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Figure 1. (a) Encoder-decoder architecture with an inherent feature pyramid in the decoding stage. Black points with thicker outlines
denote region features of larger local regions, green and purple points are the predicted semantic labels. (b) Retrospective Feature Pyramid
Network, the points with orange outlines denote point-level semantic features. The rectangular areas highlighted in black and red denote
local region feature learning and point-level semantic feature learning, respectively. In Retro-FPN, region information flows into points at
all levels, and are retrospectively refined to the lowest level. (c) mIoU on S3DIS Area 5 with and without Retro-FPN.

Abstract
Learning per-point semantic features from the hierar-

chical feature pyramid is essential for point cloud seman-
tic segmentation. However, most previous methods suf-
fered from ambiguous region features or failed to refine
per-point features effectively, which leads to information
loss and ambiguous semantic identification. To resolve this,
we propose Retro-FPN to model the per-point feature pre-
diction as an explicit and retrospective refining process,
which goes through all the pyramid layers to extract se-
mantic features explicitly for each point. Its key novelty
is a retro-transformer for summarizing semantic contexts
from the previous layer and accordingly refining the fea-
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tures in the current stage. In this way, the categoriza-
tion of each point is conditioned on its local semantic pat-
tern. Specifically, the retro-transformer consists of a local
cross-attention block and a semantic gate unit. The cross-
attention serves to summarize the semantic pattern retro-
spectively from the previous layer. And the gate unit care-
fully incorporates the summarized contexts and refines the
current semantic features. Retro-FPN is a pluggable neural
network that applies to hierarchical decoders. By integrat-
ing Retro-FPN with three representative backbones, includ-
ing both point-based and voxel-based methods, we show
that Retro-FPN can significantly improve performance over
state-of-the-art backbones. Comprehensive experiments on
widely used benchmarks can justify the effectiveness of our
design. The source is available at https://github.
com/AllenXiangX/Retro-FPN .

1. Introduction
3D point cloud semantic segmentation [27, 5, 80, 32, 9,

55, 84, 63, 75], which aims to predict a unique category la-
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Figure 2. Visualization of segmentation process of Retro-FPN.
(a) and (c) show the visual comparison with the backbone (Point
Transformer [87]) network. In (a), the backbone loses the infor-
mation of the column. In (c), the backbone struggles to distinguish
between chair and sofa. In (b) and (d), we show the retrospective
refining process by Retro-FPN over the improved areas.

bel for each point, is a critical task towards the 3D visual un-
derstanding of large-scale scenes. A typical solution to pre-
dict per-point semantic labels is the widely used encoder-
decoder framework [21]. The encoder aims to learn contex-
tual region features by gradually enlarging receptive fields.
The decoder propagates the local region features from the
larger receptive fields into the smaller ones, which inher-
ently forms a feature pyramid [37] (see Figure 1 (a)).

Learning per-point feature prediction from the pyramidal
region features is the target of point cloud semantic segmen-
tation. However, most existing encoder-decoder-based net-
works merely reveal per-point features explicitly at the final
layer (denoted as red box in Figure 1 (a)), leaving abun-
dant semantic information stuck in the intermediate region
features (black box in Figure 1 (a)), which cannot directly
facilitate the final prediction. This may lead to the loss of
semantic information and ambiguous semantic identifica-
tion, as demonstrated in Figure 2 (a) and (c). Since each
pyramid layer may contain useful and erroneous informa-
tion simultaneously, the per-point semantic features should
be carefully refined through all stages.

To resolve this, some prior works [16, 28] adopt hierar-
chical supervision to refine intermediate predictions explic-
itly. In 2D vision, PointRend [28] proposed to refine high-
frequency points with hierarchical supervision, but each
point is refined based on the features interpolated at a single
location, which suffered to capture the local semantic pat-

tern and may fail to obtain informative per-point features
for 3D point clouds. RFCR [16] first introduced multi-scale
supervision to point cloud semantic segmentation, but the
supervision was on region-level and it’s still difficult to ob-
tain accurate per-point prediction from the region features.

Therefore, we propose Retro-FPN to improve per-point
semantic feature prediction by fully utilizing the feature
pyramid, which is achieved by an explicit and retrospective
refining process (see Figure 1 (b)). Specifically, by predict-
ing per-point labels for all the middle layers, Retro-FPN al-
lows region information to flow into points and obtains the
point-level semantic features at each stage. Then, the fea-
tures are carefully refined by retrospectively summarizing
the semantic pattern from the previous layer and adaptively
rearranging the current semantic information.

