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Abstract

Despite impressive performance for high-level down-
stream tasks, self-supervised pre-training methods have not
yet fully delivered on dense geometric vision tasks such as
stereo matching or optical flow. The application of self-
supervised concepts, such as instance discrimination or
masked image modeling, to geometric tasks is an active
area of research. In this work, we build on the recent cross-
view completion framework, a variation of masked image
modeling that leverages a second view from the same scene
which makes it well suited for binocular downstream tasks.
The applicability of this concept has so far been limited in
at least two ways: (a) by the difficulty of collecting real-
world image pairs – in practice only synthetic data have
been used – and (b) by the lack of generalization of vanilla
transformers to dense downstream tasks for which relative
position is more meaningful than absolute position. We ex-
plore three avenues of improvement. First, we introduce a
method to collect suitable real-world image pairs at large
scale. Second, we experiment with relative positional em-
beddings and show that they enable vision transformers
to perform substantially better. Third, we scale up vision
transformer based cross-completion architectures, which is
made possible by the use of large amounts of data. With
these improvements, we show for the first time that state-
of-the-art results on stereo matching and optical flow can
be reached without using any classical task-specific tech-
niques like correlation volume, iterative estimation, image
warping or multi-scale reasoning, thus paving the way to-
wards universal vision models.

1. Introduction

Self-supervised pre-training methods aim at learning
rich representations from large amounts of unannotated
data, which can then be finetuned on a variety of down-
stream tasks. This requires the design of pretext tasks, for

Figure 1: Pre-training for dense geometric tasks. We pre-
train a generic architecture, with a monocular encoder and a
binocular decoder, with cross-view completion before fine-
tuning it on the stereo matching or optical flow downstream
task.

which supervision signal can be extracted from the data it-
self, as well as generic architectures that can be easily trans-
ferred. We hypothesize that successfully pre-training large
models for geometric tasks such as stereo matching or op-
tical flow, see Figure 1, requires three things all together:
(a) a well-designed dense pretext task inciting the under-
standing of 3D scene layout and geometry, (b) an archi-
tecture that processes pairs of images, suitable for different
downstream tasks, and (c) large-scale real-world data.

Early self-supervised methods proceeded by discarding
part of the signal (e.g. image color [97], patch ordering [57]
or image orientation [25]) and trying to recover it. Later
methods based on instance discrimination [12, 13, 16, 30]
were first to surpass supervised pre-training on high-level
tasks: they are based on the idea that output features should
be invariant to well-designed classes of augmentations. An-
other recently successful pretext task is masked image mod-
eling (MIM) [2, 22, 29, 83, 86, 102], where part of the
input data is masked and an auto-encoder is trained to re-
store the full signal from the remaining visible parts. In-
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stance discrimination and MIM methods have achieved ex-
cellent performance on semantic tasks such as image clas-
sification, in particular with limited amounts of annotated
data [2, 17, 71], but have not led to breakthroughs in more
geometric tasks like stereo matching and optical flow.

Adapting self-supervised pre-training to geometric vi-
sion tasks is an active area of research. Attempts have
been made to design contrastive learning objectives at the
pixel or patch level [82, 85, 87], but their performance gains
have so far been more moderate than for global tasks. Be-
sides, these gains are mainly demonstrated for dense seman-
tic tasks such as semantic segmentation or object detection,
rather than for geometric tasks such as depth estimation or
stereo matching. Recently, [84] proposed the pretext task of
cross-view completion (CroCo), a variant of MIM where a
partially masked input image is reconstructed given visible
patches and an additional view of the same scene. This pre-
training objective is well suited to geometric downstream
tasks as (a) it leverages pairs of images and (b) extracting
relevant information from the second view requires geo-
metric understanding of the scene. The CroCo architecture
consists of a vision transformer (ViT) [20] encoder to ex-
tract features for the non-masked tokens of the first image,
as well as for the second reference image, and a transformer
to decode the features and reconstruct the masked image, as
illustrated in Figure 2.

In spite of these advances, leveraging cross-view com-
pletion for geometric vision tasks remains challenging for
at least two reasons. First, training with cross-view com-
pletion requires image pairs depicting the same scene; this
can be hard to acquire at scale, yet scale is the cornerstone
of the success of self-supervised pre-training. In practice,
the CroCo model of [84] is pre-trained solely with synthetic
data, which may limit its final performance. Second, most
models trained with masking rely on ViTs [20], which typ-
ically use absolute positional embeddings. These do not
generalize well to new image resolutions when finetuning,
and are not always robust to cropping. This limits the appli-
cability of current cross-view completion methods and may
explain why the downstream tasks presented in [84] mostly
use low-resolution squared images.

