
PARF: Primitive-Aware Radiance Fusion for Indoor Scene Novel View Synthesis

Haiyang Ying1, Baowei Jiang1, Jinzhi Zhang1, Di Xu2, Tao Yu1†, Qionghai Dai1, Lu Fang1†

1Tsinghua University, 2Huawei Cloud

0.3s 0.8s 3.0s 6.0s2.0s

Test PSNR (dB)

Time (s)

(a) Incremental Radiance Field Reconstruction Performance Comparison (b) Converge Speed Evaluation

Primitive
List

R
ad
ia
nc
e
Fi
el
d

Pr
im
iti
ve
Fi
el
d

R
ad
ia
nc
e
Fi
el
d

N
eR
F-
SL
A
M

PA
R
F
(O
ur
s)

Figure 1: Performance comparison with the state-of-the-art radiance field reconstruction methods on Replica dataset. With
the proposed hybrid representation and primitive-aware fusion framework, our method PARF enjoys significantly faster
convergence and high-quality rendering for indoor scene novel view synthesis. In (a) the incremental reconstruction setting,
we assume a SLAM system with the tracking speed of 10fps. More resources can be found in our Project Page.

Abstract

This paper proposes a method for fast scene radiance
field reconstruction with strong novel view synthesis perfor-
mance and convenient scene editing functionality. The key
idea is to fully utilize semantic parsing and primitive extrac-
tion for constraining and accelerating the radiance field re-
construction process. To fulfill this goal, a primitive-aware
hybrid rendering strategy was proposed to enjoy the best of
both volumetric and primitive rendering. We further con-
tribute a reconstruction pipeline conducts primitive parsing
and radiance field learning iteratively for each input frame
which successfully fuses semantic, primitive, and radiance
information into a single framework. Extensive evaluations
demonstrate the fast reconstruction ability, high rendering
quality, and convenient editing functionality of our method.

1. Introduction

Indoor scene 3D reconstruction and novel view synthesis
(NVS) is a long-lasting classical topic in the field of com-
puter vision for decades, which is widely used in virtual

†The corresponding authors are Lu Fang (fanglu@tsinghua.edu.cn,
http://www.luvision.net/) and Tao Yu (ytrock@tsinghua.edu.cn).

reality, robot perception, and visualization. Classic indoor
scene reconstruction methods [22, 23] focus on geometric
registration and fusion [23] based on feature matching, bun-
dle adjustment [6], and multi-view stereo [37] algorithms.
However, these methods rely on discrete point clouds or
voxels for scene representation, which results in high mem-
ory overhead and limited ability to describe scene details,
making it challenging to achieve realistic NVS effects.

The emergence of implicit continuous representations
based on neural networks has revolutionized 3D vision
tasks. NeRF [18] represents the density and color fields of
the scene using an implicit representation. Coupled with
volume rendering techniques [19, 8, 13], NeRF achieves a
simple but effective pipeline for end-to-end radiance field
reconstruction. NeRF not only enables realistic novel view
synthesis, but also facilitates 3D structure, material, and ap-
pearance recovery. However, NeRF-based methods tend
to fit a diffused density field to the ground truth geome-
try surface for achieving view-dependent volume rendering
effects, which may not be suitable for view extrapolation
due to the lack of a sharp geometry constraint. Although
incorporating depth information can constrain the learn-
ing of implicit geometry field, generating accurate sam-
ples for view extrapolation and achieving faster conver-
gence remains challenging as NeRF requires relatively re-
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dundant sampling around the surface for volume rendering
[29]. Additionally, training NeRF in a manner of pixel-
independent strategy neglects the global geometric consis-
tency of the whole scene, which introduces noise and arti-
facts in the final reconstruction.

To overcome this challenge, primitive-based methods
such as NeurMiPs [16] use global plane prior extracted
from traditional primitive detection methods [3, 11, 30].
These methods typically use a fixed number of planes to
fit the reconstructed point cloud obtained from other meth-
ods [1, 15, 28]. This global structure prior effectively
regularizes the implicit density field in the planar regions,
thereby improving view extrapolation performance. How-
ever, for regions that are difficult to describe with planes,
such as curved surfaces and thin structures, the boundary of
the fitted plane suffers from obvious discontinuity artifacts.