To conduct retrospective refinement, we introduce a
novel retro-transformer in each layer to extract per-point
semantic features, which consist of two stages. The first
stage aims to “retrospect” useful information from the pre-
vious layer. Since the category of each point is similar to
its surrounding local region, we use a local cross-attention
block to conduct retrospection, which takes the features of
the current layer as queries to summarize semantic contexts
from the previous layer. Different from the region-level in-
formation in the backbone features, such contextual infor-
mation are built upon the per-point semantic features of the
nearby points, which can fully facilitate the refinement of
each point by selectively revisiting its neighbor points. The
second stage serves to “refine” the current semantic features
by combining them with the summarized contexts. Instead
of merging the features with simple adding or concatena-
tion, we use a lightweight semantic gate to adaptively pre-
serve and forget the previous semantic information. The
retro-transformer can establish a cross-level semantic rela-
tionship between different decoding stages, this enables the
network to explicitly preserve useful information and dis-
card erroneous information in each stage, as illustrated in
Figure 2 (b) and (d).

Retro-FPN is a pluggable neural network that can ex-
tract and refine per-point semantic features for prevail-
ing backbones, including both point-based and voxel-based
methods. Specifically, we embed Retro-FPN into KP-
Conv [65], MinkowskiNet [7], Point Transformer [87], and
Point Transformer V2[72]. Non-trivial improvements on
the S3DIS [1] Area 5 benchmark (Figure 1 (c)) can verify
the effectiveness of our network design. In summary, our
contributions are threefold:

• We propose Retro-FPN to improve per-point seman-
tic feature prediction for 3D point clouds. Retro-FPN
models the feature propagation as an explicit and ret-
rospective refining process on point-level semantic in-
formation, which is a plug-and-play network that can
improve the performance of prevailing backbones.



• We propose a novel retro-transformer to establish a
cross-level semantic relationship between different de-
coding stages. It utilizes a local cross-attention to ret-
rospect the previous semantic pattern and leverages a
lightweight semantic gate unit to refine the current se-
mantic features.

• We integrate Retro-FPN with both point-based and
voxel-based backbones and evaluate our method on
the S3DIS [1], ScanNet [10] and SemanticKITTI [2]
benchmarks. Experimental results demonstrate that
our method can significantly improve performance
over state-of-the-art methods.

2. Related Work
Point cloud semantic segmentation. In recent years, the
tremendous development of deep learning-based [45, 88,
89, 70, 83, 26] 3D processing techniques [33, 41, 40]
has significantly boosted the progress of point cloud se-
mantic segmentation [25, 31, 85, 51, 12], which can be
roughly divided into two categories. (1) The point-based
[52, 71, 77, 65, 87, 86, 64, 11] methods directly handle
raw point clouds. As one of the pioneering works, Point-
Net++ [53] used a local sampling and grouping mechanism
to extract contextual information. Followers along this line
focus on effective feature aggregation technique to obtain
representative features, such as convolution-like operations
[65, 35] and the attention mechanism [66, 87, 30, 49, 72].
(2) The voxel-based [7, 17] methods first transform 3D
point clouds into voxels, then apply sparse convolutions to
learn point cloud representations. While these methods can
handle large-scale scenes, they also suffer from detailed in-
formation loss due to voxelization. For both point-based
and voxel-based methods, an encoder-decoder architecture
is a typical solution. While previous methods [71, 77] usu-
ally highlight the importance on feature aggregation in the
encoding stage, we concentrate on the explicit decoding of
semantic information to unleash the performance for pre-
vailing backbones.
Pyramidal feature representation. The feature pyramid
is an important component of deep neural networks, which
can perceive large-scale scenes at different scales. FPN [37]
is a pioneering work that leverages the pyramid features to
detect multi-scale objects. Since then, the feature pyramid
has been explored in 2D dense prediction tasks, such as ob-
ject detection [15, 60], instance segmentation [39, 14, 20]
and panoptic segmentation [27]. Semantic segmentation re-
quires per-point prediction at the final layer, to exploit the
feature pyramid, one possible solution is to up-sample in-
termediate features [36, 47] or predictions to the finest res-
olution and fuse them like BAAF-Net [57] and PANet [39].
However, each pyramid layer may contain useful and erro-
neous information simultaneously, simply fusing the inter-

mediate outputs can lead to false predictions. Another solu-
tion is to incorporate hierarchical supervision and refine the
intermediate predictions by layer. In 2D vision, PointRend
[28] proposed to gradually refine points in high-frequency
areas, but each point is refined based on the interpolated pre-
diction and features at a single location, which cannot pro-
vide adequate local contexts for refinement. Furthermore,
the point selection procedure of PointRend is tailored for
dense and regular 2D grids, which cannot directly apply to
point cloud data. RFCR [16] is one of the first attempts
to utilize feature pyramid with hierarchical supervision for
3D point clouds, but it focused merely on enhancing region
level semantic features, which is difficult to fully preserve
and refine per-point semantic information at each stage.

