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Abstract

The rendering scheme in neural radiance field (NeRF) is
effective in rendering a pixel by casting a ray into the scene.
However, NeRF yields blurred rendering results when the
training images are captured at non-uniform scales, and
produces aliasing artifacts if the test images are taken in
distant views. To address this issue, Mip-NeRF proposes
a multiscale representation as a conical frustum to encode
scale information. Nevertheless, this approach is only suit-
able for offline rendering since it relies on integrated po-
sitional encoding (IPE) to query a multilayer perceptron
(MLP). To overcome this limitation, we propose mip voxel
grids (Mip-VoG), an explicit multiscale representation with
a deferred architecture for real-time anti-aliasing render-
ing. Our approach includes a density Mip-VoG for scene
geometry and a feature Mip-VoG with a small MLP for
view-dependent color. Mip-VoG represents scene scale us-
ing the level of detail (LOD) derived from ray differentials
and uses quadrilinear interpolation to map a queried 3D
location to its features and density from two neighboring
down-sampled voxel grids. To our knowledge, our approach
is the first to offer multiscale training and real-time anti-
aliasing rendering simultaneously. We conducted experi-
ments on multiscale dataset, results show that our approach
outperforms state-of-the-art real-time rendering baselines.

1. Introduction

The realm of computer vision and graphics is marked
by the captivating yet formidable challenge of novel view
synthesis. In recent times, neural volumetric representa-
tions, most notably the neural radiance field (NeRF) [35],
have emerged as a promising breakthrough in reconstruct-
ing intricate 3D scenes from multi-view image collections.
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Multiscale Real-time | Anti-aliasing
Method Training Rendering Rendering
Mip-NeRF [3] v v
SNeRG [21] v
MobileNeRF [10] v v
Ours v v v

Table 1: Our method is the first one concurrently addresses
multiscale training, real-time and anti-aliasing rending.

NeRF employs a coordinate-based multilayer perceptron
(MLP) architecture to map a 5D input coordinate (includ-
ing 3D spatial position and 2D viewing direction) to in-
trinsic scene attributes (namely, volume density and view-
dependent emitted radiance) at that precise location. The
pixel rendering process in NeRF involves casting a ray
through the pixel into the scene, extracting the scene rep-
resentation for points sampled along the ray, and ultimately
fusing these components to produce the final color output.
While this rendering methodology excels when the train-
ing and testing images share a uniform resolution, chal-
lenges arise when the training images encompass varying
resolutions. This discrepancy in resolutions leads NeRF to
produce blurred rendering outputs due to the altered pixel
footprints originating from diverse scales. Besides, in case
that test viewpoints significantly deviate from the spatial
distance of the training views, the sample rate for per pixel
would be inadequacy, thereby results in aliasing artifacts.
To surmount this challenge, Mip-NeRF [3] emerges as a
noteworthy solution, presenting a continuously-valued scale
representation for coordinate-based models. Mip-NeRF in-
troduces a pioneering technique, known as integrated po-
sitional encoding (IPE), which facilitate the scene repre-
sentation with the knowledge of scale. Departing from the
conventional ray-based approach, Mip-NeRF adopts a novel
rendering strategy involving conical frustums. This repre-
sentation not only enables effective multiscale training but
also tangibly mitigates the persisting issue of aliasing ar-



tifacts. However, it’s important to note that this approach
relies on querying the network with the scale-variant IPE.
As a consequence, the integration of pre-cache techniques
that circumvent positional encoding [21], remains elusive
within the current Mip-NeRF’s formulation.

This paper introduces a novel multiscale representation,
termed “Mip-VoG” (Mip Voxel Grids, drawing inspiration
from “mipmap”’), which addresses the challenge of train-
ing on images with varying scales and enables real-time
anti-aliasing rendering during the inference stage (Tab. 1).
Our approach commences by unveiling a “deferred” NeRF
variant, wherein both scene geometry and color attributes
are explicitly stored within the Mip-VoG framework. The
intricate task of decoding view-dependent effects is exe-
cuted using a compact multilayer perceptron (MLP) that ef-
ficiently processes each pixel only once. Instead of pre-
training and baking a continuous NeRF into grids [21],
we treat voxel values as parameters and directly optimize
them as seen in the work by [16, 57]. Despite the “mip”
nomenclature, Mip-VoG only maintains one density voxel
grid and one feature voxel grid that represent the high-
frequency spatial attributes. This structure permits the infer-
ence of lower frequency representations through a progres-
sive down-sampling process, achieved via low-pass filters
and interpolation algorithms [14]. Given a single 3D point
sampled from a camera ray, Mip-VoG intelligently deter-
mines the level of detail (LOD) via ray differentials [22].
The LOD calculation is pivotal, as it establishes a pixel-
to-voxel ratio that represents the point’s footprint on the
full-resolution voxel grids. As a consequence, scene proper-
ties corresponding to this point are sampled by interpolating
between two adjacent down-sampled level grids. Notably,
camera rays cast from a low-resolution frame are spatially
represented over a wider area, yielding a higher sample rate
and capturing more lower-frequency information. During
inference phrase, we pre-compute the voxel grids at each
integer level and subsequently convert them to the sparse
voxel grid data structure used by SNeRG [21] to increase
the rendering speed.