In this paper, we aim to establish an incremental radiance
field reconstruction pipeline based on NeRF and semantic
parsing for much higher performance, no matter view inter-
polation or extrapolation, with an order of magnitude fewer
training iterations than SOTA methods. Our key innovation
is a divide-and-conquer strategy that makes the representa-
tion ultra-simple in global primitive regions while keeping
it complex in non-plane local details.

In light of this, we propose Primitive-Aware Radiance
Fusion, named PARF, for indoor scene novel view synthe-
sis. Our key idea is that: Indoor scene always contains
many planar regions, and by leveraging the global prim-
itive prior of planar regions and the local implicit repre-
sentation for non-planar regions, we can achieve much bet-
ter performance with strong semantic guidance. However,
representing, fusing, and training both primitive and non-
primitive representation in the same radiance field from se-
quential RGB-D inputs in real-time is non-trivial. In order
to solve the problems above, PARF proposes a hybrid repre-
sentation that uses discrete semantic volume as a medium to
integrate planar semantics into the continuous and implicit
scene radiance field. This allows for a primitive-aware sam-
pling process in volume rendering, resulting in improved
efficiency and quality. Additionally, PARF dynamically
maintains a global scene plane representation and can fuse
and differentiate planar regions through dynamic fusion and
adaptive update. This enables efficient and noise-robust op-
timization of the radiance field, as well as direct semantic
editing capabilities. Overall, PARF successfully incorpo-
rates semantic parsing and primitive merging into a radiance
fusion framework, enabling efficient training, high-quality
rendering, and semantic editing.

The contributions of PARF can be summarized as:

• We propose PARF, a novel hybrid scene representation
to decompose the radiance field into primitive-based
and volume-based components in a unified form.

• We contribute an incremental reconstruction frame-
work for primitive-aware radiance fusion, which ef-
fectively leverages the benefits of semantic parsing,
primitive merging, and neural representation for in-
door scene reconstruction.

• Extensive evaluations demonstrate that our method en-
joys fast convergence, robust view extrapolation per-
formance, and convenient scene editing ability.

2. Related Works
2.1. Neural Implicit Rendering and Fusion

Neural Radiance Field [20, 18, 41, 35, 17, 21] is an
approach that utilizes coordinate-based MLP as implicit
scene representations to continuously encode scene geom-
etry, which achieves high-quality and view-dependent ap-
pearance modeling. Signed Distance Field is also an im-
plicit representation that is beneficial to model a continuous
geometric surface [25, 2, 44, 10, 39].

Towards indoor scene fusion, NeuralRGBD [2] models
and optimizes the scene geometry as a continuous SDF
function and achieves high completeness though the train-
ing time is quite long. NICE-SLAM [44] proposes a dense
SLAM system that optimizes a hierarchical representation
with pre-trained geometric priors which, enables detailed
reconstruction on large indoor scenes. NeuralRecon [34]
establishes a learning-based TSDF fusion module based on
GRU to guide the network to fuse features from previous
fragments in real time.

For indoor scene rendering, NeRFusion [42] applies a
pre-trained fusion model for real-time RGB radiance fusion
for novel view synthesis. Based on InstantNGP [21], NeRF-
SLAM [29] create a NeRF-based SLAM system with ex-
tra depth as supervision signal to achieve real-time radiance
field reconstruction.

However, a limitation of volumetric representations is
that the optimization is applied on the integral of the ra-
diance field without sufficient prior. This can lead to biased
and inconsistent geometry and therefore results in bad view
extrapolation and slow convergence speed. Though prior-
based methods like [24, 12] uses strong regularization on
visual patches show satisfactory results under sparse-view
setting, the performance gap still remains between the con-
trolled scenes with structured observations and real-world
scenes with unstructured captures.

2.2. Primitive based Rendering and Fusion

Structural scene prior has been proven to be beneficial in
neural rendering and fusion [26, 16, 10, 4, 36, 38].

ManhattanSDF [10] uses the Manhattan prior to con-
strain the normal of an implicit SDF field, which highly
relies on known semantics of scene partition and the Man-
hattan frame. Further work [26] employs self-supervision



of depth and normals through the Manhattan prior and vol-
umetric rendering without the Manhattan frame. But these
two works are still limited to the Manhattan assumption,
which is not sufficient for modeling unordered planes in 3D
space.