Compared with the previous methods, Retro-FPN takes
a step further to explore a context-aware solution for refin-
ing semantic features on per-point level, which is tailored
for 3D point clouds. Retro-FPN refines each point based
the local semantic contexts retrospected from the previous
layer and selectively preserve and forgo semantic informa-
tion in consecutive layers, which enables to fully unleash
the potential of prevailing backbones.

Relation to transformer. Transformer [66] was first pro-
posed for natural language processing and soon became
dominant in 2D computer vision [42]. Inspired by this suc-
cess, many studies [87, 18, 48, 74, 73] have attempted to
leverage the representation ability of transformer to process
3D point clouds [69, 68, 34, 44, 3, 67]. Recently, More stud-
ies further explored the attention mechanism that caters to
point clouds, including the study of long range dependency
[30], efficient attention mechanism [49] and powerful local
attention [72]. While these methods have made substantial
progress, they use self-attention for representation learning
in a single stage. Differently, we propose retro-transformer
to establish semantic relationships across different decoding
stages.

Plug-and-play network. Plug-and-play networks [43, 56,
16] aim to benefit multiple backbones as a plug-in mod-
ule. They become imperative as recent advanced 3D se-
mantic segmentation backbones was introduced. For ex-
ample, CGA-Net [43] addresses feature augmentation with
inter and intra-class consistency. PnP-3D [56] targets the
local-global feature fusion. RFCR [16] enhances region-
level backbone features with omni-supervision. Different
from the above methods, Retro-FPN explores the per-point
level semantic prediction, which can bring improvement for
hierarchical decoders [65, 87, 7, 72] including both point-
based and voxel-based backbones.
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Figure 3. (a) shows an encoder-decoder architecture. (b) In the decoding stage of backbone, only three pyramid layers (1, 2 and L) are
shown for clarity, P l is point set in each decoding stage, and F l is the region feature of P l. The larger circular area highlighted in red
denotes larger local region around P l, which is characterized by F l. (c) For Retro-FPN, Hl+1 is point-level semantic feature from previous
layer, which provides key and value for retro-transformer. F l provides query to retrospectively summarize semantic pattern from Hl+1.

3. Method
3.1. Overview and Motivation

We show a typical encoder-decoder architecture with L
levels in Figure 3 (a), and the inherent feature pyramid hi-
erarchy of the decoding stage is shown in Figure 3 (b).
Our Retro-FPN is integrated with the backbone decoder and
shown in Figure 3 (c). For clarity, we only visualize three
pyramid layers (1, 2 and L).

As shown in Figure 3 (b), we denote the point set in
each decoding stage as P l ∈ RNl×3, and the local context
around P l is denoted as the region feature F l ∈ RNl×Cl .
From PL to P1, the decoder propagates contextual informa-
tion from the larger receptive (highlighted in the red circle)
fields into the smaller ones, and finally to the point-level
features F1. However, there are two problems with this
paradigm. First, the backbone decoder propagates semantic
information simplicitly, where the long path from the in-
termediate levels (layer 2-L) to the prediction layer (layer
1) may cause information loss. Second, although the high-
level features have large receptive fields, it is still difficult to
precisely capture the accurate semantic contexts of the un-
derlying local regions, especially when there are different
semantic objects within the same region, e.g., at the bound-
ary of window, wall and bookcase.

Based on the above observation, we propose Retro-FPN

extract accurate per-point semantic features from the fea-
ture pyramid, which is conducted by explicitly and retro-
spectively refining the point-level semantic information.

3.2. Retro-FPN

As shown in Figure 3 (c), Retro-FPN is designed to ex-
plicitly extract and refine semantic information for all pyra-
mid levels. In level l, the region feature F l is first re-
fined and converted into point-level semantic feature Hl by
a retro-transformer. Then, we explicitly predict per-point
labels Ỹ l from Hl using an activation function followed by
a linear transformation.

