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Abstract

Knowledge distillation aims to learn a lightweight stu-
dent network from a pre-trained teacher network. In prac-
tice, existing knowledge distillation methods are usually
infeasible when the original training data is unavailable
due to some privacy issues and data management consid-
erations. Therefore, data-free knowledge distillation ap-
proaches proposed to collect training instances from the In-
ternet. However, most of them have ignored the common
distribution shift between the instances from original train-
ing data and webly collected data, affecting the reliability
of the trained student network. To solve this problem, we
propose a novel method dubbed “Knowledge Distillation
between Different Distributions” (KD3), which consists of
three components. Specifically, we first dynamically select
useful training instances from the webly collected data ac-
cording to the combined predictions of teacher network and
student network. Subsequently, we align both the weighted
features and classifier parameters of the two networks for
knowledge memorization. Meanwhile, we also build a new
contrastive learning block called MixDistribution to gen-
erate perturbed data with a new distribution for instance
alignment, so that the student network can further learn
a distribution-invariant representation. Intensive experi-
ments on various benchmark datasets demonstrate that our
proposed KD3 can outperform the state-of-the-art data-free
knowledge distillation approaches.

1. Introduction
In recent years, advanced deep neural networks (DNNs)

have significantly succeeded in many computer vision
*Corresponding authors: Chen Gong (chen.gong@njust.edu.cn), Shuo

Chen (shuo.chen.ya@riken.jp).

fields [19, 21]. However, those excellent DNNs usually
have excess learning parameters, which may incur unaf-
fordable computation and memory burdens for resource-
limited intelligent devices. To address this problem, model
compression algorithms have been developed to constrict
heavy DNNs into portable ones, mainly including the net-
work pruning [28], network quantization [35], and knowl-
edge distillation [23].

Most existing compression algorithms are data-driven
and rely on massive original training data that is usually
inaccessible in the real world. For example, the large-scale
ImageNet [12] requires 138GB of storage and is too heavy
to transfer among devices, yet the ResNet34 [22] trained on
ImageNet only needs 85MB memory and can be shared at
a relatively low cost. Besides, users may be more willing
to share pre-trained models than their personal data, such
as photos and travel records. As a result, existing data-
driven algorithms for model compression frequently fail to
deal with large DNNs in practical applications.

To address this issue, data-free model compression meth-
ods have received wide attention in recent studies [6, 10,
13, 16]. Among these methods, data-free knowledge distil-
lation has shown encouraging results, which only requires
a pre-trained large network (a.k.a. a teacher network) to
learn a compact network (a.k.a. a student network). Exist-
ing data-free knowledge distillation methods train student
network with the guidance of teacher network through the
generated pseudo data [7, 45, 50] or real-world data col-
lected from the Internet [6]. Generally, the performance
of the student networks trained on synthetic data might be
suboptimal due to the flawed or distorted synthetic images.
In comparison, the student networks using real-world data
from the Internet usually achieve better performance, espe-
cially on the tasks involving complicated natural images.

Current data-free knowledge distillation methods [6] that
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Figure 1. The illustration of distribution shift between the webly
collected data and original data, where the original data consists
of realistic images of animals. Nevertheless, the webly collected
data may include cartoon and sketch images of animals, and even
some non-animal images.

train student network with data from the Internet (i.e., we-
bly collected data) seek to select confident instances from
the collected data, so that they can provide correctly labeled
images for training student network. However, the webly
collected data and original data may have different distribu-
tions, and existing methods usually ignore the distribution
shift (e.g., the image style and image category) between
them, as shown in Fig. 1. For example, when we are in-
terested in classifying various real-world animals and enter
“cat” into the image search engines, we may obtain the im-
ages of “cartoon cat” or “cat food”. Apparently, the former
is with different styles of cat images, and the latter is even
unrelated to our interested animal classification task. The
student network trained on the webly collected data will in-
evitably suffer from distribution shift when it is evaluated
on the unseen test data. This makes the performance of stu-
dent network trained on the webly collected data obviously
lower than that using the original data. Consequently, it
is critically important to alleviate the distribution shift be-
tween the webly collected data and original data.