To handle planes with free poses, PlanarRecon [36] pro-
poses to fusion bounded planes in an incremental manner
based on NeuralRecon [34] but suffers from incomplete fu-
sion results. NeurMiPs [16] uses SFM point cloud to de-
compose the scene into optimizable planar experts, which
benefits from fast planar rendering and optimization. How-
ever, purely plane-based modeling may lead to difficulty in
complex scene modeling, especially when observation is in-
sufficient.

From the view of rendering efficiency, MobileNeRF [4]
decomposes the scene into a set of polygons with textures
representing binary opacities and feature vectors. However,
since the triangle primitive is quite small, it still suffers from
overfitting and cannot handle view extrapolation.

3. Representation
We present a novel primitive-aware hybrid representa-

tion to model the scene in a hybrid manner. Based on a
primitive-aware semantic volume, the scene can be divided
into volume-based and primitive-based regions automati-
cally. Both of dense volume rendering and primitive-based
rendering can be applied via a unified representation. In this
section, we will first recap the NeRF-based volume render-
ing in Sec. 3.1, and introduce the primitive-based rendering
method in Sec. 3.2. Then the core idea, primitive-aware hy-
brid representation, will be introduced in detail in Sec. 3.3.

3.1. Volume-based Rendering

We utilize the radiance field [20] as the basis of our rep-
resentation. More specifically, given the position xi ∈ R3

and the view direction di ∈ R2, an MLP network FΘ will
act as a decoder and output the per-point attributes:

σi = FΘ(γ(xi)), ci = FΘ(γ(xi), SH(di)), (1)

where σi ∈ R is the view-independent density and ci ∈ R3

is the view-dependent RGB color. γ(·) and SH(·) are po-
sitional encoding functions based on multi-resolution hash-
ing [21] and spherical harmonics respectively. In order to
model the semantic information of the space additionally,
inspired by semanticNeRF [43], we add a semantic head
to the MLP FΘ and get the per-point semantic information
si ∈ R4: si = FΘ(γ(xi)), where si = (np, dp) indicates
the primitive the queried point xi is located on. We define
each primitive as a 3D plane which will be introduced in
Sec. 3.2. Instead of predicting the discrete object class la-
bels [43], our semantic logits si are continuous and indicate
geometric-level semantic information of the scene.

Then color and density will be integrated along the ray
to get the rendered pixel color c(r).

c(r) =

N∑
i=1

Tiαici, Ti =

i−1∏
j=1

(1− αi) (2)

where αi = 1− exp(−σiδi) is the opacity and δi = ri+1 −
ri is the distance between adjacent samples. Besides RGB
color, Eq. 2 can also be used to render depth and semantic
values as:

d(r) =

N∑
i=1

Tiαiri, s(r) =

N∑
i=1

Tiαisi. (3)

3.2. Primitive-based Rendering

Since dense volume rendering suffers from expensive
sampling and ambiguous geometry around the ground truth
surface, geometric primitive-based rendering may be an al-
ternative choice. We define each primitive as a 3D plane
p = {np, dp}, where np ∈ R3 is the plane normal and
dp ∈ R+ is the distance from the origin point to the plane,
Each primitive p = {np, dp} holds np ·x = dp for the point
x located on it.

Given a ray r = {o,d} and a primitive p = {np, dp},
the ray-primitive intersection point can be calculated ana-
lytically:

x = o+
dp − o · np

d · np
d. (4)

We model primitives as colored and translucent planes
so the same rendering method (Eq. 1-Eq. 3) can be applied.
However, the primitive intersections are often sparse and
unevenly spaced, so δi = ri+1 − ri is unreasonable in
primitive-based rendering. To solve this, we assume each
plane shares an equal and fixed thickness, i.e., δi = δp.

The primitive-based rendering is as follows: shooting
a ray r = {o,d} from the camera optical center to the
space, computing all intersections with existing primitives
PG, sorting intersections {xi} by the distance from ray ori-
gin, sending intersection positions and ray directions into
the MLP FΘ and executing the volume rendering as Eq. 1
and Eq. 2 with fixed thickness δi = δp.

Though plane-based methods are very efficient [4, 16],
pure primitive-based modeling may still lead to wrong ge-
ometry and blurry rendering results when observations are
limited. On the other hand, volume-based rendering can re-
lieve the problem by dense sampling for regions with com-
plex geometry. In light of this, a hybrid representation that
combines both primitive and non-primitive based rendering
may help improve the fidelity of scene modeling and ren-
dering results.
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Figure 2: Representation. By discretizing the scene with a semantic volume, the proposed (c) primitive-aware hybrid
rendering enables highly efficient sampling and rendering in the mixture of both (a) volumetric and (b) primitive rendering.

