For this model, we
set Dval = 16 for S3DIS and DALES (26k parameters), and
Dval = 32 for KITTI360 (70k parameters).

Batch Construction. Batches are sampled from large tiles:
entire building floors for S3DIS, and full scenes for KITTI-
360 or DALES. Each batch is composed of 4 randomly sam-
pled portions of the partition with a radius of 7m for S3DIS
and 50m for KITTI and DALES, allowing us to model long-
range interactions. During training, we apply a superpoint
dropout rate of 0.2 for each superpoint at all hierarchy levels,
as well as random rotation, tilting, point jitter and hand-
crafted features dropout. When sampling points within each

superpoint, we set nmin = 32 and nmax = 128.

Optimization. We use the ADAMW optimizer [38] with
default parameters, a weight decay of 10−4, a learning rate
of 10−2 for DALES and KITTI-360 on and 10−1 for S3DIS.
The learning rate for the attention modules is 10 times
smaller than for other weights. Learning rates are warmed
up from 10−6 for 20 epochs and progressively reduced to
10−6 with cosine annealing [37].

4.2. Quantitative Evaluation
Performance Evaluation. As seen in Table 2, SPT per-
forms at the state-of-the-art on two of three datasets despite
being a significantly smaller model. On S3DIS, SPT beats

6

Table 2: Performance Evaluation. We report the Mean
Intersection-over-Union of different methods on three dif-
ferent datasets. SPT performs on par or better than recent
methods with significantly fewer parameters. † superpoint-
based. ⋆/∗ model with 777k/70k parameters.

Model
Size S3DIS KITTI

DALES×106 6-Fold Area 5 360 val

PointNet++ [43] 3.0 56.7 - - 68.3
† SPG [29] 0.28 62.1 58.0 - 60.6
ConvPoint [4] 4.7 68.2 - - 67.4
† SPG + SSP [26] 0.29 68.4 61.7 - -
† SPNet [23] 0.32 68.7 - - -
MinkowskiNet [8, 6] 37.9 69.1 65.4 58.3 -
RandLANet [22] 1.2 70.0 - - -
KPConv [52] 14.1 70.6 67.1 - 81.1
Point Trans.[61] 7.8 73.5 70.4 - -
RepSurf-U [47] 0.97 74.3 68.9 - -
DeepViewAgg [49] 41.2 74.7 67.2 62.1 -
Strat. Trans. [25, 58] 8.0 74.9 72.0 - -
PointNeXt-XL [44] 41.6 74.9 71.1 - -

† SPT (ours) 0.21 76.0 68.9 63.5⋆ 79.6
† SPT-nano (ours) 0.026 70.8 64.9 57.2∗ 75.2

1 100

40

60

70

0.2 Training time (GPU-h)

A
re

a5
te

st
m

Io
U

SPT SPT-nano (×0.5)
SPG (×0.9) PointNet++ (×2)
KPConv (×5) MinkowskiNet (×9)
DeepViewAgg (×11) Point Trans (×20)
Strat. Trans. ∗ (×67)

Figure 5: Training Speed. We report the evolution of the
test mIoU for S3DIS Area 5 for different methods until the
best epoch is reached. The curves are shifted right according
to the preprocessing time. We report in parenthesis the time
ratio compared to SPT.

PointNeXt-XL with 196× fewer parameters. On KITTI-360,
SPT outperforms MinkowskiNet despite a size ratio of 49,
and surpasses the performance of the even larger multimodal
point-image model DeepViewAgg. On DALES, SPT out-

performs ConvPoint by more than 12 points with over 21
times fewer parameters. Although SPT is 1.5 points behind
KPConv on this dataset, it achieves these results with 67
times fewer parameters. SPT achieves significant perfor-
mance improvements over all superpoint-based methods on
all datasets, ranging from 7 to 14 points. SPT overtakes the
SSP and SPNet superpoint methods that learn the partition
in a two-stage training setup, leading to pre-processing times
of several hours.

Interestingly, the lightweight SPT-nano model matches
KPConv and MinkowskiNet with only 26k parameters.

See Figure 4 for qualitative illustrations.

Preprocessing Speed. As reported in Table 3, our imple-
mentation of the preprocessing step is highly efficient. We
can compute partitions, superpoint-graphs, and handcrafted
features, and perform I/O operations quickly: 12.4min for
S3DIS, 117 for KITTI-360, and 148 for DALES using a
server with a 48-core CPU. An 8-core workstation can pre-
process S3DIS in 26.6min. Our preprocessing time is as fast
or faster than point-level methods and 7× faster than Super-
Point Graph’s, thus alleviating one of the main drawbacks of
superpoint-based methods.

Training Speed. We trained several state-of-the-art meth-
ods from scratch and report in Figure 5 the evolution of test
performance as a function of training time. We used the
official training logs for the multi-GPU Point Transformer
and Stratified Transformer. SPT can train much faster than
all methods not based on superpoints while attaining similar
performance. Although Superpoint Graph trains even faster,
its performance saturates earlier, 6.0 mIoU points below SPT
. We also report the inference time of our method in Table 3,
which is significantly lower than competing approaches, with
a speed-up factor ranging from 8 to 80. All speed measure-
ments were conducted on a single-GPU server (48 cores,
512Go RAM, A40 GPU). Nevertheless, our model can be
trained on a standard workstation (8 cores, 64Go, 2080Ti)
with smaller batches, taking only 1.5 times longer and with
comparable results.

SPT performs on par or better than complex models with
up to two orders of magnitude more parameters and sig-
nificantly longer training times. Such efficiency and com-
pactness have many benefits for real-world scenarios where
hardware, time, or energy may be limited.

4.3. Ablation Study
We evaluate the impact of several design choices in Ta-

ble 4 and reports here our observations.

a) Handcrafted features. Without handcrafted point fea-
tures, our model perform worse on all datasets. This obser-
vation is in line with other works which also remarked the

7

Table 3: Efficiency Analysis. We report the preprocessing
time for the entire S3DIS dataset and the training and infer-
ence time for Area 5. SPT and SPT-nano shows significant
speedups in pre-processing, training, and inference times.