To this end, we propose a new data-free approach called
Knowledge Distillation between Different Distributions
(KD3) to learn a student network by utilizing the plentiful
data collected from the Internet with specific considerations
on the distribution shift. More specifically, we first select
the webly collected instances with the similar distribution
to original data by dynamically combining the predictions
of teacher network and student network during the train-
ing phase. After that, to exhaustively learn the informa-
tion of teacher network, we share the classifier of teacher
network with student network and conduct a weighted fea-

ture alignment. In this way, we can encourage student net-
work to mimic the feature extraction of teacher network.
Furthermore, a new contrastive learning block MixDistribu-
tion is designed to control the statistics (i.e., the mean and
variance) of instances, so that we can generate perturbed
instances with the new distribution. The student network
is encouraged to produce consistent features for the un-
perturbed and perturbed instances to learn the distribution-
invariant representation, which can generalize to the previ-
ously unseen test data. As a result, the student network that
precisely mimics teacher network can produce the features
that are consistent with teacher network. Finally, these fea-
tures fed into the shared classifier can make the predictions
as accurate as the corresponding teacher network. Thanks to
effectively resolving the distribution shift between the we-
bly collected data and original data, our KD3 finally learns
an accurate and lightweight student network, which can
achieve comparable performance to those student networks
trained on the original data. The contributions of our pro-
posed KD3 are summarized as follows:

• We propose a new data-free knowledge distillation
method termed KD3, which dynamically selects useful
training instances from the Internet by alleviating the
distribution shift between the original data and webly
collected data.

• We design a weighted feature alignment strategy and
a new contrastive learning block to closely match stu-
dent network with teacher network in the feature space,
so that the student network can successfully learn use-
ful knowledge from teacher network for the unseen
original data.

• Intensive experiments on multiple benchmarks demon-
strate that our KD3 can outperform the state-of-the-art
data-free knowledge distillation approaches.

2. Related Works
In this section, we review previous works related to our

proposed KD3, mainly including knowledge distillation and
the learning approaches under distribution shift.

2.1. Knowledge Distillation

Conventional knowledge distillation usually needs the
original training data to launch knowledge transfer from a
teacher to a student. In general, they utilize the soften pre-
dictions [1, 23], middle-layer features [5, 36], and instance
relationships [33, 40] as the transferred knowledge, which
can achieve satisfactory results on various datasets and dif-
ferent DNNs. However, they are usually ineffective in prac-
tice when the original data is unusable.

To solve this problem, data-free knowledge distilla-
tion [4, 48] employs synthetic data or webly collected data



to train student network with the help of the pre-trained
teacher network, which can bypass privacy issues and save
data management costs in practical applications. Inspired
by the Generative Adversarial Networks [20], a series of
works [7, 15, 30] treat the teacher network as the discrimi-
nator to supervise a generator to produce pseudo data from
random noise. Besides, DeepInversion [45] extracts the
means and variances stored in the batch normalization lay-
ers of teacher network to reconstruct training images. Re-
cently, Contrastive Model Inversion (CMI) [16] argues that
the instances generated by DeepInversion are highly similar,
which is ineffective for student network training. Conse-
quently, CMI augments the diversity of generated data via
contrastive learning [9]. Lately, Zhao et al. [50] use the
means and variances of teacher network to guide the gener-
ator and further produce new realistic data, thereby improv-
ing the performance of student network.

Instead of generating new data for approximating the
original data, it is promising to train a satisfactory student
network by utilizing the plentiful realistic instances on the
Internet. Xu et al. [44] select useful examples from the we-
bly collected data based on a portion of the original data.
Chen et al. [6] propose to select useful instances with a
low cross-entropy value to train student network. However,
they neglect the distribution discrepancies between the we-
bly collected data and original data, which inevitably cor-
rupts the performance of the student network. In this work,
we carefully consider and effectively process the distribu-
tion shift, thus obtaining a reliable student network.

2.2. Learning under Distribution Shift

In the learning scenarios with distribution shift, the train-
ing data and test data may come from different distributions
[32, 34]. In this case, DNNs are biased to training data
and cannot perform well during the test phase. To tackle
this problem, a series of works [2, 42] propose to select in-
stances that are similar to the target distribution, and those
selected instances are used for retraining the DNNs. Some
other works [17, 39] adapt the reweighting technique to
find out the useful training instances which have the similar
distribution to the original data. Furthermore, domain adap-
tion approaches [14, 49] are proposed to transfer knowledge
from the training data (i.e., the source data) to test data (i.e.,
the target data) , thereby improving the generalization abil-
ity of the model under distribution shift.

In data-free knowledge distillation, the distribution of
webly collected data is usually different from the unseen
test data, which may drop the performance of student net-
work significantly. Therefore, we propose the new method
KD3 to explicitly deal with such a distribution shift issue
for data-free knowledge distillation.

3. Our Approach
In this section, we first introduce some necessary pre-

liminary knowledge, and then we state our KD3 on how to
learn student networks without using the original data.