We conducted a comprehensive evaluation of our ap-
proach using well-established NeRF datasets, including
Synthetic-NeRF [35] and Multiscale-NeRF [3], in line with
the multi-scale framework outlined in Mip-NeRF [3]. Our
findings underscore the validity of our multiscale represen-
tation in effectively addressing complex multiscale training
scenarios, while successfully preserving both low and high-
frequency components inherent in the multiscale dataset.
Comparative analysis against state-of-the-art real-time tech-
niques reveals that our proposed approach excels in mitigat-
ing multiscale challenges, yielding impressive results. Fur-
thermore, our method proves instrumental in achieving re-
markable accuracy in anti-aliasing rendering, bolstering its
applicability and potential impact.

2. Related Works

Scene Representation for View Synthesis Numerous
scene representations have been proposed to tackle the intri-
cate task of view synthesis. Approaches such as Light Field
Representation [12, 26, 27, 51] and Lumigraph [18, 7] di-
rectly interpolate input images, albeit necessitating dense
input data for novel view synthesis. In an effort to re-
duce the demand for exhaustive capture, subsequent stud-
ies represent light fields as neural networks [53, 2]. Lay-
ered Depth Images [13, 50, 52, 60] alleviate the require-
ment of input denseness, but their effectiveness hinges on
the accuracy of depth maps for rendering photo-realistic
images. Recent advancements have introduced methods
to estimate Multiplane Images (MPIs)[15, 29, 34, 56, 65,

] for scenes with forward-facing viewpoints, and voxel
grids[54, 31] for inward-facing scenes. Mesh-based rep-
resentations [13, 50, 52, 60, 37, 38, 19] constitute another
notable category within the view synthesis realm, offering
real-time rendering potential through optimized rasteriza-
tion pipelines. However, these methods necessitate template
meshes as priors to overcome gradient-based optimization
challenges.

Recently, NeRF [35] emerges as a popular method for
novel view synthesis. By using a MLP as an implicit and
continuous volumetric representation, NeRF maps from a
3D coordinate to the volume density and view-dependent
emission at that position. The success of NeRF brings num-
bers of attention into neural volumetric rendering for view
synthesis. Many follow-on works have extended NeRF to
generative models [8, 59, 49, 39], generalization [61, 69]
dynamic scenes [41, 28, 44, 32, 48], relighting[5, 55, 72],
and editing [42, 43, 58, 70, 30, 67], etc. Rendering an im-
age via NeRF necessitates querying an extensive neural net-
work at multiple 3D locations per pixel, resulting in approx-
imately a minute per frame rendering time. Recent advance-
ments seek to enhance NeRF’s rendering efficiency through
explicit representation leveraging [9, 57, 16, 65], or by seg-
menting the scene into sub-regions with smaller neural net-
works [46, 45].

Real-time Neural Rendering A series of researchers has
emerged to address the imperative demand for real-time
rendering capabilities. PlenOctrees [68] introduces an inno-
vative spherical harmonic representation of radiance, seam-
lessly transitioning it into an octree data structure. Fast-
NeRF [17] strategically restructures NeRF through refac-
toring, incorporating a dense voxel grid to efficiently cache
the scene of interest for accelerated rendering. iNGP [36]
uses a hash-table to store the feature vectors and combining
with fully-fused CUDA kernels to accelerate rendering pro-
cesses. SNeRG [21] proposes a deferred architecture and
extracts the scene properties from a pre-trained model into



a sparse grid data structure. On a divergent trajectory, Mo-
bileNeRF [10] adopts a unique approach, representing the
scene using textured polygons and harnessing polygon ras-
terization to generate pixel-level features. These features, in
turn, are decoded via a compact view-dependent MLP. Nev-
ertheless, it’s important to note that the explicit represen-
tations harnessed by these approaches lack scale-agnostic
adaptability, thus the efficacy in learning from training im-
ages with multiple resolutions is limited. Our primary focus
in experimental comparisons resides with SNeRG and Mo-
bileNeRF, given their established performance on resource-
constrained devices without CUDA access.