3.3. Primitive-aware hybrid representation

Taking advantage of both volume rendering and
primitive-based rendering, we design a hybrid voxel-based
representation to achieve complex scene modeling and fast
inference simultaneously, which also helps lift up conver-
gence speed.

The basic idea is to create an indicator to help tell apart
primitive and non-primitive regions. Specifically, to repre-
sent a scene in a hybrid manner, we establish a dense se-
mantic volume Vs accompanied by a list of primitive pa-
rameters PG to describe the global semantic information of
each point in the scene. Each voxel of the volume contains
an integer label vi ∈ Z, (vi ≥ −1) indicating the type of the
voxel. Different sampling and rendering strategies are used
for different types of voxels. We first apply ray marching in
the semantic volume Vs to sample points, and a hybrid ren-
dering method is utilized to render per-pixel color, depth,
and semantic values to form the rendered images.
Ray Marching. To render a ray, we apply ray marching
in the semantic volume to sample points for rendering. At
each marching step, we determine which voxel the current
point belongs to. Then the semantic label of the current
voxel is checked by the semantic volume, and the label de-
termines the sample operation we will execute. We define
the following three kinds of voxel to guide the sampling:

E-voxel holds vi = −1, which means the voxel is empty,
and the marching process will skip this voxel without sam-
pling.

D-voxel holds vi = 0, which means the voxel is occu-
pied. Samples in this voxel will be dense and evenly spaced.

P-voxel has vi ≥ 1, which means the voxel is also occu-
pied, but we apply primitive-based sampling and rendering
in these voxels. Each vi ≥ 1 corresponds to one primi-
tive in the maintained parameter list PG. We extract the
parameter p = {np, dp} of the indicated primitive vi from

PG. Then the ray-plane intersection point is calculated with
Eq. 4, and its coordinate is saved for later rendering. After
that, we set the coordinates of the next marching point as a
point at a fixed distance ψ behind the plane and continue the
marching process until the sample point moves outside the
semantic volume Vs or the ray has reached the maximum
number of sampling steps. The fixed distance ψ is set as the
diagonal size of one voxel along the plane normal.
Hybrid Rendering. After ray marching, we have gathered
sampled point set {x} from the traversed D-voxels and P-
voxels. Then the point set is sent into MLP FΘ to infer
color and density. When calculating the opacity αi of each
point, we choose the thickness as δi = ri+1 − ri for points
sampled in D-voxels and δi = δp for points sampled in P-
voxels (δp is set to 1.0 in all the experiments). Then the
pixel color can be rendered by Eq. 2

One advantage of this hybrid semantic volume is that
parametric parameters and boundaries of primitives are en-
coded into the scene in a unified manner, which means no
extra plane parameterization is needed for each primitive.

4. Primitive-aware radiance fusion
Given a posed RGB-D sequence as input, we reconstruct

a primitive-aware volumetric field for novel view synthesis
in an incremental manner. We apply a plane detection algo-
rithm for each input depth image to estimate plane param-
eters and merge them into the global plane list. After that,
the new primitives will be fused into the semantic volume
Vs. Finally, the MLP FΘ and the semantic volume Vs will
be optimized together via the proposed hybrid rendering.

4.1. Parametric primitive extraction

Though depth sensors may give noisy observation, re-
gions with continuous depth values provide strong prior for
the existence of smooth surfaces. This prior is especially
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Figure 3: Framework of PARF. For each input RGB-D frame, we apply plane detection to get semantic image ItS and a local
parameter list Pt

L, which are then merged into the global primitive list. Then the depth frame ItD and the updated semantic
frame ItS are fused into the semantic volume Vs to update the global representation. Through hybrid rendering, the color,
depth, and semantic images can be rendered and supervised with input images and detected primitive images.

valuable for recovering texture-less regions, which is dif-
ficult for NeRF [20] and MVS [31] methods. We choose
plane as a similar prior to depict the low-level semantics of
the scene. Inspired by TSDF Fusion, we propose to detect
and fuse the semantic information into the semantic volume
in an incremental manner.
Primitive detection. Given depth frame ItD at time t, a real-
time plane detection method CAPE [27] is utilized to detect
planes and get a parameter list Pt