3.1. Preliminary

Conventional knowledge distillation methods [23, 36]
seek to learn a small student network NS by promoting
it to mimic the output of a large pre-trained teacher net-
work NT . Formally, we denote the original training data
as D = {(xi, yi)}|D|

i=1 ⊂ X × Y , where “| · |” is the data
cardinality; X ⊂ RI (I is the data dimensionality) and
Y = {1, · · · ,K} (K is the total number of classes) are
the sample space and label space, respectively. For a train-
ing dataset D, the knowledge distillation is accomplished
by minimizing the following loss function:

Lkd(NS) =
1

|D|

|D|∑
i=1

[Hce (NS (xi) , yi) + λHkt
(
fSi , f

T
i

)
],

(1)
where Hce is the cross-entropy loss function, encouraging
the prediction of student network to be as consistent as the
ground-truth; Hkt is the knowledge transfer function to pro-
mote student network to learn the knowledge fTi of teacher
network (e.g., predictions or feature maps); fSi is the corre-
sponding knowledge of student network; λ > 0 denotes the
trade-off parameter, which is used to balance Hce and Hkt.

The necessary original data D of conventional knowl-
edge distillation methods is usually untouchable due to
practical limitations discussed in Section 1. Consequently,
a sequence of data-free methods [6, 7, 10] propose to gen-
erate the pseudo data from teacher network NT , but the vi-
sual quality and diversity of the synthetic images limit their
performance. Instead of generating pseudo data, there are
massive realistic data D̄ = {(x̄i, ȳi)}|D̄|

i=1 ⊂ X̄ × Ȳ on the
Internet which can be gathered to train the student network
NS [8]. Here, the notations with superscript “–” denote
that they are related to the webly collected data. However,
there is distribution shift between the webly collected data
D̄ and original data D, namely: 1) p(y|x) ̸= p(ȳ|x̄), i.e.,
D̄ may contain many uninterested instances due to Y ⊂ Ȳ
and |D| ≪ |D̄|; 2) p(x) ̸= p(x̄), i.e., the image quality or
style of D and D̄ are different from each other because the
instances in D̄ are roughly collected from the Internet. In
this case, the student network trained on D̄ inevitably per-
forms poorly on the unseen test data due to the distribution
shift.

To address the aforementioned issue, we propose a novel
data-free knowledge distillation method called KD3 to train
a reliable NS on the webly collected data D̄. As illustrated
in Fig. 2, our KD3 contains three key components (as de-
tailed in Sections 3.2, 3.3, and 3.4, respectively), includ-
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Figure 2. The diagram of our Knowledge Distillation between Different Distributions (KD3). The frozen teacher network NT consists of a
feature extractor ϕT and a classifier gT . The student network NS has a learnable feature extractor ϕS and shares gT with NT , where gT is
fixed to preserve the information learned by NT . Firstly, the webly collected data D̄ is dynamically selected by NT and NS . For example,
here we assume the original data contain two classes including: “cat” and “dog”. Then we select the images “a-d” while discarding the
images “e-h” (with different distributions). Subsequently, the weighted feature alignment conducted on the selected data further promotes
NS to make accurate predictions. Moreover, the MixDistribution contrastive learning is applied to both the perturbed instances (obtained
by the MixDistribution) and unperturbed instances, promoting NS to learn robust representations that are invariant to distribution shift.

ing 1) Teacher-student dynamic instance selection, which
chooses webly collected instances having the similar distri-
bution of original instances; 2) Classifier sharing & feature
alignment, where the student network and teacher network
share their classifier parameters and align their output fea-
tures; 3) MixDistribution contrastive learning, which pro-
motes the student network to produce consistent represen-
tations for both perturbed and unperturbed instances.

3.2. Teacher-Student Dynamic Instance Selection

As mentioned above, there is distribution shift between
the webly collected data D̄={(x̄i, ȳi)}|D̄|

i=1 and original data
D. Since the teacher network is well-trained on D, it is
able to show high confidence levels for those instances in D̄
which have the similar distribution with D. Consequently,
we propose to select useful instances from D̄ based on the
output probabilities of teacher network NT and student net-
work NS to alleviate the distribution shift.

Specifically, we first input all instances in D̄ into both
NT and NS to get the corresponding output probabilities:

NT (x̄i) = gT (ϕT (x̄i)), NS(x̄i) = gT (ϕS(x̄i)), (2)

where ϕT and ϕS denote the feature extractor of NT

and NS , respectively, and gT represents the shared clas-
sifier learned by NT . Then, we combine the predictions
{NT (x̄i)}|D̄|

i=1 and {NS(x̄i)}|D̄|
i=1 by the following criterion:

Combine (x̄i) = (1− α(t))NT (x̄i) + α(t)NS (x̄i) . (3)

The combination is dynamically adjusted by the following

time-dependent function:

α(t) =

 exp

(
−5

(
t

I/2 − 1
)2

)
, t ≤ I/2,

1, t > I/2,
(4)

where α(t) grows from 0 to 1 according to current epoch
t, and I represents the total number of iterations in training
student network. In the early-staged training, the initialized
NS is unable to offer accurate predictions for the instances
in D̄, while the pre-trained NT can precisely recognize the
instances in D̄ which are similar to D. Therefore, function
α(t) attributes a big weight to NT (x̄i) at the early stage.
With the improvement of NS , α(t) will gradually highlight
the importance of NS (x̄i). When α(t) = 1 (namely t ≥
I/2), the selection of training instances will be completely
determined by the student network NS .