Reducing Aliasing in Rendering One straightforward
solution to mitigate aliasing for coordinate-based neural
representations is supersampling [63], which requires cast-
ing multiple rays through pixel during rendering to get the
final result. While powerful in its anti-aliasing effects, su-
persampling exacerbates the already time-intensive render-
ing procedure of NeRF, thereby confining its utility primar-
ily to offline rendering scenarios. To improve the efficiency,
Mip-NeRF [3] proposes to cast a conical frustum into the
scene space and render the 3D region instead of a single
point. This approach avoids heavy computation burden by
approximating the 3D region rendering using gaussian, their
algorithm queries the network by IPE of the 3D input re-
gion to output the final density and radiance. Due to the
heavy reliance on the network to decode the scale infor-
mation, Mip-NeRF cannot leverage pre-cache techniques
to enable real-time capability. Another common technique
for reducing aliasing is pre-filtering [40, 23, 66, 6], which
pre-filters the maps on a coarse mesh e.g. color maps, nor-
mal maps, linearly and separately. This strategy involves
the pre-filtration of various maps on a coarse mesh, such as
color maps and normal maps, independently and linearly.
Notably, pre-filtering transfers the computational load to a
pre-rendering stage, rendering it well-suited for real-time
rendering scenarios. A widely adopted method in 3D ren-
dering applications is mip mapping [14, 64, 11]. A serial-
ization of images or textures, each of which is a progres-
sively lower resolution representation of the previous one,
are pre-computed ahead of time to increase rendering speed
and reduce aliasing artifacts for real-time inference. Tra-
ditionally, mip mapping is integral to the texture mapping
process for 3D meshes. Expanding upon this concept, we
extend mip mapping to the realm of 3D neural volumetric
rendering. Our approach involves applying mip mapping to
the voxel grids data structure, rather than a mere 2D map.
This extension capitalizes on the advantages of mip map-
ping to boost rendering efficiency and reduce aliasing arti-
facts within the domain of neural volumetric rendering.

Relation to DVGO, iNGP and ZipNeRF There are some
remarkable concurrent works study the voxel representa-
tion for efficient rendering. Still, there are some difference
between Mip-VoG and these works. DVGO [57] progres-
sively optimize a higher resolution voxel grid in the train-
ing for finer details, but it does not considering a multi-scale
representation. Besides, DVGO stores the implicit feature
for radiance emission and predict the final pixel color by
a shallow MLP. By contrast, our Mip-VoG stores the ex-
plicit value for diffuse color and implicit feature for view-
dependent specular radiance. iNGP [36] introduces a hash
encoding approach based on a multi-resolution structure for
speedy high-quality image synthesis. Their approach si-
multaneously trains several dense grid with different scales
and concatenates the feature from each for further predic-
tion. This representation only works for single-scale im-
ages since its scale-invariant. In contrast, our method only
retains a single voxel grid during training and can progres-
sively sample from Mip-VoG with different LOD. A con-
current work, ZipNeRF [4] operates within a similar set-
ting, where they integrate iNGP’s grid pyramid using multi-
sampling within the Mip-NeRF framework, whereas our
work takes a distinct approach by incorporating the funda-
mental concept of “mip” directly into voxel grids.

3. Method
3.1. Review of NeRF

NeRF [35] uses a MLP parameterized by # as a contin-
uous volumetric function to represent a scene. The network
takes input as the view direction d and 3D coordinate ()
sampled from a camera ray r(t) = o + td, and predict the
volume density o at that 3D position together with the view-
dependent radiance c from that view direction:

a(t), c(t) = MLPy(r(t), d). (1)

A vital assumption made by NeRF is to model the density o
only depend on location, while emitted color is conditional
on 3D coordinate r(t) and view direction d. In the render-
ing procedure, NeRF takes the predicted densities and emis-
sions {o(t;),c(t;)}¥, along the ray casted from a pixel,
and approximate a volume rendering integral [33] to derive
the final color of that pixel:

N
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j

where §(t;) = t;41 — t; is the distance between adjacent
samples. One can find that rendering a single ray for each
pixel requires evaluating the MLP hundreds of times, result-
ing in significantly slow rendering speed.
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Figure 1: Rendering framework overview. We based our pipeline design on deferred NeRF [2 1] with explicit training of
Mip-VoG. Given a point sampled from a camera ray, we query the density Mip-VoG (Vge,) and color Mip-VoG (V) to
predict the 1D volume density o, 3D diffuse color ¢4 and 4D feature vector f,. We then aggregate the diffuse colors and
feature vectors along the ray through volume rendering integral (Eq. 3 and 4), resulting in Cy and F;. After that, a tiny MLP
is used to predict a pixel-wise view-dependent specular color C, by using the accumulated feature-vector F together with
the view direction d (Eq. 5). The final color prediction C is the summation of diffuse color Cy and specular color C, (Eq. 6).

3.2. Review of Deferred NeRF

As discussed previously, real-time rendering can be
achieved by pre-computing as many as scene properties.
While the scene geometry (volume density) can be di-
rectly stored, NeRF relies on a continuous function to rep-
resent view-dependent effects. To address this problem,
SNeRG [21] introduces a residual architecture that first
caches the point-wise pre-trained volume density o (¢), dif-
fuse color c4(t) and 4-dimension feature vector fs(t). The
pixel-wise diffuse color and feature vector are obtained
through volume rendering (same as NeRF):
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Then, a tiny MLP parameterized by ¢, which forwards once
for each pixel based on the feature F(r) and view direction
d, is applied to predict the pixel-wise specular color as a
view-dependent residual:

Cs(r) = MLP4(Fy(r),d). (5)
The final color of the pixel is obtained by the summation of
diffuse color and specular color:

C(r) = Calr) + Cy(r). (6)

Vanilla SNeRG involves pre-training a continuous repre-
sentation first and caching voxel-wise o, ¢4 and f; into a

sparse voxel grid. In contrast, our method directly learns an
explicit representation from scratch, which can be directly
used for efficient multiscale representation. We optimize
o € R in one density Mip-VoG Vg, and ¢4 € R3 together
with f, € R* in one color Mip-VoG Viev- The overview of
our framework is shown in Fig. 1. In the following section,
we present the query algorithms of Mip-VoG.

3.3. Mip Voxel Grids

Mip-VoG harnesses the potential of a sequence of pro-
gressively down-sampled “much in little” voxel grids to fa-
cilitate scene queries at specific 3D coordinates. When sam-
pling from Mip-VoG for a singular point within the spa-
tial domain, a pivotal initial step involves the calculation
of Level of Detail (LOD), which serves as a representative
“correct” scale with regard to the complete-resolution voxel
grids (section 3.3.1). Subsequent procedures encompass fil-
tering and down-sampling operations applied to the com-
prehensive voxel grids, resulting in the generation of voxel
grids at progressively lower scales. The value sampled from
the Mip-VoG, corresponding to the specific LOD, is then
obtained through interpolation, which bridges the informa-
tion across two distinct scales of voxel grids at neighboring
levels (section 3.3.2).

To streamline notation, we simplify the representation by
omitting subscripts, condensing V., and V. into a singu-
lar notation: V() signifies the original voxel grids at level
0. By analogy, the terms V(1), V() V(%) denote the voxel
grids after down-sampling, signifying levels 1, 2, and k re-
spectively.



3.3.1 Level of Detail

Given a single ray cast through a pixel, ray differentials rep-
resent a pair of differentially offset rays slightly above or to
the right of the original ray [22, 1]. We extend this idea to
the volumetric rendering with voxel grids. Denote u, v, w
as the unit coordinates as regard to the voxel space V()
for a pixel of the frame with image space coordinates x and
vy, the ray differentials are defined as derivatives of the ray’s
footprint on voxel space with respect to image space coor-
dinates (x and y):
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By applying a first-order Taylor approximation, we can get

an expression for the extent of a pixel’s footprint in voxel
space based on the voxel-to-pixel spacing:
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Intuitively, this can be seen as the per-axis offset on the
voxel grids made by the deviation of the ray in the image
plane. As illustrated in Fig. 2, we adopt Az, Ay as the half
pixel size along the  and y axis of the image plane, since it
can approximate the footprint of a pixel. Given the position
of a point r(¢) and its neighbors ra 4 (), ra,(t) in the world
space, the offset in voxel unit coordinate can be derived by
the ratio between the distance per axis and the voxel size:
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where T,,T,,T,, are per axis distance to the neighbors
in the world space and V,,V,,V,, are voxel size on
u, v, w along three axes. Then following the convention of
mipmapping [20, 64], the LOD X can be calculated as ':