There are two advantages to the design of Retro-FPN.
First, instead of struggling to perceive the complex local re-
gions like RFCR [16], the explicit prediction of per-point
labels allows Retro-FPN to focus on point level semantic
information. The intuition is that for a point pi ∈ P l, it is
easier to identify its single semantic category than recognize
all the semantic objects within the surrounding local region.
This scheme enables Retro-FPN to incorporate accurate se-
mantic information into Hl, which significantly facilitates
the retrospective refinement. Second, although the global
contexts are essential for scene understanding, the saturated
contextual prior could hamper the network to perceive de-
tailed local semantic information [46]. This problem could
be even worse in higher pyramid layers. Hence, encourag-
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Figure 4. The structure of Retro-Transformer. (a) The local cross-
attention (LCA) block. (b) The semantic gate unit (SGU).

ing the middle layers to focus on per-point semantic infor-
mation can help the network to balance global scene con-
texts and the detailed semantic information.

While the overall architecture of Retro-FPN can help
to learn accurate per-point semantic information, now the
more critical problem is to refine the information and facil-
itate the final prediction. Since Hl from intermediate layers
(l > 1) may contain false semantic information, two goals
have to be achieved: (1) preserving useful information and
(2) discarding erroneous information. Previous methods
like PointRend [28] refine each point based on the coarse
prediction and the interpolated features at a single location,
but the accurate semantic category of each point is dom-
inated by its local neighborhood, the interpolated features
cannot provide adequate semantic contexts for per-point re-
finement. Differently, we propose a novel retro-transformer
and leverage attention mechanism to selectively summarize
local semantic information. The detailed structure of retro-
transformer is described below.

3.3. Retro-Transformer

The structure of Retro-Transformer is shown in Figure
4, which consists of a local cross-attention block (Figure
4 (a)) and a semantic gate unit (Figure 4 (b)). The cross-
attention aims to conduct “retrospection”. The per-point
semantic features from the previous layer can provide rich
semantic contexts and guide the current layer. Hence, for
each point, we leverage the attention mechanism to atten-
tively summarize semantic contexts by revisiting its neigh-
bor points from the previous layer. Further, The semantic
gate serves to achieve “refinement”. Because intermediate

semantic features will inevitably contain erroneous infor-
mation, the gate mechanism allows the retro-transformer to
selectively retain and forgo information from both the pre-
vious and the current layer.
Local cross-attention block. As shown in Figure 4 (a), the
cross-attention takes the previous semantic feature hl+1 ∈
RC and the current region feature f l ∈ RC

l as inputs to
summarize semantic contexts. Since f l and hl+1 are from
different branches and may have large discrepancy, unlike
previous transformers [66, 87] that produce the query vec-
tor with a linear layer, we use the non-linear transforma-
tion of multi-layer perceptron (MLP) to obtain ql ∈ RC ,
which can bridge the gap between the two branches with
more learnable capacities. Then, the value and key vectors
are produced from hl+1 using linear layer as follows:

ql =MLPγ(f
l),

vl+1 = Linearα(h
l+1), kl+1 = Linearβ(h

l+1).
(1)

Furthermore, since the semantic information of each point
pl
i is dominated by the surrounding local region, we adopt

local attention to aggregate semantic contexts from its
nearby points pl+1

j (subscript i and j denote the point in-
dex) in the previous layer. The neighborhood of pl

i is de-
fined as the K-nearest neighbor (K-NN) points. The K-NN
strategy lets retro-transformer focus on local semantic con-
texts, which also reduces computation cost significantly. It
is worth noting that the point clouds of the previous layer
are usually much sparser than the current ones, so that even
a small K-NN search can effectively enlarge receptive field.
Moreover, since the complex local region may increase the
difficulty for learning robust contexts, we enhance the query
and key vectors with learnable position embedding to in-
corporate positional relationship. Specifically, for each qli,
we denote the key vectors of the K-nearest neighbors as
{kl+1

i,k |k = 1, 2, . . . ,K}, where subscript k denotes the k-th
neighbor and calculate attention as:

wik = ⟨ql
i + ϵδ, k

l+1
i,k + ϵθ⟩/

√
C, (2)

where the position embedding ϵδ and ϵθ are obtained by
passing the relative position ∆p (∆p = pl

i−pl+1
i,k ) through

two MLPs. Then, the aggregated semantic contexts ĥl
i are

given as follows:

ĥl
i =

K∑
k=1

Softmax(wi)kvi,k. (3)

Note that there is no hL+1 for the highest pyramid layer
(the L-th layer), where the cross-attention degrades to self-
attention and takes fL as query, key and value.
Semantic gate unit. As shown in Figure 4 (b), we refine
the region feature f l with the summarized semantic contex-
tual feature ĥl using the gate mechanism. To reduce com-
putation cost, we take inspiration from gated recurrent unit



(GRU) [8] and adopts a single update gate to control infor-
mation flow. Specifically, given region feature f l ∈ RC

l ,
we first compacts its information into vector ol ∈ Rl by
ol = Linearµ(f

l). Then, the update gate zl is given as:

zl = MLPσ(ĥ
l + ol). (4)

Finally, we obtain the point-level semantic feature hl by the
following equation:

hl = zl ⊙ ĥl + (1− zl)⊙ ol. (5)

3.4. Integration with backbones

Retro-FPN can be integrated with prevailing backbones
that adopt an encoder-decoder architecture, including both
point-based and voxel-based methods. To employ Retro-
FPN, we only need the point set P l of each decoding stage,
the corresponding region feature F l and the ground-truth
label Y l. For point-based methods, we record the ground-
truth labels Y l along the downsampling process of the en-
coding stage, and directly use F l from the decoder. For
voxel-based methods, we take the voxels in each layer as in-
termediate point clouds and also focus on learning per-point
semantic information from the voxel features. Since each
voxel may correspond to multiple category labels, we use
the most common one as its ground-truth label. Moreover,
for both point-based and voxel-based backbones, the inter-
mediate layer may contain too many points (voxels) due to
small downsampling rates, which severely increases com-
putation cost. Meanwhile, the K-NN search in a dense point
cloud also leads to limited receptive fields. To avoid the
above problems, we further use random sampling to down-
sample the intermediate point clouds.

3.5. Training loss

We use cross entropy loss to guide the predictions from
all decoding stages, the training loss is formulated as L =∑

λlLl, where Ll is the loss of the l-th layer. λl is the
weight to balance losses in each layer.

4. Experiments
4.1. Datasets and metric

S3DIS. The S3DIS [1] dataset comprises point clouds of
271 rooms in six areas. There are 273 million points in total,
and each point is assigned a semantic label of 13 categories.
Following previous methods [53, 64, 87], we evaluate our
method on the Area 5 and 6-fold benchmarks.
ScanNet v2. The ScanNet v2 [10] provides 1,613 indoor
scans, where the train/val/test split is 1,201/312/100, re-
spectively. The training and validation sets contain point-
level annotations, and the test set is provided without
ground-truth annotations.

Table 1. Quantitative results on S3DIS [1] dataset, evaluated on
Area 5. Red number means better results than baseline. Bold
numbers denote the best results among all methods. * denotes
voting augmentation during testing.

Method Input mIoU

CGA-Net [43] point/voxel 68.6
PnP-Net [56] point 68.5
RFCR [16] point 68.7
DeepViewAgg [59] point + 2D 67.2
RepSurf [58] point 68.9
CBL [62] point 71.0
Fast Transformer [49] point 70.3
EQ-Net [81] point/voxel 71.3
Stratified Transformer [30] point 72.0
Point Mixer [6] point 71.4
Point Transformer V2 [72] point 71.6

MinkowskiNet (5cm) * [7] voxel 65.4
MinkowskiNet + Retro-FPN * voxel 69.5

KPConv rigid * [65] point 65.4
KPConv rigid + Retro-FPN * point 69.7

KPConv deform * [65] point 67.1
KPConv deform + Retro-FPN * point 70.7

PointTransformer [87] point 70.4
PointTransformer + Retro-FPN point 73.0

Table 2. Quantitative results on S3DIS [1] dataset, evaluated on
6-fold cross validation.

Method mIoU

KPConv [65] 70.6
FPConv [38] 68.7
PAConv [77] 69.3
SCF-Net [13] 71.6
CBL [62] 73.1
DeepViewAgg [59] 74.7
RepSurf [58] 74.3
EQ-Net [81] 77.5
PointNeXt [54] 74.9

PointTransformer [87] 73.5
PointTransformer + Retro-PFN 77.3

SemanticKITTI. The SemanticKITTI [2] dataset provides
43,552 LIDAR scans that belong to 21 sequences. The
training set contains 19,130 scans from sequences 00-07
and 09-10, and the validation set has 4,071 scans from se-
quence 08. The testing set contains 20,351 scans from se-
quences 11-21, which is set for online testing and only the
3D coordinates are provided.
Evaluate metric. For the above benchmarks, we adopt the
mean Intersection-over-Union (mIoU) as evaluation metric.