Preprocessing Training Inference
in min in GPU-h in s

PointNet++ [43] 8.0 6.3 42
KPConv [52] 23.1 14.1 162
MinkowskiNet [8] 20.7 28.8 83
Stratified Trans. [25] 8.0 216.4 30
Superpoint Graph [29] 89.9 1.3 16

SPT (ours) 12.4 3.0 2
SPT-nano (ours) 12.4 1.9 1

Table 4: Ablation Study. Impact of some of our design
choices on the mIoU for all tested datasets.

Experiment S3DIS KITTI DALES
6-Fold 360 Val

Best Model 76.0 63.5 79.6

a) No handcrafted features -0.7 -4.1 -1.4
b) No adjacency encoding -6.3 -5.4 -3.0
b) Fewer edges -3.5 -1.1 -0.3
c) No point sampling -1.3 -0.9 -0.5
c) No superpoint sampling -2.7 -2.5 -0.7
c) Only 1 partition level -8.4 -5.1 -0.9

positive impact of well-designed handcrafted features on the
performance of smaller models [21, 47].

b) Influence of Edges. Removing the adjacency encoding
between superpoints leads to a significant drop of 6.3 points
on S3DIS; characterizing the relative position and relation-
ship between superpoints appears crucial to exploiting their
context. We also find that pruning the 50% longest edges
of each superpoint results in a systematic performance drop,
highlighting the importance of modeling long relationships.

c) Partition-Based Improvements. We assess the impact
of several improvements made possible by using hierarchi-
cal superpoints. First, we find that using all available points
when embedding the superpoints of P1 instead of random
sampling resulted in a small performance drop. Second,
setting the superpoint dropout rate to 0 worsens the perfor-
mance by over 2.5 points on S3DIS and KITTI-360.

While we did not observe better results with three or more
partition levels, only using one level leads to a significant
loss of performance for all datasets.

d) Influence of Partition Purity. In Figure 6, we plot
the performance of the “oracle” model which associates

104 105 106 107
40

50

60

70

80

90

×1

×1.5
×3

×10

30 cm

20 cm

10 cm
5 cm 3 cm

Number of superpoints / nonempty voxels

A
re

a5
te

st
m

Io
U

Voxel grid oracle
x cm Grid size

Partition oracle
SPT performance

×n Coarseness ratio
Performance gap

Figure 6: Partition Purity. We plot the highest achievable
“oracle” prediction for our partitions and a regular voxel grid.
We also show the performance of SPT for 4 partitions with a
coarseness ratio from ×1 to ×10.

to each superpoint of P1 with its most frequent true label.
This model acts as an upper bound on the achievable per-
formance with a given partition. Our proposed partition has
significantly higher semantic purity than a regular voxel grid
with as many nonempty voxels as superpoints. This implies
that our superpoints adhere better to semantic boundaries
between objects.

We also report the performance of our model for different
partitions of varying coarseness, measured as the number
of superpoints in P1. Using, respectively, ×1.5 (×3) fewer
superpoints leads to a performance drop of 2.2 (4.7) mIoU
points, but reduce the training time to 2.4 (1.6) hours. The
performance of SPT is more than 20 points below the ora-
cle, suggesting that the partition does not strongly limit its
performance.

Limitations. See the Appendix.

5. Conclusion
We have introduced the Superpoint Transformer approach

for semantic segmentation of large point clouds, combining
superpoints and transformers to achieve state-of-the-art re-
sults with significantly reduced training time, inference time,
and model size. This approach particularly benefits large-
scale applications and computing with limited resources.
More broadly, we argue that small, tailored models can offer
a more flexible and sustainable alternative to large, generic
models for 3D learning. With training times of a few hours
on a single GPU, our approach allows practitioners to easily
customize the models to their specific needs, enhancing the
overall usability and accessibility of 3D learning.

8

Acknowledgements. This work was funded by ENGIE
Lab CRIGEN. This work was supported by ANR project
READY3D ANR-19-CE23-0007, and was granted ac-
cess to the HPC resources of IDRIS under the allocation
AD011013388R1 made by GENCI. We thank Bruno Vallet,
Romain Loiseau and Ewelina Rupnik for inspiring discus-
sions and valuable feedback.

References
[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien

Lucchi, Pascal Fua, and Sabine Süsstrunk. SLIC superpixels
compared to state-of-the-art superpixel methods. TPAMI,
2012.

[2] Pablo Arbelaez. Boundary extraction in natural images using
ultrametric contour maps. CVPR Workshop, 2006.

[3] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis
Brilakis, Martin Fischer, and Silvio Savarese. 3D semantic
parsing of large-scale indoor spaces. CVPR, 2016.

[4] Alexandre Boulch. ConvPoint: Continuous convolutions for
point cloud processing. Computers & Graphics, 2020.

[5] Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-yan Liu,
and Liwei Wang. GraphNorm: A principled approach to
accelerating graph neural network training. ICML, 2021.

[6] Thomas Chaton, Nicolas Chaulet, Sofiane Horache, and Loic
Landrieu. Torch-Points3D: A modular multi-task framework
for reproducible deep learning on 3D point clouds. 3DV,
2020.

[7] Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, and
Xinggang Wang. Hierarchical aggregation for 3D instance
segmentation. CVPR, 2021.

[8] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D
spatio-temporal ConvNets: Minkowski convolutional neural
networks. CVPR, 2019.

[9] Jérôme Demantké, Clément Mallet, Nicolas David, and Bruno
Vallet. Dimensionality based scale selection in 3D LiDAR
point clouds. In Laserscanning, 2011.

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Transform-
ers for image recognition at scale. ICLR, 2020.

[11] Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian
Leibe, and Matthias Nießner. 3D-MPA: Multi-proposal ag-
gregation for 3D semantic instance segmentation. CVPR,
2020.