In this paper, we propose solutions to these limitations
that enable to pre-train a large-scale cross-view completion
model, see Figure 2, leading to state-of-the-art performance
on stereo matching and optical flow. First, we tackle the
problem of scalable pair collection, and gather millions of
training pairs from different real-world datasets which cover
various scenarios like indoor environments, street view data
and landmarks, see Figure 3. To generate high-quality pre-
training pairs, we carefully control the visual overlap for
each pair of images. In fact, pairs with high overlap make
the task trivial, whereas pairs with negligible overlap reduce
it to standard MIM [84]. To measure this overlap, we lever-

Figure 2: Overview of the improvements in CroCo v2
for cross-view completion pre-training: (a) collecting and
using real-world images, (b) using rotary positional embed-
dings which model relative token positions, instead of ab-
solute positions using the standard cosine embedding, (c)
increasing network size both in the encoder and the decoder.

age extra information available such as 3D meshes, addi-
tional sensors like LIDAR, or Structure-from-Motion (SfM)
reconstructions for datasets with sufficient image coverage.
From these data, we generate a set of high quality image
pairs with sufficient overlap and viewpoint difference while
also ensuring high diversity between pairs. Second, these
large-scale datasets of pre-training pairs allow to scale up
the model: (a) we use a larger encoder to extract better
image features and (b) also scale up the decoder, which
is responsible for combining information coming from the
two views. Third, instead of the standard cosine positional
embedding which encodes absolute positional information,
we rely on the Rotary Positional Embedding (RoPE) [73]
which efficiently injects relative positional information of
token pairs in the attention mechanism.

We finetune our pre-trained model, referred to as
CroCo v2, with this improved cross-view completion
scheme on stereo matching and optical flow using a Dense
Prediction Transformer (DPT) [61] head. Our models,
termed CroCo-Stereo and CroCo-Flow, are simple and
generic: we rely on a plain ViT encoder, followed by a
plain transformer decoder which directly predicts the out-
put (disparity for stereo, or optical flow) through the DPT
head. We believe this is a meaningful step towards a univer-
sal vision model, i.e., that can solve numerous vision tasks
with a common architecture. In contrast to state-of-the-art
methods for stereo matching or optical flow, our architec-
ture does not rely on task-specific designs such as cost vol-
umes [31, 36, 40, 41, 92], image warping [10, 76], iterative
refinement [45, 48, 79] or multi-level feature pyramids [18,
45, 76]. While task-specific structures and prior knowledge
may yield more data-efficient approaches, they come at the
cost of being tailored to a single task. Our proposed pre-
training allows us to eschew these and still reaches state-of-
the-art performance on various stereo matching and optical
flow benchmarks such as KITTI 2015 [55], ETH3D [67],
Spring [54] or MPI-Sintel [11].
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Figure 3: Example of pre-training cropped image pairs from Habitat which was the synthetic data used by CroCo [84] on
the top row, and from real-world datasets we use in this paper (from ARKitScenes, MegaDepth, 3DStreetView and IndoorVL)
below.

2. Related work

Self-supervised learning. The success of instance dis-
crimination [12, 13, 16, 28, 30] has drawn a lot of atten-
tion to self-supervised learning in computer vision [37]. In
that paradigm, variants of an image are obtained by apply-
ing different data augmentations. Features extracted from
the different variants are trained to be similar, while be-
ing pushed away from features obtained from other im-
ages. Such self-supervised models are particularly well
tailored to image-level tasks, such as image classifica-
tion, and have led to state-of-the-art performance on var-
ious benchmarks. Recent studies suggest that this suc-
cess could be due to the object-centric [58] and the bal-
anced [1] nature of ImageNet [63] that is used for pre-
training. Recently, inspired by BERT [19] in natural lan-
guage processing, different masked modeling methods have
been adapted to computer vision. MIM pre-training aims
at reconstructing masked information from an input im-
age either in the pixel space [3, 4, 15, 22, 29, 86], or in
the feature space [2, 5, 83], and sometimes after quanti-
zation [7, 102]. Recent works combine this framework in
a teacher-student approach [44, 46] with improved mask-
ing strategy [23, 38, 46]. Overall, MIM models perform
well on classification tasks. They have obtained some suc-