Table 3. Quantitative results on ScanNet v2 [10] in terms of mIoU.
* denotes voting augmentation during testing.

Method Val Test

KPConv [65] * 69.2 68.6
JSENet [24] - 69.9
FusionNet [82] - 68.8
SparseConvNet [17] 69.3 72.5
BPNet [22] * 73.9 74.9
VMNet [23] 73.3 74.6
StratifiedFormer [30] 74.3 74.7
EQ-Net [81] 75.3 74.3

MinkowskiNet (5cm) [7] * 68.0 -
+ Retro-FPN * 70.4 -

MinkowskiNet (2cm) [7] * 72.1 73.6
+ Retro-FPN * 74.0 74.4

Point Transformer V2 [72] 75.4 75.2
+ Retro-FPN 76.0 -

4.2. Backbones and experimental settings

Backbones. On the S3DIS [1] Area 5 benchmark, we em-
bed Retro-FPN into both point-based (Point Transformer
[87] and KPConv [65]) and voxel-based [7] methods to
prove the generalization ability of Retro-FPN. Since the six
areas of S3DIS have large discrepancies, we further choose
the high-performing Point Transformer to evaluate the ro-
bustness of Retro-FPN on the S3DIS 6-fold benchmark.
As for the ScanNet [10] and SemanticKITTI [2] datasets,
we use MinkowskiNet as backbone, because it is a more
popular choice that has been widely adopted as backbone
by previous methods like BPNet [22] and SPVNAS [61].
Furthermore, to verify the effectiveness of Retro-FPN with
state-of-the-art backbones, we integrate Retro-FPN with the
Point Transformer V2 [72] on ScanNet.
Experimental settings. We implement Retro-FPN using
PyTorch [50]. To have fair and solid experiments, we in-
tegrate Retro-FPN based on the official implementation of
the baseline methods and keep the experimental settings the
same as the backbones. We provide more experimental de-
tails in the supplementary materials.

4.3. Quantitative results

S3DIS Area 5. Table 1 shows the results of point cloud se-
mantic segmentation on the S3DIS [1] Area 5 benchmark,
from which we can find that Retro-FPN can significantly
improve the segmentation performance of the backbone net-
works. Particularly, we achieve the best performance by in-
tegrating Retro-FPN with Point Transformer [87] and yield
a state-of-the-art record of 73.0 in terms of mIoU. Addi-
tionally, by integrating with KPConv deform, Retro-FPN is
able to improve the overall performance by 3.6 in terms of

mIoU. It is worth noting that RFCR [16] also adopts KP-
Conv deform as backbone, which improves performance
(1.6 on mIoU) by enhancing the feature pyramid on region
level semantic information. Compared with RFCR, Retro-
FPN can better stimulate the potential of the backbone net-
work (3.6 versus 1.6 in terms of mIoU improvements over
KPConv deform), this should be credited to the retrospec-
tive refinement on point-level semantic features. Further-
more, by assembling with KPConv rigid [65], Retro-FPN is
able to significantly raise mIoU by 4.3. In addition, Retro-
FPN can also improve the voxel-based MinkowskiNet [7]
by 4.1 in terms of mIoU. Note that the intermediate layers
of voxel-based methods lack precise per-point information
due to the convolution, our Retro-FPN can complement the
drawback and explicitly extracts point-level semantic infor-
mation from voxel features.
S3DIS 6-fold. In Table 2, we show the quantitative results
of the 6-fold cross validation on S3DIS [1] dataset. From
Table 2, we can find that Retro-FPN can significantly im-
prove over Point Transformer by 3.8 absolute percentage
points. The result indicates that although the Point Trans-
former is a strong baseline, it still suffers from the informa-
tion loss of implicit region features and Retro-FPN can still
improve its performance robustly.
ScanNet V2. In table 3, we evaluate the performance of
Retro-FPN on ScanNet v2 [10] dataset. We follow the same
practice of [22, 7, 46] and adopt MinkowskiNet as the back-
bone to conduct experiments under voxel size 2cm and 5cm.
As shown in Table 3, Retro-FPN is able to improve the
segmentation performance under various voxel sizes, where
Retro-FPN raises mIoU by 2.4 and 1.9 under voxel size of
5cm and 2cm, respectively. Also, Retro-FPN improves the
result of MinkowskiNet on the test set to 74.4. Moreover, by
integrating with the state-of-the-art Point Transformer V2
[72], Retro-FPN can still improve the mIoU on validation
set by 0.6, which justifies the effectiveness of Retro-FPN.
SemanticKITTI. Besides indoor datasets, we also integrate
Retro-FPN with MinkowskiNet [7] and evaluate its perfor-
mance on the SemanticKITTI benchmark. Following the
same experimental settings of SPVNAS [61], we report the
mIoU on both the validation and test sets. From Table 4,
we can find that Retro-FPN can improve the mIoU by 3.5
and 3.9 on the validation and test sets, respectively. The re-
sults on both the indoor and outdoor benchmarks can well
demonstrate the effectiveness of Retro-FPN.