[12] Yuxue Fan, Yan Huang, and Jingliang Peng. Point cloud com-
pression based on hierarchical point clustering. In APSIPA
ASC, 2013.

[13] Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 1981.

[14] Hongyang Gao and Shuiwang Ji. Graph U-Nets. ICML, 2019.
[15] Charlie Giattino, Edouard Mathieu, Julia Broden, and Max

Roser. Artificial intelligence. Our World in Data, 2022.
https://ourworldindata.org/artificial-intelligence.

[16] Benjamin Graham, Martin Engelcke, and Laurens van der
Maaten. 3D semantic segmentation with submanifold sparse
convolutional networks. CVPR, 2018.

[17] Stéphane Guinard and Loic Landrieu. Weakly supervised
segmentation-aided classification of urban scenes from 3D
LiDAR point clouds. ISPRS Workshop, 2017.

[18] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang
Mu, Ralph R Martin, and Shi-Min Hu. PCT: Point cloud
transformer. CVM, 2021.

[19] Lei Han, Tian Zheng, Lan Xu, and Lu Fang. Occuseg:
Occupancy-aware 3D instance segmentation. CVPR, 2020.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. CVPR, 2016.

[21] Pai-Hui Hsu and Zong-Yi Zhuang. Incorporating handcrafted
features into deep learning for point cloud classification. Re-
mote Sensing, 2020.

[22] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan
Guo, Zhihua Wang, Niki Trigoni, and Andrew Markham.
RandLA-Net: Efficient semantic segmentation of large-scale
point clouds. CVPR, 2020.

[23] Le Hui, Jia Yuan, Mingmei Cheng, Jin Xie, Xiaoya Zhang,
and Jian Yang. Superpoint network for point cloud overseg-
mentation. ICCV, 2021.

[24] Xin Kang, Chaoqun Wang, and Xuejin Chen. Region-
enhanced feature learning for scene semantic segmentation.
arXiv preprint arXiv:2304.07486, 2023.

[25] Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang
Zhao, Shu Liu, Xiaojuan Qi, and Jiaya Jia. Stratified trans-
former for 3D point cloud segmentation. CVPR, 2022.

[26] Loic Landrieu and Mohamed Boussaha. Point cloud overseg-
mentation with graph-structured deep metric learning. CVPR,
2019.

[27] Loic Landrieu and Guillaume Obozinski. Cut pursuit: fast
algorithms to learn piecewise constant functions. AISTATS,
2016.

[28] Loic Landrieu and Guillaume Obozinski. Cut pursuit: Fast
algorithms to learn piecewise constant functions on general
weighted graphs. In SIAM Journal on Imaging Sciences,
2017.

[29] Loic Landrieu and Martin Simonovsky. Large-scale point
cloud semantic segmentation with superpoint graphs. CVPR,
2018.

[30] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on χ-transformed
points. NeurIPS, 2018.

[31] Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, and
Kui Jia. Instance segmentation in 3D scenes using semantic
superpoint tree networks. CVPR, 2021.

[32] Yiyi Liao, Jun Xie, and Andreas Geiger. KITTI-360: A novel
dataset and benchmarks for urban scene understanding in 2D
and 3D. TPAMI, 2022.

[33] Yangbin Lin, Cheng Wang, Dawei Zhai, Wei Li, and Jonathan
Li. Toward better boundary preserved supervoxel segmenta-
tion for 3D point clouds. ISPRS journal of photogrammetry
and remote sensing, 2018.

9

[34] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. CVPR,
2021.

[35] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-
voxel CNN for efficient 3D deep learning. NeurIPS, 2019.

[36] Romain Loiseau, Mathieu Aubry, and Loı̈c Landrieu. Online
segmentation of LiDAR sequences: Dataset and algorithm.
ECCV, 2022.

[37] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient
descent with warm restarts. ICLR, 2017.

[38] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. ICLR, 2019.

[39] J Narasimhamurthy, Karthikeyan Vaiapury, Ramanathan
Muthuganapathy, and Balamuralidhar Purushothaman.
Hierarchical-based semantic segmentation of 3D point cloud
using deep learning. Smart Computer Vision, 2023.

[40] Jeremie Papon, Alexey Abramov, Markus Schoeler, and Flo-
rentin Worgotter. Voxel cloud connectivity segmentation-
supervoxels for point clouds. CVPR, 2013.

[41] Chunghyun Park, Yoonwoo Jeong, Minsu Cho, and Jaesik
Park. Fast point transformer. CVPR, 2022.

[42] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
PointNet: Deep learning on point sets for 3D classification
and segmentation. CVPR, 2017.

[43] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
Net++: Deep hierarchical feature learning on point sets in a
metric space. NeurIPS, 2017.

[44] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan
Hammoud, Mohamed Elhoseiny, and Bernard Ghanem. Point-
NeXt: Revisiting PoinNet++ with improved training and scal-
ing strategies. NeurIPS, 2022.

[45] Xingwen Quana, Binbin Hea, Marta Yebrab, Changmin Yina,
Zhanmang Liaoa, Xueting Zhanga, and Xing Lia. Hierarchi-
cal semantic segmentation of urban scene point clouds via
group proposal and graph attention network. International
Journal of Applied Earth Observations and Geoinformation,
2016.

[46] Hugo Raguet and Loic Landrieu. Parallel cut pursuit for
minimization of the graph total variation. ICML Workshop on
Graph Reasoning, 2019.

[47] Haoxi Ran, Jun Liu, and Chengjie Wang. Surface representa-
tion for point clouds. CVPR, 2022.

[48] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Oct-
Net: Learning deep 3D representations at high resolutions.
CVPR, 2017.

[49] Damien Robert, Bruno Vallet, and Loic Landrieu. Learn-
ing multi-view aggregation in the wild for large-scale 3D
semantic segmentation. CVPR, 2022.

[50] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net:
Convolutional networks for biomedical image segmentation.
MICCAI, 2015.