L as well as a semantic im-
age ItS , where each pixel with non-zero value corresponds
to a plane in the list Pt

L. For each plane in Pt
L, we vali-

date its flatness by back-projecting the pixels to 3D space
and calculating the mean point-to-plane error. If the error
exceeds the threshold ϵ1, the plane will be refused, and the
corresponding pixel value on ItS will be set to zero.
Primitive merge. After plane detection, the detected planes
Pt

L are compared and merged into the global plane list Pt−1
G

to get Pt
G. For each plane pt

j ∈ Pt
L, j ∈ [1, J ], the distance

between pt
j and each plane pm ∈ Pt−1

G ,m ∈ [1,M ] is
calculated as:

dist(pt
j ,pm) =

∣∣dtjnt
j − dmnm

∣∣ . (5)

If all the distances are larger than threshold ϵ2, plane pt
j will

be added to Pt−1
G as a new plane. Otherwise, the pixels in

ItS correspond to plane pt
j will be replaced with the index

of the closest plane argmin
m

dist(pt
j ,pm).

After merging Pt
L into the global list Pt−1

G , we apply
PCA to evaluate the normal ñm of each plane pm ∈ Pt

G

by sampling points in the last t semantic index images. If
|ñm − nm| > ϵ3, then plane pm will be removed from Pt

G.
In our experiments, the threshold values are ϵ1 = 0.005,
ϵ2 = 0.01, and ϵ3 = 0.1.

4.2. Primitive fusion in semantic volume

Inspired by TSDF Fusion based reconstruction, we fur-
ther fuse the current semantic frame ItS and the depth frame
ItD into the semantic volume for hybrid rendering.

At beginning of the fusion, we assign all voxels in se-
mantic volume Vs as E-voxels (vi = −1). When a new
frame comes, we project all the grid points {xi} (center
points of voxels) onto the current frame t to get the pixel
coordinates {ui} and the observed depth values {Dt(xi)}.

If the projected semantic value ItS(ui) = 0, which in-
dicates non-primitive, then we apply a bilateral truncated
band B1 to threshold the valid grid points according to the
depth value ItD(ui) of the projected pixel. The valid voxels
will be assigned as D-voxels (vi = 0):

V t
v=0 = {vi|ItD(ui)−B1 < Dt(xi) < ItD(ui)+B1}. (6)

If ItS(ui) > 0, the pixel indicates a primitive m ∈
[1,M ]. Firstly, we compute the ray-plane intersection with
Eq. 4 and get the observed depth values {St(xi)} of the in-
tersection point for the following threshold operations. Sec-



ondly, we use a narrower bilateral band B2 to threshold the
voxels and assign plane indexm to these voxels as P-voxels.
Thirdly, we take plane primitive as a strong regularization
of the space, where there should be no occupied voxels be-
tween the camera t and the observed plane pm. So we apply
a unilateral truncation band B1 to assign voxels behind the
plane as D-voxels only, and the voxels located before the
plane will be set to E-voxels.

V t
v>0 = {vi|ItD(ui)−B2 < St(xi) < ItD(ui) +B2}, (7)

V t
v=0 = {vi|ItD(ui) +B2 < St(xi) < ItD(ui) +B1}, (8)

V t
v=−1 = {vi|St(xi) < ItD(ui)−B2}. (9)

The bandwidth B1 = 6ψ,B2 = ψ, where ψ is the diag-
onal size of one voxel. Please refer to our supplementary
material for more details.

This primitive-based fusion operation helps sparsify the
space, which is beneficial for fast convergence. After the
parametric semantic fusion, the updated semantic volume
Vs can be used to execute hybrid rendering (Sec. 3.3) and
further optimization (Sec. 4.3.1).