4.4. Qualitative results

In Figure 5, we give the visualization results of Retro-
FPN and the qualitative improvements over the backbone
(MinkowskiNet [7]). Moreover, we also visualize the re-
fining process of semantic labels in each layer, which is
highlighted in black circles. The visual results show that
Retro-FPN can help to improve segmentation in challeng-



Table 4. Quantitative results on the SemanticKITTI [2] bench-
mark. We report the mIoU on the validation and test sets. * means
that rotation augmentation on the test set is applied.

Method Val Test

KPConv [65] - 58.8
FusionNet [82] * - 61.3
KPRNet [29] - 63.1
JS3C-Net [78] 66.0
SPVNAS [61] * 64.7 66.4
Cylinder3D [90] * - 68.9
RPVNet [76] - 70.3
(AF)2-S3Net [4] - 70.8
PVKD [19] * - 71.2
2DPASS [79] * - 72.9

MinkowskiNet [7] * 61.9 64.1
MinkowskiNet + Retro-FPN * 65.4 68.0
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Figure 5. Visualization results of Retro-FPN and the improvements
over the backbone networks. The circular areas highlighted in blue
visualize the refining process of the improved areas.

ing areas, such as the bicycle in the first example and the
car in the second example. The improved ability of per-
ceiving small objects should be credited to the retrospective
refinement on point-level semantic information.

5. Model Analysis

In this section, we first provide ablation study regard-
ing each part in Retro-FPN, then we analyze the method in
terms of model complexity and run-time efficiency. More
model analysis is provided in the supplementary materials.

Table 5. Effect of each part in retro-transformer. HS: hierarchical
supervision Cross-att: local cross-attention. PointEmb: learn-
able position embedding. SemGate: semantic gate unit.

ID HS Cross-att PosEmb SemGate mIoU

I 70.4
II ✓ 70.6
III ✓ ✓ 71.9
IV ✓ ✓ ✓ 72.4
V ✓ ✓ ✓ 72.2
VI ✓ ✓ ✓ 70.8
VII ✓ ✓ ✓ ✓ 73.0

5.1. Ablation study

We analyze the effect of each part in Retro-FPN in Ta-
ble 5, where we typically choose Point Transformer [87]
as the backbone and analyze Reto-FPN on the S3DIS [1]
Area 5 benchmark. Note that retro-transformer consists of
vanilla cross-attention (Cross-att), learnable position em-
bedding (PosEmb) and semantic gate unit (SemGate).

Effect of explicit refinement. By comparing Exp. II, VI
with the baseline I, we show that hierarchical supervision
(HS) and retro-transformer is an inseparable integration,
neither of them can’t take effect alone. Without HS guid-
ing per-point predictions, the retro-transformer still suffers
from the ambiguous region features and cannot fully utilize
the feature pyramid. Meanwhile, without retro-transformer
to refine per-point semantic information, the explicit inter-
mediate features produced by HS cannot facilitate the fi-
nal prediction. Because the backbone region features with
large receptive fields serve to capture multi-class informa-
tion within local regions, which may not be enhanced by the
per-point single class labels. Exp. II and VI can prove the
importance of explicit refinement on point-level semantic
information.

Effect of retrospective refinement. By comparing Exp.
III with the baseline (Exp. I), we can find that the Retro-
FPN with the vanilla cross-attention can already improve
the backbone by 1.5 in terms of mIoU, which justifies the
effectiveness of retrospective refinement.