[51] Martin Simonovsky and Nikos Komodakis. Dynamic edge-
conditioned filters in convolutional neural networks on graphs.
CVPR, 2017.

[52] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. KPConv: Flexible and deformable convolution for
point clouds. ICCV, 2019.

[53] Anirud Thyagharajan, Benjamin Ummenhofer, Prashant Lad-
dha, Om Ji Omer, and Sreenivas Subramoney. Segment-
fusion: Hierarchical context fusion for robust 3D semantic
segmentation. CVPR, 2022.

[54] Wei-Chih Tu, Ming-Yu Liu, Varun Jampani, Deqing Sun,
Shao-Yi Chien, Ming-Hsuan Yang, and Jan Kautz. Learning
superpixels with segmentation-aware affinity loss. CVPR,
2018.

[55] Nina Varney, Vijayan K Asari, and Quinn Graehling. DALES:
A large-scale aerial LiDAR data set for semantic segmentation.
CVPR Workshops, 2020.

[56] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. NeurIPS, 2017.

[57] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adri-
ana Romero, Pietro Lio, and Yoshua Bengio. Graph attention
networks. ICLR, 2018.

[58] Qi Wang, Shengge Shi, Jiahui Li, Wuming Jiang, and Xi-
angde Zhang. Window normalization: Enhancing point cloud
understanding by unifying inconsistent point densities. 2022.

[59] Yongchao Xu, Thierry Géraud, and Laurent Najman. Hi-
erarchical image simplification and segmentation based on
mumford–shah-salient level line selection. Pattern Recogni-
tion Letters, 2016.

[60] Zizhao Zhang, Han Zhang, Long Zhao, Ting Chen, Sercan Ö
Arik, and Tomas Pfister. Nested hierarchical transformer:
Towards accurate, data-efficient and interpretable visual un-
derstanding. AAAI, 2022.

[61] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. ICCV, 2021.

10

Appendix
In this document, we introduce our interactive visualiza-

tion tool (Section A-1), share our source code (Section A-2),
discuss limitations of our approach (Section A-3), provide
a description (Section A-4) and an analysis (Section A-5)
of all handcrafted features used by our method, detail the
construction of the superpoint-graphs (Section A-6) and the
partition process (Section A-7), and provide guidelines on
how to choose the partition’s hyperparameters (Section A-8).
Finally, we clarify our architecture parameters (Section A-9),
explore our model’s salability (Section A-10) and supervi-
sion (Section A-11), detail the class-wise performance of our
approach on each dataset (Section A-12), and the color maps
used in the illustrations of the main paper (Figure A-3).

A-1. Interactive Visualization
We release for this project an interactive plotly visual-

ization tool that produces HTML files compatible with any
browser. As shown in Figure A-1, we can visualize samples
from S3DIS, KITTI-360, and DALES with different point
attributes and from any angle. These visualizations were
instrumental in designing and validating our model and we
hope that they will facilitate the reader’s understanding as
well.

A-2. Source Code
We make our source code publicly available at github.

com/drprojects/superpoint_transformer.
The code provides all necessary instructions for installing
and navigating the project, simple commands to reproduce
our main results on all datasets, ready-to-use pretrained
models, and ready-to-use notebooks.

Our method is developed in PyTorch and relies on Py-
Torch Geometric, PyTorch Lightning, and Hydra.

A-3. Limitations
Our model provides significant advantages in terms of

speed and compacity but also comes with its own set of
limitations.

Overfitting and Scaling. The superpoint approach drasti-
cally simplifies and compresses the training sets: the 274m
3D points of S3DIS are captured by a geometry-driven mul-
tilevel graph structure with fewer than 1.25m nodes. While
this simplification favors the compacity and speed of the
training of the model, this can lead to overfitting when using
SPT configurations with more parameters, as shown in Sec-
tion A-10. Scaling our model to millions of parameters may
only yield better results for training sets that are sufficiently
large, diverse, and complex.

Errors in the Partition. Object boundaries lacking obvi-
ous discontinuities, such as curbs vs. roads or whiteboards
vs. walls, are not well recovered by our partition. As parti-
tion errors cannot be corrected with our approach, this may
lead to classification errors. To improve this, we could re-
place our handcrafted point descriptors (Section A-4) with
features directly learned for partitioning [26, 23]. However,
such methods significantly increase the preprocessing time,
contradicting our current focus on efficiency. In line with
[21, 47], we use easy-to-compute yet expressive handcrafted
features. Our model SPT-nano without point encoder relies
purely on such features and reaches 70.8 mIoU on S3DIS
6-Fold with only 27k param, illustrating this expressivity.

Learning Through the Partition. The idea of learning
point and adjacency features directly end-to-end is a promis-
ing research direction to improve our model. However, this
implies efficiently backpropagating through superpoint hard
assignments, which remains an open problem. Furthermore,
such a method would consider individual 3D points during
training, which would necessitate to perform the partitioning
step multiple times during training time, which may negate
the efficiency of our method

Predictions. Finally, our method predicts labels at the su-
perpoint level P1 and not individual 3D points. Since this
may limit the maximum performance achievable by our ap-
proach, we could consider adding an upsampling layer to
make point-level predictions. However, this does not appear
to us as the most profitable research direction. Indeed, this
may negate some of the efficiency of our method. Further-
more, as shown in the ablation study 4.3 d) of the main paper,
the “oracle” model outperforms ours by a large margin. This
may indicate that performance improvements should primar-
ily be searched in superpoint classification rather than in
improving the partition.

Our model also learns features for superpoints and not
individual 3D points. This may limit downstream tasks
requiring 3D point features, such as surface reconstruction
or panoptic segmentation. However, we argue that specific
adaptations could be explored to perform these tasks at the
superpoint level.

A-4. Handcrafted Features
Our method relies on simple handcrafted features to build

the hierarchical partition and learn meaningful points and
adjacency relationships. In this section, we provide further
details on the definition of these features and how to com-
pute them. It is important to note that these features are
only computed once during preprocessing, and thanks to
our optimized implementation, this step only takes a few
minutes.