A =1/3xlogy(p)

with p = max( \/(23)2 + (%;)2 + (%)2 ’ )

\/ (R + (ol + (o )

3.3.2 Filtering and Sampling

Once LOD has been determined, the subsequent step entails
sampling the relevant information from the voxel grid at
the appropriate scale, as mandated by the Mip-VoG frame-
work. To achieve “much in little” voxel grids, we pro-
gressively down-sample the original voxel grid V() into

I'Since the number of voxels drops by 8x each level, we have logg (p) =
logy(p)/log(8) = 1/3  logy (p).

Figure 2: Demonstration of ray differentials. To deter-
mine the LOD of a point on the camera ray, we first cast
two distinct rays, each generated by introducing an offset
equivalent to half the pixel size along the x and y axes
within the screen space. Subsequently, for every point situ-
ated along the original ray trajectory r(t), we compute unit
distance between this point its neighbours ra4 (), ray(t)
along three axis on the full-resolution voxel grids V() as
Au, Av, Aw. The LOD is finally calculated based on the
largest length of the voxel-to-pixel ratio (Eq. 10).

a series of successively lower resolutions. Prior to down-
sampling, a pivotal preparatory step involves the application
of a low-pass filter denoted as . This filter serves to mit-
igate high-frequency information, ensuring that the down-
sampled representations are suitably refined and devoid of
artifacts. Following most common mipmap techniques [25],
the down-sampling process is conducted in a hierarchical
fashion. With each increment in LOD by one level (integer),
the default operation involves down-sampling the voxel grid
using a scale of 1/2:

VERD = |y (v(VR)), (11)

where |}, /5 (.) represents the down-sampling with 1/2 res-
olution. This process iterates, progressively generating new
voxel grids at lower resolutions, thereby accommodating
the spatial requirements of the specific LOD and maintain-
ing the coherence of the Mip-VoG representation. In our
approach, we employ linear interpolation as the method
for down-sample filtering. To illustrate, consider the origi-
nal voxel grid V() with dimensions D x N, X Ny x N,.
When generating V1), the dimensions are adjusted through
scaling to D x N, /2 x N,/2 x N./2. The parameter D
signifies the dimension of the modality being considered.
This process is extrapolated to achieve a feature voxel grid
with higher LOD and correspondingly lower resolution.
The resulting structure preserves the hierarchical nature of
Mip-VoG and contributes to a coherent representation of the
scene, as shown in Fig. 3.

To ensure the smooth continuity across non-integer LOD
A, we adopt quadrilinear interpolation to aggregate samples
from two neighboring voxel grids at different levels (upper
and lower). Let f(V, p) denote the sampling function of the
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Figure 3: Structure of Mip-VoG. At each incremental in-
crease in LOD, we first perform filtering on the previous
voxel grids using low-pass filter, to remove high-frequency
details. Subsequently, the filtered voxel grids are down-
sampled to half of the previous resolution using linear inter-
polation. When querying the value for a 3D point within the
space, Mip-VoG entails the interpolation of results derived
from two adjacent voxel grids, selected in correspondence
with the LOD of the point.

voxel grids, and p € {0, cq, fs} represent the stores value,
the interpolation process can be mathematically expressed
as follows:

p= (AT =2 (VD () + A= [ADF (VD r@),

(12)
where |-] and [-] are the floor and ceiling function. This
quadrilinear interpolation mechanism ensures that the sam-
pled values are seamlessly blended between the two neigh-
boring voxel grids, preserving the continuity of the repre-
sentation across different LOD values.

3.3.3 Optimization

Similar to the prior work [57], our optimization is mainly

divided into two stages: coarse and fine. In the coarse
. (0) « N (©)  N(©)

stage, we normally train Viey() € RVNe XNy XNz

. @y NEOYNE . . .
with Vi) € R3XNT XN, TXNT wwithout using Mip-

VoG, as to only obtain a rough 3D geometry Vien(c)
for reducing the number of sampling points in the fine
stage. In the fine stage, we train a density Mip-VoG

Vien() € RIXNXNXN 404 a color Mip-VoG

Viev(s) € RN XNDXND ih o tiny MLPy as intro-
duced before. We use gradient-descent to directly optimize
value in voxel grids. As the gradient of the linear interpola-
tion used in Mip-VoG downsampling }, /5 is tractable, the
gradient from voxel grids with different resolution can be
naturally aggregated and propagated. The loss function is
the square error between the predicted pixel color and the
ground truth:

L, =Y lIC(:) - C(r)l5. (13)

4. Experiments

In light of our previous discussion, we primarily com-
pare the results under the real-time rendering setting. We
mainly evaluate our method on a simple multiscale syn-
thetic dataset from Mip-NeRF [3] designed to better vali-
date the accuracy on multi-resolution frames. We also con-
duct the experiment on its single-resolution version blender
dataset introduced in the original NeRF paper [35], in order
to probe our aliasing performance of the model training on
a single-scale dataset. We report the three commonly stud-
ied error metrics: PSNR, SSIM [62], and LPIPS [71], and
showcase some qualitative results.

4.1. Datasets

1. Synthetic-NeRF [35] presented in the original NeRF
paper contains eight scenes. In this single-scale
dataset, each scene consists 100 training images and
200 test images with uniform 800 * 800 resolution.
The model trained on this dataset can learn all the high-
frequency details from the full resolution images, with-
out being harmed by training images at multiple scales.

2. Multiscale-NeRF [3] is a straightforward conversion to
Synthetic-NeRF for analyzing multiscale training and
aliasing. It was generated by taking each image in
Synthetic-NeRF and box down-sampling it by a factor
of 2, 4, and 8 (and modifying the camera intrinsics ac-
cordingly). The three down-scaled images along with
the original images are then combined into one sin-
gle dataset. Hence this dataset contains image with
four different scales for both training and test set, and
the size has been quadrupled. The average evaluation
metric is reported as the arithmetic mean of each error
metric across all four scales. As suggested by Mip-
NeRF [3], we adopt the Area Loss for all the meth-
ods which scale the pixel’s loss by the footprint size
in the full resolution images, to balance the influence
between high and low resolution pixels.

4.2. Implementation Details

In our experiments, we set the same hyperparameters for
single-scale and multiscale datasets. In the coarse stage,
the resolution of the voxel grid for both density and color
is (128 x 128 x 128), while in the fine stage, it raises to
(512 x 512 x 512). The low pass filter is adopted as the
Mean Filter with kernel size 5. We use “shifted softplus”
mentioned in Mip-NeRF [3] as the density activation. The
initial values of alpha is 1079 in the coarse training stage,
and 1072 in the fine training stage. Our tiny MLP follows
the architecture used in SNeRG [21]. We use the Adam
optimizer [24] to train both voxels and the deferred MLP,
the learning rate are set to 4 x 10~3 for the deferred MLP
and 1 % 10! for the voxel grids. In addition, we train 10k



Method PSNRT SSIM?T LPIPS|

Full Res 1/2 Res 1/4 Res 1/8 Res Full Res 1/2 Res 1/4 Res 1/8 Res Full Res 1/2 Res 1/4 Res 1/8 Res
Mip-NeRF [3] 32.629 34.336 35.471 35.602 0.958 0.970 0.979 0.983 0.047 0.026 0.017 0.012
SNeRG [21] 27.043 28.405 30.044 28.544 0.912 0.932 0.952 0.950 0.100 0.067 0.047 0.049
MobileNeRF [10] 24.115 25.127 26.633 27.930 0.868 0.885 0.913 0.938 0.141 0.112 0.078 0.050
MobileNeRF [10] w/o SS 23.730 24.425 25.308 25.364 0.861 0.875 0.898 0.910 0.149 0.128 0.104 0.091
Ours 30.333 31.290 31.055 29.014 0.946 0.956 0.960 0.955 0.069 0.049 0.045 0.048

Table 2: Quantitative results on Multiscale-NeRF. For comparison of models trained and evaluated on multiscale dataset.

All the metrics of the scale are averaged across eight scenes. “w/o SS” removes supersampling from MobileNeRF.

b

Ground Truth SNeRG

MobileNeRF Ours

Figure 4: Qualitative results on Multiscale-NeRF. We demonstrate Mip-VoG rendering results compared to other baselines
on the test set from three scenes, trained and evaluated on multiscale dataset. We visualize a crop region (shown in red box)
on a same image at 4 different scales as an image pyramid. MobileNeRF yields over smooth results on all scales, while
SNeRG lost high frequencies in high-resolution images and product aliasing in low-resolution frames. Our method surpass
the baselines by a large margin as the rendering quality is significantly better.

and 20k iterations for the coarse phase and fine phase with
the batch size of 8192, respectively. For real-time web ren-
derer, we convert Mip-VoG to the sparse voxel grid data
structure [21] and implement our query procedure in We-
bGL using the THREE js library to increase the rendering
speed. In terms of a fair comparison, all the methods are
trained on a 80GB A100 GPU and tested on laptop GPU.
Mip-VoG enables rendering 800 x 800 images in at 52 FPS
on Lenovo Legion 7 (laptop) w/ NVIDIA RTX 2070 SU-
PER and 71 FPS on Alienware M15R6 (laptop) w/ NVIDIA
RTX 3080, with a 104 MB storage footprint.