Effect of retro-transformer. The results of Exp. IV, V and
VII indicate that both the learnable position embedding and
the semantic gate unit can further improve the refining ca-
pacity upon the vanilla cross-attention. Since the local dis-
tribution of points may change dramatically, the learnable
position embedding can help the local cross-attention to bet-
ter capture positional relationships. And the semantic gate
unit can further screen and control semantic information re-
finement. Moreover, the combination of PosEmb and Sem-
Gate improves mIoU by 1.1 over the vanilla cross-attention,
which further validates the design of retro-transformer.



Table 6. Run-time model complexity compared with backbones.
Dataset Method Params (M) Latency (s) Mem (G) mIoU

S3DIS [1]

MinkowskiNet [7] 15.49 4.44 3.07 65.4
+Retro-FPN 15.57 5.58 4.42 69.5

KPConv rigid [65] 24.38 3.81 4.88 65.4
+Retro-FPN 24.65 4.64 5.48 69.7

KPConv deform [65] 25.59 4.96 5.69 67.1
+Retro-FPN 25.86 6.32 6.71 70.7

Point Transformer [87] 7.77 54.05 6.78 70.4
+Retro-FPN 7.86 55.16 7.45 73.0

ScanNet [10]

MinkowskiNet [7] 15.49 3.14 3.81 68.0
+Retro-FPN 15.57 4.06 5.16 70.8

PTV2 [72] 11.32 20.35 14.75 75.4
+Retro-FPN 11.52 23.40 17.71 76.0

SemanticKITTI [2] MinkowskiNet [7] 21.73 6.82 3.52 63.1
+Retro-FPN 21.81 8.84 4.57 68.0

5.2. Model Complexity

We analyze the model complexity of Retro-FPN in Ta-
ble 6, which is evaluated in terms of parameter number, in-
ference latency and training memory consumption (Mem).
To have a fair comparison, we keep the testing settings
the same as backbone networks. The inference latency is
computed by randomly selecting a scene/scan and sum-
ming the inference time of 100 forward passes. For training
memory consumption, we set the batch size of all meth-
ods to one and record the maximal memory consumption
required during one training epoch. The results in Table 6
show that Retro-FPN leads to negligible extra parameters,
ranging from 0.08M to 0.27M. Particularly, for Minkowsk-
iNet on the SemanticKITTI dataset, the increased param-
eter number (0.08M) is only 0.37% of the backbone net-
work (21.73M). Meanwhile, Retro-FPN leads to consistent
computation cost across all backbones, ranging from 0.83s
to 2.02s. For lightweight backbones (MinkowskiNet and
KPConv), Retro-FPN leads to 20%-30% extra computation
overhead. For Point Transformer backbone, Retro-FPN in-
troduces marginal computation cost of 1.11s, which is 2.1%
of Point Transformer (54.05s in terms of inference time).
As for training memory consumption, the extra memory
required by Retro-FPN is also consistent across different
backbones (except for Point Transformer V2), which ranges
from 0.67G to 1.35G. For the Point Transformer V2 base-
line, the extra 2.95G memory used is 20.1% of the back-
bone, which is controlled in a reasonable range. In sum-
mary, the extra parameters are negligible. The extra com-
putation cost and memory consumption can be effectively
controlled. Since Retro-FPN can be conveniently integrated
with existing backbones, it provides a valuable trade-off
among time and better performance.

6. Conclusions and Limitations
We present Retro-FPN to improve per-point semantic

feature prediction for 3D point clouds, which can fully ex-
ploit the feature pyramid and models the feature propa-
gation as an explicit and retrospective refining process on

point-level semantic information. By further introducing a
retro-transformer in each pyramid layer, Retro-FPN can ef-
fectively extract and refine semantic information from all
pyramid levels to the final prediction layer. We integrate
Retro-FPN with three prevailing backbones and conduct ex-
periments on widely used benchmarks. Experimental re-
sults demonstrate that Retro-FPN can significantly improve
segmentation performance over state-of-the-art methods.

The primary limitation of Retro-FPN is that the retro-
transformer relies on the K-NN search to capture local se-
mantic contexts. Since the point distribution of point clouds
may vary dramatically in different local regions, a fixed
number of nearest neighbors may fail to provide informative
contextual information for refinement, especially in dense
and complex areas. Meanwhile, a large number of K-NN
search will also lead to more computation cost. Therefore,
a promising future direction is explore flexible neighbor
searching strategy, in order to capture more accurate seman-
tic contexts and further bring down computation cost.
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