11

github.com/drprojects/superpoint_transformer
github.com/drprojects/superpoint_transformer

(a) Position (b) Ground Truth (c) Linearity, Planarity & Verticality

(d) RGB (e) Predictions & Errors (f) Level-2

Figure A-1: Interactive Visualization. Our interactive viewing tool allows for the manipulation and visualization of sample
point clouds colorized according to their position (a), semantic labels (b), selected geometric features (c), radiometry (d), and
to visualize our network’s prediction (e) and partitions (f).

Point Features. We can associate each 3D point with a set
of 8 easy-to-compute handcrafted features, described below.

• Radiometric features (3 or 1): RGB colors are available
for S3DIS and KITTI-360, and intensity values for
DALES. These radiometric features are normalized to
[0, 1] at preprocessing time. For KITTI-360, we find
that using the HSV color model yields better results.

• Geometric features (5): We use PCA-based features:
linearity, planarity, scattering, [9] and verticality [17],
computed on the set of 50-nearest neighbors of each
point. This neighbor search is only computed once
during preprocessing and is also necessary to build
the graph G. We also define elevation as the distance
between a point and the ground below it. Since the
ground is neither necessarily flat nor horizontal, we use
the RANSAC algorithm [13] on a coarse subsampling
of the scene to find a ground plane. We normalize
the elevation by dividing it by 4 for S3DIS and 20 for
DALES and KITTI-360.

At preprocessing time, we only use radiometric and ge-
ometric features to compute the hierarchical partition. At
training time, SPT computes point embeddings by mapping

all available point features, along with the normalized point
position to a vector of size Dpoint with a dedicated MLP ϕ0

enc.
We provide an illustration of the geometric point features

in Figure A-2, to help the reader apprehend these simple
geometric descriptors.

Adjacency Features. The relationship between adjacent
superpoints provides crucial information to leverage their
context. For each edge of the superpoint-graph, we compute
the 18 following features:

• Interface features (7): All adjacent superpoints share an
interface, i.e. pairs of points from each superpoint that
are close and share a line of sight. SuperpointGraph
[29] uses the Delaunay triangulation of the entire point
cloud to compute such interfaces, while we propose
a faster heuristic approach in Section A-6 called the
Approximate Superpoint Gap algorithm. Each pair of
points of an interface defines an offset, i.e. a vector
pointing from one superpoint to its neighbor. We com-
pute the mean offset (dim 3), the mean offset length
(dim 1), and the standard deviation of the offset in each
canonical direction (dim 3).

12

(a) Input (b) Linearity (c) Planarity

(d) Scattering (e) Verticality (f) Elevation

Figure A-2: Point Geometric Features. Given an input cloud (a), the computed PCA-based geometric features (b, c, d, e) and
distance to the ground (f) offer a simple characterization of the local geometry around each point.

Table A-1: Ablation on Handcrafted Features. Impact of
handcrafted features on the mIoU for all tested datasets.

Experiment S3DIS KITTI DALES
6-Fold 360 Val

Best Model 76.0 63.5 79.6

a) Point Features

No radiometric feat. -2.7 -4.0 -1.2
No geometric feat. -0.7 -4.1 -1.4

b) Adjacency Features

No interface feat. -0.2 -0.6 -0.7
No ratio feat. -1.1 -2.2 -0.4
No pose feat. -5.5 -1.2 -0.8

c) Room Features

Room-level samples -3.8 - -
Normalized Room pos. -0.7 - -

• Ratio features (4): As defined in [29], we characterize
each pair of adjacent superpoints with the ratio of their
lengths, surfaces, volumes, and point counts.

• Pose features (7): For each superpoint, we define a nor-
mal vector as its principal component with the smallest

eigenvalue. We then characterize the relative position
between two superpoints with the cosine of the angle
between the superpoint normal vectors (dim: 1) and
between each of the two superpoints’ normal and the
mean offset direction (dim: 2). Additionally, the off-
set between the centroids of the superpoints is used to
compute the centroid distance (dim: 1) and the unit-
normalized centroid offset direction (dim: 3).

Note that the mean offset and the ratio features are not
symmetric and imply that the edges of the superpoint-graphs
are oriented. As mentioned in Section 3.3, a network ϕi

adj
maps these handcrafted features to a vector of size Dkey +
Dque + Dval, for each level i ≥ 1 of the encoder and the
decoder.

A-5. Influence of Handcrafted Features
In Table A-1, we quantify the impact of the handcrafted

features detailed in Section A-4 on performance. To this end,
we retrain SPT without each feature group and evaluate the
prediction on S3DIS Area 5.

a) Point Features. Our experiments show that removing
radiometric features has a strong impact on performance,
with a drop of 2.7 to 4.0 mIoU. In contrast, removing ge-
ometric features results in a performance drop of 0.7 on

13

S3DIS, but 4.1 on KITTI-360.
We observe that both outdoor datasets strongly benefit

from local geometric features, which we hypothesize is due
to their lower resolution and noise level. These results indi-
cate that radiometric features play an important role for all
datasets and that geometric features may facilitate learning
on noisy or subsampled datasets.

b) Adjacency Features. The analysis of the impact of ad-
jacency features on our model’s performance indicates that
they play a crucial role in leveraging contextual information
from superpoints: removing all adjacency features leads to
a significant drop of 3.0 to 6.3 mIoU points on the datasets,
as shown in 4.3 b) of the main paper. Among the different
types of adjacency features, pose features appear particularly
useful in characterizing the adjacency relationships between
superpoints of S3DIS, while interface features have a smaller
impact. These results suggest that the relative pose of objects
in the scene may have more influence on the 3D semantic
analysis performed by our model than the precise character-
ization of their interface. On the other hand, interface and
ratio features seem to have more impact on outdoor datasets,
while the pose information seems to be less informative in
the semantic understanding of the scene.

c) S3DIS Room Partition. The S3DIS dataset is divided
into individual rooms aligned along the x and y axes. This
setup simplifies the classification of classes such as walls,
doors, or windows as they are consistently located at the edge
of the room samples. Some methods also add normalized
room coordinates to each points. However, we argue that
this partition may not generalize well to other environments,
such as open offices, industrial facilities, or mobile mapping
acquisitions, which cannot naturally be split into rooms.