4.3. Results

Multiscale-NeRF The performance of Mip-VoG for this
dataset can be seen in Tab. 2. As shown in the table,
our method outperforms baselines on all metrics across all
scales. Note that the result is a consequence of both multi-

scale training and anti-aliasing rendering, since this dataset
contains multi-resolution images for both training and test
set. Hence we defer the ablation into the next section. Since
IPE is incompatible with current grid-based approaches that
don’t use PE, we only include the result of Mip-NeRF [3]
for reference purpose. Our approach, as other real-time
methods, sacrifices rendering quality due to network size,
resulting in lower performance compared to Mip-NeRF. We
visualize some qualitative results in Fig. 4. One can see that
other real-time rendering approaches produce blurry results
on high resolution images, due to the issue of multiscale
training that leads the models fit on low-resolution images.
In contrast, our result learns high-frequency information in
the full resolution images and output low-frequencies in low
resolution frames. Additionally, we visualize the computed
LOD in Fig. 5, the pixel-wise results is accumulated through
the ray through volume rendering integral.
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Figure 5: Visualization of LOD. We visualize the per-pixel
LOD at four different scales. The value is computed using
volume rendering integral of the points’ LOD along the ray.
We resized the low-resolution rendered images to match the
dimensions of the full resolution images, enhancing visibil-
ity and facilitating direct comparison. Brighter color indi-
cates higher values.

Synthetic-NeRF Since the baselines models are not com-
patible with multiscale training, we eliminate the factor of
non-uniform training images but to examine the effective-
ness on anti-aliasing rendering. For this dataset the model
is trained on single scale images and evaluated on the mul-
tiscale version, since the testset Multiscale-NeRF contains
all the test images in Synthetic-NeRF. This inference sce-
nario can be seen as rendering the single scale dataset but
with the distance to the viewpoint has increased by scale
factors of 2, 4, and 8 (also known as minification). In
Tab. 3, excluding the effect of multiscale training set, our
method is still outperforming the baselines on all metrics on
high-resolution images. MobileNeRF [10], benefiting from
its super-sampling technique, performs better on lower-
resolution frames. A potential reason for the large enhance-
ment of low-resolution renderings through super-sampling
(MobileNeRF w/o SS vs. MobileNeRF) is that the final
view is down-sampled from a higher-resolution rendered
image, which improves accuracy and approximates the gen-
eration of ground truth low-resolution images. While re-
moving super-sampling from it in the inference phase, our
method outperforms the baseline models across all the
scales. We showcase some qualitative results in Fig. 6. One
can find our method produce more low-frequency details
and mitigate aliasing artifact in the low-resolution images
if zooming in, while in high-resolution images our method
preserve sharp high-frequency details. This results verify
that our method effectively learns a multiscale representa-
tion since it improves the both multi-resolution training and
anti-aliasing.

4.4. Ablations

In this section we analysis the effectiveness of the con-
tribution of Mip-VoG to the model, and give some insights

into the filtering algorithm. We perform all the experiments
on Multiscale-NeRF [3], and report the average PSNR over
the eight scenes.

Mipmapping To better examine the validity of Mip-VoG,
we ablate this technique from training and testing respec-
tively. While produce the rendering result without Mip-
VoG reflects the ability of training with the images at multi-
ple resolution, removing it from training effectively shows
the improvement on anti-aliasing. As the results shown in
Tab. 4, training without Mip-VoG shows lower accuracy
in high-resolution test images and higher quality in low-
resolution frames. This result is consistent with the stud-
ies in Mip-NeRF [3], as the area loss would force model to
“overfit” on low-resolution training samples. While training
with mip-VoG can help preserve high-frequencies rendering
without Mip-VoG would produce aliasing in low-resolution
frames, as the metrics of “Ours w/o te-mip” in lower scale
is worse than the baseline. Hence, using Mip-VoG in both
training and testing contributes the multiscale training and
anti-aliasing rendering.