4.3. Implementation details

4.3.1 Optimization

During training, we optimize the MLP FΘ and the se-
mantic volume Vs via hybrid volume rendering. For
volume rendering, we apply four loss functions: Lc =∑

r ∥c(r)− cgt(r)∥22, Ld =
∑

r ∥d(r)− dgt(r)∥22, Ls =∑
r ∥s(r)− sgt(r)∥22, and Lreg =

∑
r −o(r) log(o(r)),

where o(r) =
∑N

i=1 Tiαi is the opacity of each ray. Lreg

is used to regularize each ray to be completely saturated or
unsaturated. The total loss is:

Ltotal = Lc + λ1Ld + λ2Ls + λ3Lreg, (10)

The hyper-parameters are set as λ1 = 1.0, λ2 = 0.04, λ3 =
0.001 for all the experiments. With a cosine annealing
schedule, the learning rate is set from 1e−2 to 3e−4. The
ray number of each batch is 8192, and each epoch contains
1000 iterations. We train PARF for 5 epochs for each scene.
We apply the same pruning strategy as InstantNGP [21]
to prune voxels with low density periodically, which helps
sparsify the space and accelerate the optimization speed.

4.3.2 Scene Editing

The hybrid scene representation helps to achieve more con-
venient scene editing with the following actions.

Primitive Deletion. Since each primitive holds a unique
label vi in the semantic volume Vs, the primitive can be
easily removed by setting P-voxels labeled with vi ≥ 1 to
E-voxels vi = −1.

Primitive Transformation. To transform primitives, We
set up an extra editing volume Ve and a list Te to store
the editing operations. Non-zero voxel vei ∈ Ve indicates
an editing operation tei ∈ Te. During ray marching, if the
ray arrives a voxel with vei ≥ 1 in Ve, the current march-
ing point {x,d} will be transformed to (x′,d′) = tei (x,d)
according to tei . Then the transformed (x′,d′) will be sent
into MLP FΘ for attributes inferencing and rendering. The
visualization of editing results are shown in Fig. 4.

Original

After editing

Figure 4: Realistic semantic scene editing results.

5. Experiments
In this section, we report the experimental results in de-

tail. We first introduce the experiment settings, then show
that PARF achieves high-quality render results and more ro-
bust view extrapolation compared to the SOTA methods.

5.1. Datasets

We perform experiments on the following public
datasets: one synthetic dataset with ground truth depths and
real-world datasets with noisy depths.
Replica [32] consists of 18 scenes scanned and recon-
structed from the real world, which can be rendered to
RGB-D sequences. We conduct experiments on 8 se-
quences of Replica following existing method [29]. Specif-
ically, we use 2000 frames with an interval of 10 frames for
the training of each scene. Besides, 10 interpolation views
and 10 extrapolation views are rendered as ground truth im-
ages for the evaluation of each scene.
BundleFusion [6] dataset includes real captured RGB-D
sequences from 7 real-world indoor scenes. We obtain cam-
era poses from the BundleFusion algorithm. For each scene,
2000 frames with an interval of 12 or 24 frames from each
of 4 scenes (apt0, apt2, copyroom, and office2) are
used for evaluation.
ScanNet [5] We choose 3 scenes (scene0012,
scene0027, and scene0457) from ScanNet dataset for
evaluation. For each scene, 2000∼5000 frames with an
interval of 10 or 40 frames are chosen and the camera poses
are also obtained from the BundleFusion algorithm [6].
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Figure 5: Qualitative comparison on both interpolation and extrapolation views of the Replica dataset. PARF shows high-
quality rendering results under both settings, while other methods suffer from blurry patterns, geometry distortion, or floaters.

Mean Interpolation Extrapolation
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

w/ depth
input

training
time

render
(fps)

DVGO 21.97 0.781 0.487 27.36 0.835 0.525 16.58 0.727 0.448 0 ∼10min 0.4
Plenoxels 27.54 0.860 0.370 31.86 0.903 0.333 23.22 0.832 0.408 0 ∼18min 3748
NeRF 30.89 0.890 0.365 32.81 0.904 0.358 28.98 0.879 0.371 0 ∼3h 0.03
InstantNGP 31.44 0.892 0.354 34.25 0.917 0.323 28.63 0.867 0.385 0 ∼85s 9.25
TSDF Fusion 27.64 0.858 0.379 28.55 0.869 0.371 26.73 0.846 0.387 1 - -
DSNeRF 31.16 0.887 0.370 32.34 0.895 0.369 29.99 0.878 0.371 1 ∼3h 0.03
NeurMiPs 33.29 0.923 0.290 35.07 0.938 0.271 31.52 0.908 0.309 1 ∼10h 0.73
NeRF-SLAM 34.50 0.930 0.283 36.94 0.948 0.245 32.07 0.913 0.320 1 ∼88s 31.3
PARF (ours) 35.09 0.943 0.228 37.00 0.954 0.204 33.18 0.933 0.253 1 ∼40s 62.5

Table 1: Quantitative evaluation results on the Replica dataset. Compared to baseline methods, PARF achieves the best
performance in all three metrics and shows a significant boost in extrapolation ability.