Subsequently, we can obtain the predicted label ypred
i of

image x̄i and the confidence pi of x̄i belong to ypred
i as:

ypred
i = argmax

j
(Combine (x̄i))j ,

pi = (Combine (x̄i))ypred
i

,
(5)

respectively. Based on the above {ypred
i }

¯|D|
i=1, we can count

the number of labels for each class as {ni}Ki=1, and then
we obtain the thresholds {Ti}Ki=1 for filtering out the low-
confidence instances of each category as:

Ti = Normalization(ni) · Vth, (6)

where Vth is a fixed threshold, and {ni}Ki=1 is normalized to



[0, 1] via the following rule:

Normalization(ni) =
ni

max1≤j≤K (nj)
. (7)

Finally, we obtain the useful data D̄s = Select(x̄i)
(1 ≤ i ≤ ¯|D|) which has the similar distribution with D.
Here, the selection operator is defined as:

Select (x̄i) =

{
x̄i ∈ D̄s, pi > Typred

i
,

x̄i /∈ D̄s, pi ≤ Typred
i

.
(8)

During the training phase, D̄s is continuously updated based
on NT , NS , and α(t). If NS performs worse on a certain
category, it will produce low confidence values for the in-
stances of this category and lead to a low threshold. In this
case, many instances belonging to this category can be se-
lected to supplement the training of NS for this category.

3.3. Classifier Sharing & Feature Alignment

In Section 3.2, we successfully select the useful data
D̄s={(x̄i, ȳi)}|D̄s|

i=1 from the webly collected data D̄. How-
ever, teacher network NT and student network NS are un-
able to make completely correct predictions for all instances
in D̄ because both two networks are imperfect, especially
in the early-staged iterations. Therefore, the distribution
p(ȳ|x̄) of D̄s is still different from p(y|x) of D in some
cases, which may incur inaccurate supervisions to hurt the
performance of student network. Recent works [14, 27] re-
vealed that the classifiers of DNNs can learn task-specific
information. Inspired by this, we share the classifier gT
(learned by NT ) with NS , so that the critical information
of unseen original data (contained in D) can be transferred
from NT to NS . Furthermore, we freeze gT to prevent the
information learned from the original data being disturbed
by parameter update, which means that NS only updates its
parameters in ϕS during training. Subsequently, we utilize
D̄s to drive feature alignment between NS and NT in the
preceding layer of the shared gT , so that the student net-
work can memorize critical knowledge of teacher network
as much as possible.

In detail, the overall goal of our feature alignment is to
encourage NS to produce outputs as consistent as that of
NT . Accordingly, we estimate the feature alignment weight
wi for x̄i ∈ D̄s by calculating the consistency between
NT (x̄i) and NS(x̄i), which is:

wi = 1− Sigmoid (∥NS (x̄i)−NT (x̄i)∥1) . (9)

For an image x̄i, if NS produces consistent outputs with that
of NT , we regard it as an easily-aligned instance and give
it a large weight to highlight its positive influence in feature
alignment and vice versa. Based on {wi}|D̄s|

i=1 , the weighted

feature alignment loss Lwfa(NS ,NT ) is formulated as:

Lwfa(NS ,NT )=
1

|D̄s|

|D̄s|∑
i=1

wiHmse(ϕS(x̄i), ϕT (x̄i)) , (10)

where Hmse is the mean square error and it measures the
similarity between ϕT (x̄i) and ϕS(x̄i).

Classifier sharing and feature alignment successfully ad-
dress the shortage of supervision in the student network,
thereby eliminating the negative impact of inaccurate labels
caused by the webly collected data. When evaluated on the
test instance xtest, the student network well aligned with the
teacher network can produce feature ϕS(xtest) which is con-
sistent to ϕT (xtest). After that, the parameter-shared clas-
sifier gT can produce an accurate prediction gT (ϕS(xtest))
like the teacher prediction gT (ϕT (xtest)).