Low-pass Filter One design in the sampling phase is that
the voxel grids are pre-filtered by a low-pass filter, which
help preserve the high frequency information in the training
and abandon them in rendering. We test our model based
on three type of options: no filter, gaussian filter and mean
filter. We also experiment the filter with different kernel
size. The results are shown in Tab. 5. Firstly, using filter
yields a better performance on the rendering quality across
all the scales. Secondly, Mip-VoG is robust to different filter
while the superior performance is achieved when the mean
filter with kernel size 5 is chosen. Finally, using too small
or too large kernel size tends to slightly harm the filtering
outcome, as size 5 surpass the other two for both mean filter
and gaussian filter.

5. Conclusion

In the paper, we have presented a multiscale representa-
tion for real-time anti-aliasing rendering method. We base
our work on the voxel grids representation with a deferred
architecture of NeRF. We proposed to use mip voxel grids,
which yields the point-wise sampling from the voxel grids
of different scales according to the level of detail computed
by ray differentials. To generate multiple levels of Mip-
VoG, we leverage the low-pass filter and interpolation fil-
tering to downsample the original full resolution voxel grid
progressively. The final scene properties of a 3D is sampled
from two neighbor voxel grids using quadrilinear interpo-
lation. Experiments show our method effectively learns a
multiscale representation from the training images and pro-
vides higher accuracy in real-time anti-aliasing rendering.



Method PSNRT SSIM?T LPIPS|

Full Res 1/2 Res 1/4 Res 1/8 Res Full Res 1/2 Res 1/4 Res 1/8 Res Full Res 1/2 Res 1/4 Res 1/8 Res
SNeRG [21] 29.333 30.065 28.355 25.373 0.940 0.949 0.946 0.924 0.134 0.091 0.097 0.144
MobileNeRF [10] 29.448 30.654 31.144 30.000 0.934 0.947 0.957 0.959 0.077 0.054 0.042 0.037
MobileNeRF [10] w/o SS 28.290 28.447 27.317 25.212 0.926 0.935 0.935 0.917 0.093 0.077 0.079 0.094
Ours 30.355 30.467 28.766 26.566 0.949 0.956 0.951 0.935 0.062 0.050 0.058 0.073

Table 3: Quantitative results on Synthetic-NeRF. Performance of models that trained on single scale Synthetic-NeRF but
evaluated on Multiscale-NeRF. All the metrics of the scale are averaged across eight scenes.

Ground Truth

SNeRG

MobileNeRF w/o SS Ours

Figure 6: Qualitative results on Synthetic-NeRF. We demonstrate Mip-VoG rendering results compared to other baselines
on the test set from two scenes, trained on single-scale dataset. One can observe that our method can reduce the aliases on

the edge of drum and mic windscreen.

PSNRT
Method FullRes 1/2Res 1/4Res 1/8Res
Ours w/o tr-mip te-mip | 29.690 30.897 30.201  27.371
Ours w/o tr-mip 29.631 30.217  29.461  27.663
Ours w/o te-mip 30.348 31.146  29.581  26.669
Ours 30.333 31.290 31.055 29.014

Table 4: Result of mipmapping ablation. We conduct
the experiments on the Multiscale-NeRF with respectively
dropping the Mip-VoG in training and testing, denoted as
“tr-mip” and “te-mip” in the table.

Filter PSNRT

FullRes 1/2Res 1/4Res 1/8 Res
None 29.995  31.043 30.718 28.534
Mean (size 3) 30.211 31.179  30.997  29.005
Mean (size 5) 30.333  31.290 31.055 29.014
Mean (size 7) 30.210  31.177  30.995 29.002
Gaussian (size 3) | 30.011 31.068 30.733  28.575
Gaussian (size 5) | 30.052  31.078 30.759  28.683
Gaussian (size 7) | 30.005  31.059 30.731 28.505

Table 5: Low-pass filter ablation. We demonstrate the sen-
sitivity of the low-pass filter with respective to the filter type
and the kernel size.

Our main bottleneck of rendering speed is the computation
burden of Level of Detail within the web shader. We sac-
rifice the speed of original SNeRG formulation to provide
a multiscale representation. Nonetheless, there is room for
improvement through future engineering endeavors, includ-
ing potential collaboration with state-of-the-art voxel-based
real-time rendering engines like [47]. While offering a pio-
neering multiscale representation for real-time applications,
we hope our approach will be valuable to future research on
multiscale training and real-time anti-aliasing rendering for
neural rendering models.
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