Since no extra views can be obtained (like the Replica
dataset), the BundleFusion and ScanNet datasets are only
used to measure the interpolation ability in quantitative
evaluation.

5.2. Baselines

We compare our method against the state-of-the-art
methods for novel view synthesis, such as NeRF [20],
DVGO [33], Plenoxels [9], InstantNGP [21], which do
not rely on depth input. Besides, methods like TSDF Fu-
sion [40], DS-NeRF [7], NeurMiPs [16], NeRF-SLAM [29]

that need geometry guidance are also compared.

We evaluate the standard TSDF Fusion [40] algorithm
with the volume size of 5123 and the truncation band size
of 10 voxels. For DS-NeRF [7], we use dense depth maps
as guidance instead of sparse point clouds to get better per-
formance. NeurMiPs [16] models the scene with multiple
planar primitives. Since the plane parameters should be op-
timized with a global point cloud, it is difficult for Neur-
MiPs to be applied in an incremental reconstruction frame-
work. We prepare the point clouds by fusing multi-view
depth maps for the plane initialization stage. During the



Figure 6: Qualitative comparison of TSDF Fusion(A), NeRF-SLAM(B), and PARF(C) on BundleFusion dataset. The views
are rendered from extrapolation views that deviate significantly from the training views. TSDF Fusion and NeRF-SLAM
suffer from blurry patterns and floaters, while PARF shows more robust rendering results.

evaluation of the mentioned baseline methods, we strictly
follow the official hyper-parameters for a fair comparison.
InstantNGP [21] is an extension of NeRF that enjoys fast
convergence and rendering. We re-implement InstantNGP
with pytorch-lightning and customized CUDA kernel func-
tions [14]. As a SLAM system, NeRF-SLAM [29] has a
mapping stage that incorporates InstantNGP with a depth
render loss. Since localization is out of the scope of this
paper, only the mapping stage of NeRF-SLAM is evalu-
ated. For a fair comparison with PARF, we follow the
same hyper-parameter setting for networks and optimiza-
tion when training InstantNGP and NeRF-SLAM.

To compare the convergence speed of PARF and NeRF-
SLAM, we evaluate both interpolation and extrapolation
quality with an appropriate iteration interval for each
method, which is shown in Fig. 1(b). Note that we only
evaluate the effectiveness of the proposed hybrid represen-
tation in Fig. 1(b), so we assume all the observations are
available from the start of training. We further evaluate the
efficiency under incremental reconstruction setup in Fig. 7.

5.3. Evaluation

In this section, we report the results of quantitative and
qualitative experiments on three datasets, which help vali-
date the effectiveness of PARF in terms of rendering quality,
convergence speed, as well as incremental reconstruction
performance.
Quantitative evaluation. We evaluate the interpolation and
extrapolation performance of baselines and PARF on the
Replica dataset in Tab. 1. By comparing baselines with and
without depth input, it can be found that geometric guid-

ance generally enables better render quality by reducing ge-
ometry ambiguity, especially for extrapolation views. By
implementing geometric guidance in a hybrid representa-
tion, PARF significantly outperforms all the baselines for
both interpolation and extrapolation settings. Note that the
hybrid representation of PARF helps improve the extrapo-
lation ability by a large margin.

NeurMiPs shows worse performance than PARF because
the plane-only representation is relatively hard to optimize
and cannot accurately fit complex geometries (like chair
legs and flowers). On the contrary, PARF enjoys a sound
combination of primitive and non-primitive areas, which is
more flexible and robust to the level of detail modeling.

Dataset Methods PSNR↑ SSIM↑ LPIPS↓

ScanNet
InstantNGP 21.04 0.685 0.530

NeRF-SLAM 23.28 0.716 0.490
PARF 23.93 0.753 0.474

BF
InstantNGP 21.42 0.724 0.460

NeRF-SLAM 24.98 0.749 0.394
PARF 25.82 0.760 0.363

Table 2: Quantitative evaluation on ScanNet and BundleFu-
sion(BF) datasets.