To address this limitation, we use the absolute room po-
sitions to reconstruct the entire floor of each S3DIS area
[52, 6]. This enables our model to consider large multi-room
samples, resulting in a performance increase of 3.8 points.
This highlights the advantage of capturing long-range contex-
tual information. Additionally, we remark that SPT performs
better without using room-normalized coordinates, which
may lead to overfitting and poor performance on layouts that
deviate from the room-based structure of the S3DIS dataset
such as large amphitheaters.

A-6. Superpoint-Graphs Computation
The Superpoint Graph method by Landrieu and Si-

monovsky [29] builds a graph from a point cloud using
Delaunay triangulation, which can take a long time for large
point clouds. In contrast, our approach connects two super-
points in Pi, where i ≥ 1 if their closest points are within a
distance gap ϵi > 0. However, computing pairwise distances
for all points is computationally expensive. We propose a

heuristic to approximately find the closest pair of points for
two superpoints, see Algorithm A-1. We also accelerate the
computation of adjacent superpoints by approximating only
for superpoints with centroids closer than the sum of their
radii plus the gap distance. This approximation helps to
reduce the number of computations required for adjacency
computation, which leads to faster processing times. All
steps involved in the computation of our superpoint-graph
are implemented on the GPU to further enhance computa-
tional efficiency.

Algorithm A-1 Approximate Superpoint Gap

Input: superpoints p1 and p2, num steps
c1 ← centroid(p1)
c2 ← centroid(p2)
for s ∈ num steps do

c2 ← argminp∈p2 ∥c1 − p∥
c1 ← argminp∈p1 ∥c2 − p∥

end for
return ∥c1 − c2∥

Recovering the interface between two adjacent super-
points as evoked in Section A-4 involves a notion of visi-
bility: we connect points from each superpoint which are
facing each other. This can be a challenging and ambigu-
ous problem, which SuperPoint Graph [27] tackles using a
Delaunay triangulation of the points. However, this method
is impractical for large point clouds. To address this issue,
we propose a heuristic approach with the following steps: (i)
first, we use the Approximate Superpoint Gap algorithm to
compute the approximate nearest points for each superpoint.
Then, we restrict the search to only consider points within a
certain distance of the nearest points. Finally, we match the
points by sorting them along the principal component of the
selected points.

A-7. Details on Hierarchical Partitions
We present here a more detailed explanation of the hi-

erarchical partition process. We define for each point c of
C a feature fc of dimension D, and G := (C, E , w) is the
k-nn adjacency between the points, with w ∈ RE

+ a nonnega-
tive proximity value. Our goal is to compute a hierarchical
multilevel partition of the point cloud into superpoints ho-
mogeneous with respect to f at increasing coarseness.

Piecewise Constant Approximation on a Graph. We
first explain how to compute a single-level partition of the
point cloud. We consider the pointwise features fc as a D-
dimensional signal f ∈ RD×|C| defined on the nodes of the
weighted graph G := (C, E , w). We first define an energy
J (e; f,G, λ) measuring the fidelity between a vertex-valued
signal e ∈ RD×|C| and the length of its contours, defined as

14

the weight of the cut between its constant components [27]:

J (e; f,G, λ) := ∥e− f∥2 + λ
∑

(u,v)∈E

wu,v [eu ̸= ev] ,

(A-1)

with λ ∈ R+ a regularization strength and [a ̸= b] the
function equals to 0 if a = b and 1 otherwise. Minimizers of
J are approximations of f that are piecewise constant with
respect to a partition with simple contours in G.

We can characterize such signal e ∈ RD×|C| by the
coarsest partition Pe of P and its associated variable fe ∈
RD×|Pe| such that e is constant within each segment p of
Pe with value fe

p . The partition Pe also induces a graph
Ĝe := (Pe, Ee, we) with Ee linking the component of Pe

adjacent in G and we the weight of the cut between adjacent
elements of P e:

Ee := {(U, V) | U, V ∈ Pe, (U × V) ∩ E ̸= ∅} (A-2)

For (U, V) ∈ Ee, we
U,V :=

∑
(u,v)∈U×V ∩E

wu,v (A-3)

We denote by partition (e) the function mapping e to
these uniquely defined variables:

fe,Pe, Ĝe := partition (e) . (A-4)

Point Cloud Hierarchical Partition. A set of partitions
P := [P0, · · · ,Pi] defines a hierarchical partition of C
with I levels if P0 = C and Pi+1 is a partition of Pi for
i ∈ [0, I − 1]. We propose to use the formulations above
to define a hierarchical partition of the point cloud C char-
acterized by a list λ1, · · · , λI of nonnegative regularization
strengths defining the coarseness of the successive partitions.
In particular, We chose λ1 such that |P1|/|P0 ∼ 30 in our
experiments.

We first define Ĝ0 as the point-level adjacency graph Ĝ
and f0 as f . We can now define the levels of a hierarchical
partition Pi for i ∈ [1, I]:

fi,Pi, Ĝi := partition(argmin
e∈RD×|Pi−1|

J
(
e; fi−1, Ĝi−1, λi−1

)
).

(A-5)

Given that the optimization problems defined in Eq. (A-5)
for i > 1 operate on the component graphs Ĝi, which are
smaller than Ĝ0, the first partition is the most demanding in
terms of computation.

Note that we used the hat notation Ĝi, because these
graphs are only used for computing the hierarchical parti-
tions Pi, and should be distinguished from the the superpoint
graphs Gi on which is based our self-attention mechanism,
constructed from Pi as explained in Section A-6.