3.4. MixDistribution Contrastive Learning

In our problem setting, the original training data D of
teacher network NT is inaccessible and student network NS

trained on the selected data D̄s needs to correctly recog-
nize the unseen test data. In practice, the original data D
is usually selected and processed manually, so the distri-
bution p(x̄) of webly collected instances cannot accurately
match the distribution p(x) of the original data. Recent
studies [45, 51] find that the data distribution is closely re-
lated to image style and quality, which can be reflected in
statistical variables, e.g., the standard deviation and mean.
Therefore, we propose MixDistribution to construct the per-
turbed data with new distribution, which disturbs statistics
of images in D̄s. Finally, we promote student network to
learn representation that is invariant to distribution shift by
improving the consistency between perturbed and unper-
turbed instances.

More specifically, we first randomize {x̄i}|D̄s|
i=1 as

Randomize ({x̄i}|D̄s|
i=1 ) and compute the perturbed statistics

by the following rules:{
γmix = λσ({x̄i}|D̄s|

i=1 ) + (1− λ)σ(Rand({x̄i}|D̄s|
i=1 )),

βmix = λµ({x̄i}|D̄s|
i=1 ) + (1− λ)µ(Rand({x̄i}|D̄s|

i=1 )),
(11)

where λ > 0 is produced by beta distribution Beta(δ, δ)
with δ ∈ (0,∞) being a hyper-parameter. Here, σ(·) and
µ(·) denote the standard deviation and mean of the corre-
sponding variables, respectively. Then, we construct the
perturbed image x̂i by:

x̂i = γmix
x̄i − µ(x̄i)

σ(x̄i)
+ βmix, (12)

where we scale and shift the normalized x̄i by γmix and
βmix, respectively. After the above instance perturbation,
the raw images {x̄i}|D̄s|

i=1 and the perturbed images {x̂i}|D̄s|
i=1



Dataset Arch #paramsT #paramsS FLOPsT FLOPsS ACCT ACCS DAFL DFAD DDAD DI ZSKT PRE DFQ CMI DFND KD3 ACC↑
MNIST ∇ 0.062M 0.019M 0.42M 0.14M 98.91 98.65 98.20 98.31 98.09 – 97.44 98.33 97.49 – 98.37 98.76 +0.39

CIFAR10 ♢ 21.28M 11.17M 1.16G 0.56G 95.70 95.20 92.22 93.30 93.08 93.26 93.32 93.25 94.61 94.84 94.02 95.21 +0.37
♡ 14.73M 9.42M 0.40G 0.28G 94.07 92.69 86.92 90.38 90.85 85.27 91.22 91.82 91.36 88.49 92.61 94.13 +1.52

CIFAR100 ♢ 21.28M 11.17M 1.16G 0.56G 78.05 77.10 74.47 67.70 73.64 61.32 67.74 74.19 77.01 77.04 76.35 78.44 +1.40
♡ 14.73M 9.42M 0.40G 0.28G 74.53 72.28 65.36 64.90 68.33 60.00 58.33 70.34 62.53 59.70 70.88 74.21 +3.33

CINIC ♢ 21.28M 11.17M 1.16G 0.56G 86.62 85.09 60.54 71.38 80.10 78.57 64.73 77.56 71.76 78.47 82.96 86.55 +3.59
♡ 14.73M 9.42M 0.40G 0.28G 84.22 83.28 59.08 60.67 77.90 68.90 58.84 65.38 74.33 74.99 81.82 83.54 +1.72

TinyImageNet ♢ 21.28M 11.17M 4.65G 2.23G 66.44 64.87 52.20 20.63 59.84 6.98 31.51 50.15 63.73 64.01 60.92 66.24 +2.23
♡ 14.73M 9.42M 1.26G 0.92G 62.34 61.55 53.89 38.95 42.25 1.22 30.63 45.92 23.43 17.73 56.87 61.98 +5.11

Table 1. Classification accuracy (in %) of the student network trained by various methods on five image classification datasets. The notations
∇, ♢, and ♡ represent the teacher-student pairs LeNet5-LeNet5 half, ResNet34-ResNet18, and VGGNet16-VGGNet13, respectively.
ACC, #params, and floating point operations (FLOPs) denote the yielded accuracy, parameters (in millions, M), and calculations (in Gigas,
G) of the corresponding DNN, respectively. These notations with superscripts “T ” and “S” represent that they are related to the teacher
network and student network, respectively. The best results achieved by baseline methods are underlined, and the column “ACC↑” with
green fonts shows the accuracy improvement of KD3 in contrast to the best results among compared baseline methods.

are fed into NT and NS to obtain the features in penulti-
mate layer. Subsequently, we follow [9] to transfer features
of all dimensionalities into the embedding space by a pro-
jection head. By taking the teacher network NT and the
corresponding feature ϕT (x̄i) as an example, the embed-
ding result z̄Ti is calculated by:

z̄Ti = Normalization
(
WT

p ϕT (x̄i) + bT
p

)
, (13)

where WT
p and bT

p denote the weight and bias of projec-
tion head, and the notations with superscripts “T ” and “S”
represent they are related to teacher network and student
network, respectively. Similarly, the embedding result ẑTi
of perturbed example x̂i is computed by:

ẑTi = Normalization
(
WT

p ϕT (x̂i) + bT
p

)
. (14)

Based on the embeddings of unperturbed instances
{z̄Ti }

|D̄s|
i=1 and perturbed instances {ẑTi }

|D̄s|
i=1 , we can calcu-

late the MixDistribution contrastive learning (MDCL) loss
LT

mdcl(NT ) for the teacher network as follows:

LT
mdcl(NT )=−

|D̄s|∑
i=1

log
exp

(
sim

(
z̄Ti , ẑ

T
i

)
/τ

)∑|D̄s|
j=1 1[j ̸=i] exp

(
sim

(
z̄Ti , ẑ

T
j

)
/τ

),
(15)

where τ > 0 is a temperature parameter; sim(·) denotes the
well-known cosine similarity [43]; 1[j ̸=i] is the indicator
function, and its value is 0 only if i = j, and its value is 1,
otherwise. Likewise, the MDCL loss of student network is:

LS
mdcl(NS)=−

|D̄s|∑
i=1

log
exp

(
sim

(
z̄Si , ẑ

S
i

)
/τ

)∑|D̄s|
j=1 1[j ̸=i] exp

(
sim

(
z̄Si , ẑ

S
j

)
/τ

).
(16)

LT
mdcl(NT ) and LS

mdcl(NS) depict the relationship among
the embeddings of NT and NS , respectively. Recent stud-
ies [33, 40, 52] have demonstrated that transferring the re-
lationship between representations is more effective than
transferring representations directly. Therefore, by follow-
ing [52], we integrate the following learning objectives of
NT and NS based on the similarity relationship:

Lmdcl(NS ,NT ) = LS
mdcl(NS) + LT

mdcl(NT ). (17)

By minimizing Lmdcl(NS ,NT ), the student network is
encouraged to produce close representations for perturbed
and unperturbed versions of the same instance, despite dis-
tribution shift between the two versions. Therefore, the stu-
dent network can accurately classify the test instances of
which the distribution is different from D̄s. Note that the
parameters in the projection heads of teacher and student
will keep updating during the training phase.

Overall Learning Objective. In the end, the complete
objective function of our KD3 is:

Lobjective (NS ,NT)=Lwfa(NS ,NT)+αLmdcl(NS ,NT), (18)

where α is a non-negative trade-off parameter to balance
the weighted feature alignment loss Lwfa(NS ,NT ) and
MixDistribution contrastive learning loss Lmdcl(NS ,NT ).
The detailed training algorithm of KD3 is summarized in
supplementary material.

4. Experiments
In this section, we demonstrate the effectiveness of our

proposed KD3 on multiple image classification datasets.
Compared Methods: We compare our proposed KD3

with representative data-free methods, including Data-
Free Learning (DAFL) [7], Data-Free Adversarial Learn-
ing (DFAD) [15], Dual Discriminator Adversarial Distil-
lation (DDAD) [50], DeepInversion (DI) [45], Zero-Shot
Knowledge Transfer (ZSKT) [30], Pseudo Replay En-
hanced Data-Free Knowledge Distillation (PRE) [3], Data-
Free Quantization (DFQ) [10], Contrastive Model Inversion
(CMI) [16], and Data-Free Noisy Distillation (DFND) [6]
(the only existing method using the webly collected data).
We implement the above methods by using the codes on
their official GitHub pages.
Original Datasets: We verify our proposed KD3 on the
test set of MNIST [26], CIFAR10 [24], CINIC [11], CI-
FAR100 [24], and TinyImageNet [25].
Webly Collected Datasets: When using MNIST as the
original data, we adopt the training images from both
MNIST-M [18] and SVHN [31] datasets as the webly col-
lected data, and we grayscale the images in MNIST-M



Operation Type CIFAR10 CIFAR100
No classifier

sharing
One-hot 93.42 (−1.79) 74.54 (−3.90)

Soft 93.98 (−1.23) 76.92 (−1.52)

Instance
selection

Random 90.22 (−4.99) 73.60 (−4.84)
Only NS 91.99 (−3.22) 75.30 (−3.14)
Only NT 94.01 (−1.20) 76.76 (−1.68)

MDCL No Lmdcl 94.48 (−0.73) 77.35 (−1.09)
No MD 94.61 (−0.60) 77.43 (−1.01)

KD3 Lobjective 95.21 78.44

Table 2. Classification accuracy (in %) of ablation experiments.
Brackets with red font denote the accuracy drop of the correspond-
ing item compared with the complete KD3.