From Tab. 2, we find that even the real-world datasets
include noisy depth maps and imperfect poses, PARF still
consistently outperforms InstantNGP and NeRF-SLAM on
all metrics under the interpolation views, which proves
the effectiveness of the proposed hybrid representation and
primitive-aware fusion framework.
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Figure 7: Incremental reconstruction evaluation.

Qualitative evaluation. Fig. 5 and Fig. 6 show the vi-
sual comparison on different datasets. The rendering details
shows that our method achieves the highest rendering qual-
ity and robustness. In both figures, TSDF Fusion shows
blurry rendering results because of the simple multi-view
color averaging strategy. Because of the insufficient scene
regularization, DS-NeRF and NeRF-SLAM shows floaters
in textureless regions and extrapolation views, which results
in an apparent performance drop. In Fig. 5, NeurMiPs suf-
fers from distorted rendering results in the regions of com-
plex geometry. Besides, NeurMips is very sensitive to plane
initialization, which often results in holes due to the diffi-
culty of plane parameter optimization. By comparison, the
qualitative performance of PARF is more stable and accu-
rate due to the advantage of the primitive-aware scene sen-
sation and the hybrid representation.
Speed Analysis. The convergence speed evaluation re-
sults are shown in Fig. 1(b). With the help of the effective
combination with primitive-based rendering, PARF enjoys
the highest converge speed compared to all the learning-
based baselines that claimed for fast convergence, including
Plenoxels, DVGO, InstantNGP, and NeRF-SLAM.

The incremental reconstruction performance is also
evaluated. By comparing to NeRF-SLAM in Fig. 1(a) and
Fig. 7, PARF enjoys much faster convergence and can en-
able on-the-fly radiance fusion.

5.4. Ablation Study

Observation sparsity. Primitives provide vital prior for
scene perception, which enables robust performance even
when the observation is relatively sparse. We evaluate
PARF and NeRF-SLAM with different input sparsity on
office0 of Replica. The sparsity n means we take one of
every n images from the original sequence (2000 frames)
as input. The results are shown in Tab. 3, which demon-
strate the robust performance of PARF even with very lim-
ited views (< 20 views).
Sampling Strategy. We conducted an ablation study to

Methods Metrics Sparsity
20 60 100 140

NeRF-SLAM
PSNR ↑ 32.09 31.27 28.09 25.68
SSIM ↑ 0.919 0.908 0.879 0.831
LPIPS ↓ 0.274 0.287 0.316 0.366

PARF
PSNR ↑ 33.18 32.67 31.53 29.76
SSIM ↑ 0.934 0.923 0.911 0.905
LPIPS ↓ 0.192 0.201 0.204 0.214

Table 3: Ablation study of observation sparsity.

validate the effectiveness of our primitive guided sampling
strategy. Since depth maps are available, a more straight-
forward way is to sample with depth values. Specifically,
if a ray holds a valid depth value on the depth image, we
only sample the points located on and behind the depth
value during training. However, depth values from sensors
inevitably contain noise, which is harmful to direct depth
guidance. We add Gaussian noise with mean 0cm and
sigma 100cm to depth images. The experimental results
on Replica office0 demonstrate the robustness of the hy-
brid sampling strategy of PARF, while direct depth guidance
shows massive quality degradation given noisy depth input.

Guidance PSNR↑ SSIM↑ LPIPS↓
depth (w/o noise) 29.19 0.881 0.305
depth (w/ noise) 20.09 0.698 0.539

primitive (w/o noise) 33.18 0.934 0.192
primitive (w/ noise) 33.00 0.933 0.196

Table 4: Ablation study of sampling strategy on Replica.

6. Conclusion
In this paper, we introduce PARF, a Primitive-Aware

Radiance Fusion method for indoor scene radiance field
reconstruction and editing. By combining volumetric
and primitive rendering in a hybrid neural representation,
we successfully merge semantic parsing, primitive extrac-
tion, and radiance fusion into a single framework. PARF
achieves significant improvement in convergence speed,
strong view extrapolation performance, and realistic seman-
tic editing effects simultaneously. Since the discrete se-
mantic volume may lead to jagged primitive boundaries for
novel view synthesis, future work includes combining the
semantic information in a more compact manner and adding
more kinds of primitives for more effective reconstruction.
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