A-8. Parameterizing the Partition
We define G as the k = 10-nearest neighbor adjacency

graph and set all edge weights w to 1. The point features fp
whose piecewise constant approximation yields the partition
are of three types: geometric, radiometric, and spatial.

Geometric features ensure that the superpoints are geo-
metrically homogeneous and with simple shapes. We use
the normalized dimensionality-based method described in
Section A-4. Radiometric features encourage the border of
superpoints to follow the color contrast of the scene and are
either RGB or intensity values; they must be normalized
to fall in the [0,1] range. Lastly, we can add to each point
their spatial coordinates with a normalization factor µ in
m−1 to limit the size of the superpoints. We recommend
setting µ as the inverse of the maximum radius expected for
a superpoint: the largest sought object (facade, wall, roof) or
an application-dependent constraint.

The coarseness of the partitions depends on the regular-
ization strength λ as defined in Section ??. Finer partitions
should generally lead to better results but to an increase in
training time and memory requirement. We chose a ratio
| P0 | / | P1 |∼ 30 across all datasets as it proved to be a
good compromise between efficiency and precision. Depend-
ing on the desired trade-off, different ratios can be chosen
by trying other values of λ.

A-9. Implementation Details
We provide the exact parameterization of the SPT archi-

tecture used for our experiments. All MLPs in the architec-
ture use LeakyReLU activations and GraphNorm [5] normal-
ization. For simplicity, we represent an MLP by the list of its
layer widths: [in channels, hidden channels, out channels].

Point Input Features. We refer here to the dimension
of point positions, radiometry, and geometric features as
Dpos

point = 3, Dradio
point , and Dgeof

point = 4 respectively. As seen in
Section A-4, S3DIS and KITTI-360 use Dradio

point = 3, while
DALES uses Dradio

point = 1.

Model Architecture. The exact architecture SPT-64 used
for S3DIS and DALES is detailed in Table A-2. The other
models evaluated are SPT-16, SPT-32, SPT-128 (used for
KITTI-360), and SPT-256, which use the same parameters
except for Dval.

SPT-nano. For SPT-nano, we use and Dval = 16, Dadj =
16, and Dkey = 2. As SPT-nano does not compute point
embedding, it does not use ϕ0, and we set up ϕ1

enc as [Dhf
point+

Dpos
point, Dval, Dval].

15

Table A-2: Model Configuration. We provide the detailed
architecture of the SPT-X architecture. In this paper, we use
X = 64 and X = 128.

Parameter Value

Handcrafted features
Dhf

point Dradio
point +Dgeof

point

Dhf
adj 18

Embeddings sizes
Dpoint 128
Dadj 32

Transformer blocks
Dval X
Dkey 4
blocks encoder 3
blocks decoder 1
heads 16

MLPs
ϕi

adj [Dhf
adj, Dadj, Dadj, 3Dadj]

ϕ0
enc [Dhf

point +D
pos
point, 32, 64, Dpoint]

ϕ1
enc [Dpoint +D

pos
point, Dval, Dval]

ϕ2
enc [Dval +D

pos
point, Dval, Dval]

ϕ1
dec [Dval +Dval +D

pos
point, Dval, Dval]

A-10. Model Scalability
We study the scalability of SPT by comparing models

with different parameter counts on each dataset. It is im-
portant to note that the superpoint approach drastically com-
presses the training set, which can lead to overfitting, see
Section A-3. For example, as illustrated in Table A-3, SPT-
128 with Dval = 128 (777k param.) performs 1.4 points
below Dval = 64 on S3DIS.

We report a similar behavior for other hyperparameters:
in Table A-4, Dkey = 8 instead of 4 incurs a drop of 1.0,
while in Table A-5, Nheads = 32 instead of 16 a drop of
0.1 point. For the larger KITTI-360 dataset (13m nodes),
Dval = 128 performs 1.9 points above Dval = 64, but 5.4
points above Dval = 256 (2.7m param.).

Table A-3: Impact of Model Scaling. Impact of model size
for each dataset.

Model Size S3DIS KITTI DALES
×106 6-Fold 360 Val

SPT-32 0.14 74.5 60.6 78.7
SPT-64 0.21 76.0 61.6 79.6
SPT-128 0.77 74.6 63.5 78.8
SPT-256 1.80 74.0 58.1 77.6

Table A-4: Impact of Query-Key Dimension. Impact of
Dkey on S3DIS 6-Fold.

Dkey 2 4 8 16

SPT-64 75.6 76.0 75.0 74.7

Table A-5: Impact of Heads Count. Impact of the number
of heads Nhead on the S3DIS 6-Fold performance.

Nhead 4 8 16 32

SPT-64 74.3 75.2 76.0 75.9

A-11. Hierarchical Supervision
We explore, in Table A-6, alternatives to our hierarchical

supervision introduced in Section 3.3 : predicting the most
frequent label for P1 and the distribution for P2. We use
“freq-Pi” to refer to the prediction of the most frequent label
applied the Pi partition. Similarly, “dist-Pi” denotes the
prediction of the distribution of labels within each superpoint
of the partition Pi.

We observe a consistent improvement across all datasets
by adding the dist-Pi supervision. This illustrates the bene-
fits of supervising higher-level partitions, despite their lower
purity. Moreover, supervising P1 with the distribution rather
than the most frequent label leads to a further performance
drop. This validates our choice to consider P1 superpoints
as sufficiently pure to be supervised using their dominant
label.

Table A-6: Ablation on Supervision. Impact of our hierar-
chical supervision for each dataset.

Loss S3DIS KITTI DALES
6-Fold 360 Val

freq-Pi-P1 dist-Pi-P2 76.0 63.5 79.6

freq-P1 -0.2 -0.8 -0.8
dist-Pi-P1 -0.8 -1.3 -0.8

A-12. Detailed Results
We report in Table A-7 the class-wise performance across

all datasets for SPT and other methods for which this in-
formation was available. As previously stated, SPT per-
forms close to state-of-the-art methods on all datasets, while
being significantly smaller and faster to train. By design,
superpoint-based methods can capture long-range interac-
tions and their predictions are more spatially regular than
point-based approaches. This may explain the performance
of SPT on S3DIS, which encompasses large, geometrically
homogeneous objects or whose identification requires long-
range context understanding, such as ceiling, floor, columns,

16

Table A-7: Class-wise Performance. Class-wise mIoU across all datasets for our Superpoint Transformer .