and SVHN because the images in MNIST only have one
channel. When using other datasets as the original data,
we employ the training images from the large-scale Ima-
geNet [12]. We also downsample the images in ImageNet
to 32×32 or 64×64 to ensure the size consistency between
the original data and webly collected data. Details of the
adopted datasets are provided in supplementary material.
Implementation Details: When training on MNIST, we
use Adam with the initial learning rate of 10−3 as the opti-
mizer, and all student networks are trained with 40 epochs.
When training on other datasets, we utilize Stochastic Gra-
dient Descent (SGD) with weight decay of 5×10−4 and mo-
mentum of 0.9 as the optimizer. By following [5], all stu-
dent networks are trained with 240 epochs, and the initial
learning rate is set to 0.05, which is divided by ten at 150,
180, and 210 epochs. Besides, the temperature τ in Eq. (15)
and Eq. (16), threshold Vth in Eq. (8), and trade-off parame-
ter α in Eq. (18) are 0.30, 0.95, and 0.01, respectively. The
parametric sensitivity will be investigated in Section 4.3.

4.1. Experiments on Image Classification Datasets

In this section, we conduct intensive experiments on five
image classification tasks mentioned above to demonstrate
the effectiveness of our proposed KD3. We select four
teacher-student pairs for experiments, including LeNet5-
LeNet5 half [26], ResNet34-ResNet18 [22], VGGNet16-
VGGNet13 [38], which are widely used in data-free meth-
ods [3, 7]. The experimental results are reported in Table 1.

Firstly, the performance of student networks trained on
synthetic data is suboptimal in general, particularly when
evaluating on the complex TinyImageNet, because the gen-
erated data is usually flawed or distorted. Secondly, we can
observe that DFND using the instances on the Internet is
still unable to produce a student network competitive to that
trained on the original data, which is due to the ignorance
of the distribution shift between the webly collected data
and original data. In contrast, our KD3 can successfully ac-
quire the student networks which achieve significantly bet-
ter performance than those trained on the original data in
most cases. The experimental results demonstrate that our
KD3 can effectively resolve the distribution shift between

(a) Feature visualization on CIFAR10

(d) Feature visualization on TinyImageNet(c) Feature visualization on CINIC

(b) Feature visualization on CIFAR100

Figure 3. Visualization of ResNet34-produced features by t-
SNE [41]. The original images are from (a) CIFAR10, (b) CI-
FAR100, (c) CINIC, and (d) TinyImageNet, while the selected and
unselected images are from ImageNet, each part contains 1,000
images. The data points selected by our KD3 (i.e., orange dots)
show very similar distribution with the original data (i.e., red dots).

the webly collected data and original data, thus training a
superior student network without any original data.

4.2. Ablation Studies & Feature Visualization

Ablation Studies. We select the teacher-student pair
ResNet34-ResNet18 to evaluate the three key operations in
KD3, and the results are shown in Table 2. The contribu-
tions of these key operations are analyzed as follows:
1) Classifier Sharing in Section 3.3: To estimate the ef-
fectiveness of sharing the classifier of teacher with student,
we train a student with an initialized classifier. Moreover,
to train the initialized classifier, we utilize a cross-entropy
or Kullback-Leibler (KL) [23] divergence to enforce stu-
dent network to mimic the one-hot predictions or soft la-
bels of teacher network (shown in “One-hot” and “Soft”). It
can be found that the performance of student network with
the initialized classifier obviously degrades, which indicates
that classifier sharing is vital to enhancing student’s perfor-
mance. It means that our method can effectively transfer the
teacher-learned information of original data to student.
2) Instance Selection in Section 3.3: The student network
obtains poor performance when the instances are randomly
selected (shown in “Random”) and only selected by student
network (shown in “Only NS”). Furthermore, the student
network that trained on the instances chosen by the pow-
erful teacher network achieves relatively good performance
(shown in “Only NT ”). In particular, the student network
achieves the best accuracy when utilizing the data selected
by our proposed data selection method, demonstrating that
our proposed data selection method can sample proper in-
stances for student network training.
3) MixDistribution Contrastive Learning in Section 3.4:



Teacher Student #params FLOPs CIFAR10 CIFAR100 CINIC TinyImageNet
Teacher Student Teacher Student ACCS KD3 ACCS KD3 ACCS KD3 ACCS KD3

ResNet32×4 ResNet8×4 7.41M 1.21M 1.09G 0.18G 92.09 93.05 73.09 73.17 81.74 81.71 55.40 55.13
ResNet32×4 MobileNetV2 7.41M 0.81M 1.09G 7.37M 92.38 92.16 69.06 69.40 77.61 77.95 57.15 60.60
ResNet32×4 ShuffleV1 7.41M 0.86M 1.09G 42.11M 92.92 93.24 66.43 72.15 80.13 80.93 57.94 60.01
ResNet32×4 ShuffleV2 7.41M 1.26M 1.09G 46.66M 93.23 93.53 72.60 73.14 80.64 80.74 60.93 61.41

ResNet110×2 ResNet110 6.89M 1.73M 1.02G 0.26G 93.37 94.59 74.31 73.59 84.29 84.75 59.80 60.21
ResNet110×2 ResNet116 6.89M 1.83M 1.02G 0.27G 93.21 94.57 74.46 73.75 84.45 84.68 59.85 59.52
ResNet110×2 ShuffleV1 6.89M 0.86M 1.02G 42.11M 92.92 93.24 66.43 72.15 80.13 81.25 57.94 58.54
ResNet110×2 ShuffleV2 6.89M 1.26M 1.02G 46.66M 93.23 93.46 72.60 72.93 80.64 81.54 60.93 60.80

Table 3. Classification accuracy (in %) of various network backbones. The columns “ACCS” report the accuracies yielded by the student
networks using the original data. Here, the FLOPs are calculated by feeding a 32×32 sized RGB image into the corresponding DNN.

We directly remove Lmdcl(NS ,NT ) (shown in “No Lmdcl”)
or replace MixDistribution by data augmentations as in [46]
(shown in “No MD”) to train student network. The accuracy
of student network has reduced significantly when evaluated
on test data of which the distribution is different from the
webly collected data. The results demonstrate that MixDis-
tribution contrastive learning is critical to solving the distri-
bution shift problem.

Visualization of Features. To further understand the ef-
fectiveness of our data selection method, we visualize the
ResNet34-provided features of images from original data,
selected data, and unselected data. The original training
images are provided by CIFAR10, CIFAR100, CINIC, and
TinyImageNet, and webly collected images are from Ima-
geNet. The t-SNE [41] visualization results are shown in
Fig. 3, from which we can observe that the distributions of
selected images are close to the original images in feature
space. The visualization results demonstrate that our data
selection method can effectively select the webly collected
instances with the similar distribution to original data. More
visualization results are shown in supplementary material.

4.3. Parametric Sensitivity

The tuning parameters in our KD3 include the trade-
off parameter α in Eq. (18), temperature parameter τ in
Eq. (15) and Eq. (16), and threshold parameter Vth in
Eq. (8). This section analyzes the sensitivity of our KD3

to these parameters on the CIFAR dataset. The ResNet34
and ResNet18 are selected as teacher and student, respec-
tively. We examine the resulting accuracy during training
by changing one parameter while holding the others.

Fig. 4 depicts the curves of test accuracy for stu-
dent network when the parameters vary. The param-
eters α, τ , and Vth vary within {0.001, 0.01, 0.1, 1},
{0.1, 0.3, 0.5, 0.7}, and {0.900, 0.925, 0.950, 0.975}, re-
spectively. Even though these parameters vary over a wide
range, we can obverse that the curves of accuracy are gen-
erally smooth and relatively stable, which indicates that the
performance of student is robust to the variations of parame-
ters. Therefore, the parameters in our KD3 are easy to tune.

(a) Analysis of α (b) Analysis of τ (c) Analysis of 
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95.21 95.07

91.57
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95.1395.18 95.21 95.16

78.4378.32 78.44 78.3977.63

Figure 4. Parametric sensitivity of (a) α in Eq. (18), (b) τ in
Eq. (15) and Eq. (16), and (c) Vth in Eq. (6).

4.4. Experiments with More Network Backbones

In this section, we conduct intensive experiments on
four benchmark datasets to further verify the performance
of KD3 equipped with various widely-used teacher-student
pairs [22, 29, 37, 47]. The results are reported in Table 3.
It can be found that the student networks trained by our
KD3 consistently achieve competitive performance to those
trained on the original data, even though some student net-
works are with different styles of the teacher network. The
experimental results demonstrate that our data-free method
KD3 can be flexibly employed to teacher-student pairs with
various structures to train reliable student networks.

5. Conclusion
This paper proposed a new data-free approach termed

KD3 to train student networks using the webly collected
data. To our best knowledge, we are the first to address
the commonly overlooked yet important distribution shift
issue between the webly collected data and original data
in knowledge distillation. Our proposed KD3 adopts three
main techniques to tackle such distribution shift, namely:
1) selection of webly collected instances with the similar
distribution to original data; 2) alignment of feature distri-
butions between the teacher network and student network
with parameter-shared classifiers; and 3) promotion of fea-
ture consistency for input instances and MixDistribution-
generated instances. Intensive experiments demonstrated
that our KD3 can effectively handle the distribution shift
to train reliable student networks without using the original
training data.
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