S3DIS Area 5
Method mIoU ceiling floor wall beam column window door chair table bookcase sofa board clutter

PointNet [42] 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2
SPG [29] 58.4 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2
MinkowskiNet [8] 65.4 91.8 98.7 86.2 0.0 34.1 48.9 62.4 81.6 89.8 47.2 74.9 74.4 58.6
SPG + SSP [26] 61.7 91.9 96.7 80.8 0.0 28.8 60.3 57.2 85.5 76.4 70.5 49.1 51.6 53.3
KPConv [52] 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9
PointTrans.[61] 70.4 94.0 98.5 86.3 0.0 38.0 63.4 74.3 89.1 82.4 74.3 80.2 76.0 59.3
DeepViewAgg [49] 67.2 87.2 97.3 84.3 0.0 23.4 67.6 72.6 87.8 81.0 76.4 54.9 82.4 58.7
Stratified PT [25] 72.0 96.2 98.7 85.6 0.0 46.1 60.0 76.8 92.6 84.5 77.8 75.2 78.1 64.0

SPT 68.9 92.6 97.7 83.5 0.2 42.0 60.6 67.1 88.8 81.0 73.2 86.0 63.1 60.0
SPT-nano 64.9 92.4 97.1 81.6 0.0 38.2 56.4 58.6 86.3 77.3 69.6 82.5 50.5 53.4

S3DIS 6-FOLD

PointNet [42] 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 42.0 54.1 38.2 9.6 29.4 35.2
SPG [29] 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9
ConvPoint [4] 68.2 95.0 97.3 81.7 47.1 34.6 63.2 73.2 75.3 71.8 64.9 59.2 57.6 65.0
MinkowskiNet [8, 49] 69.5 91.2 90.6 83.0 59.8 52.3 63.2 75.7 63.2 64.0 69.0 72.1 60.1 59.2
SPG + SSP [26] 68.4 91.7 95.5 80.8 62.2 54.9 58.8 68.4 78.4 69.2 64.3 52.0 54.2 59.2
KPConv [52] 70.6 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3
DeepViewAgg [49] 74.7 90.0 96.1 85.1 66.9 56.3 71.9 78.9 79.7 73.9 69.4 61.1 75.0 65.9

SPT 76.0 93.9 96.3 84.3 71.4 61.3 70.1 78.2 84.6 74.1 67.8 77.1 63.6 65.0
SPT-nano 70.8 93.1 96.0 80.9 68.4 54.0 62.2 71.3 76.3 70.8 63.3 74.3 51.9 57.6

KITTI-360 Val

Method mIoU ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

tr
af

fic
lig

.

tr
af

fic
si

g.

ve
ge

ta
tio

n

te
rr

ai
n

pe
rs

on

ca
r

tr
uc

k

m
ot

or
cy

cl
e

bi
cy

cl
e

MinkowskiNet [8, 49] 54.2 90.6 74.4 84.5 45.3 42.9 52.7 0.5 38.6 87.6 70.3 26.9 87.3 66.0 28.2 17.2
DeepViewAgg [49] 57.8 93.5 77.5 89.3 53.5 47.1 55.6 18.0 44.5 91.8 71.8 40.2 87.8 30.8 39.6 26.1

SPT 63.5 93.3 79.3 90.8 56.2 45.7 52.8 20.4 51.4 89.8 73.6 61.6 95.1 79.0 53.1 10.9
SPT-nano 57.2 91.7 74.7 87.8 49.3 38.8 49.0 12.2 39.2 88.0 69.5 39.9 94.2 80.1 33.7 10.4

DALES
Method mIoU ground vegetation car truck power line fence pole building

PointNet++ [43] 68.3 94.1 91.2 75.4 30.3 79.9 46.2 40.0 89.1
ConvPoint [4] 67.4 96.9 91.9 75.5 21.7 86.7 29.6 40.3 96.3
SPG [29] 60.6 94.7 87.9 62.9 18.7 65.2 33.6 28.5 93.4
PointCNN [30] 58.4 97.5 91.7 40.6 40.8 26.7 52.6 57.6 95.7
KPConv [52] 81.1 97.1 94.1 85.3 41.9 95.5 63.5 75.0 96.6

SPT 79.6 96.7 93.1 86.1 52.4 94.0 52.7 65.3 96.7
SPT-nano 75.2 96.5 92.6 78.1 35.8 92.1 50.8 59.9 96.0

and windows. For all datasets, results show that some
progress could be made in analyzing smaller objects with

intricate geometries. This suggests that a more powerful
point-level encoding may be beneficial.

17

S3DIS

ceiling floor wall beam column

window door chair table bookcase

sofa board clutter unlabeled

KITTI-360

road sidewalk building wall fence

pole traffic light traffic sign vegetation terrain

person car truck motorcycle bicycle

ignored

DALES

ground vegetation car truck power line

fence pole building unknown

Figure A-3: Colormaps.

18

	. Introduction
	. Related Work
	. Method
	. Efficient Hierarchical Superpoint Partition
	. Superpoint Transformer
	. Leveraging the Hierarchical Graph Structure

	. Experiments
	. Datasets and Models
	. Quantitative Evaluation
	. Ablation Study

	. Conclusion
	. Interactive Visualization
	. Source Code
	. Limitations
	. Handcrafted Features
	. Influence of Handcrafted Features
	. Superpoint-Graphs Computation
	. Details on Hierarchical Partitions
	. Parameterizing the Partition
	. Implementation Details
	. Model Scalability
	. Hierarchical Supervision
	. Detailed Results