cess on denser tasks such as object detection [29] or hu-
man pose estimation [91], and have been applied to robotic
vision [59] when pre-trained on related datasets. More re-
cently, CroCo [84] introduces the pretext task of cross-view
completion, where a second view of the same scene is added
to MIM. This is well suited to geometric downstream tasks:
to leverage the second view and improve reconstruction ac-
curacy, the model has to implicitly be aware of the geome-
try of the scene. CroCo outperforms MIM pre-training on
an array of geometric tasks. However, it relies on synthetic
data only, which may be sub-optimal, and does not reach
the performance of the best task-specific methods.
Positional embeddings. Since a ViT treats its input as an
orderless set of image patches or tokens, positional embed-
dings are a necessary tool to keep track of the position of
each patch token from the original image. They can be ei-
ther learned [13, 20] or handcrafted, such as the cosine posi-
tional embeddings from the original transformer [80]. Both
learned and cosine embeddings are added explicitly to the
signal and contain absolute positional information. How-
ever, models for pixel-level dense computer vision tasks
should be able to process various image resolutions and
be robust to cropping. Thus, relative positional embed-
dings, e.g. [68], that consider distances between tokens are
preferable. For instance, Bello et al. [9] achieve better ob-
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ject detection results using relative self-attention. Similarly,
Swin Transformers [51] and Swin V2 [50] observed im-
proved performance using relative positional embeddings,
while [74] showed it to be crucial in the cross attention
for optical flow. Recently, [73] introduced the Rotary Po-
sitional Embedding (RoPE): a transformation to each key
and query features is applied according to their absolute
position, in such a way that the pairwise similarity scores
used in the attention computation only depend on the rela-
tive positions of the token pairs and on their feature similar-
ity. RoPE thus models relative positions at any resolution.
Stereo matching and optical flow can both be seen as a
dense correspondence matching problem [90]. However
the priors about matching itself and the completion of un-
matched regions differ. This explains why most models
are dedicated to one specific task despite many similarities
in the strategies [42, 95]. Dense matching is most often
posed with correlation/cost volume estimation from which
matches can be extracted [21, 53]. For stereo, this volume
typically has three dimensions [36, 41, 92], the third dimen-
sion representing a discretization of the disparity level, or
four dimensions [14, 40, 56]. For optical flow, each pixel
of the first image can be associated to any pixel of the sec-
ond, resulting in a 4D correlation volume. The complexity
of building, storing and leveraging such volume motivated
numerous methods revolving around the ideas of coarse-
to-fine [6, 79, 98], warping [76], sparse formulation [33],
random search [99], dimension separation [96], tokeniza-
tion [31]. Interestingly, recent works [74, 89, 90] lever-
age cross-attention to facilitate inter-image information ex-
changes but still rely on a low-resolution correlation vol-
ume, followed by an iterative refinement similar to [79].
Unimatch [90] made an important step towards a unified
architecture for flow and stereo, but still relies on task-
dependent (a) cross-attention mechanisms, (b) correlation
volume and (c) post-processing. We similarly use the same
architecture for both tasks, but our standard transformer
model without cost volume can be pre-trained with exist-
ing self-supervised approaches and directly finetuned as is.

Several works propose self-supervised methods for esti-
mating depth using stereo pairs or videos [26, 27], stereo
with matching priors [101], or optical flow [75, 49, 93] typ-
ically with an unsupervised reconstruction loss. The main
difference between this paradigm and ours is that we aim
to pre-train a task-agnostic model that can be finetuned to
different tasks, while these approaches aim to remove su-
pervision for a single task.

3. Cross-view completion pre-training at scale
Our proposed pre-training method is based on the re-

cently introduced cross-view completion (CroCo) frame-
work [84]. It extends MIM to pairs of images. Given two
different images depicting a given scene, the two images

are divided into sets of non-overlapping patches, denoted
as tokens, and 90% of the tokens from the first image are
masked. The remaining ones are fed to a ViT [20] encoder
to extract features for the first image. Similarly, tokens from
the second image are fed to the same encoder with shared
weights, and a ViT decoder processes the two sets of fea-
tures together to reconstruct the target. Figure 2 provides
an overview of the pre-training stage. Compared to stan-
dard masked image modeling methods, this approach can
leverage the information in the second view to resolve some
of the ambiguities about the masked context. To leverage
this information, the model has to implicitly reason about
the scene geometry and the spatial relationship between the
two views, which primes it well for geometric tasks.
Training data. Collecting pairs of images that are suitable
for this approach is non-trivial. First, images have to be
paired together without manual annotation; second, their
visual overlap has to be carefully controlled for the pairs
to be useful. In [84], only synthetic data generated with the
Habitat simulator [64] is used, which restricts the variety of
the pre-training data. In contrast, we propose an approach
to this real-world image pairing problem, necessary to use
cross-view completion at scale, as detailed in Section 3.1.
Positional embeddings. The architecture used in [84]
adapts ViTs to process pairs of images, by using cross-
attention inside the decoder. Following standard practices,
in their work cosine positional embedding is added to the to-
ken features prior to the encoder and the decoder. This mod-
els absolute position while dense tasks must typically be
robust to cropping or images of various resolutions. In Sec-
tion 3.2, we describe how relative positional embeddings
can be adapted to cross-view completion.
Large-scale models. Finally, we discuss scaling-up the
model in Section 3.3. CroCo [84] uses a ViT-Base encoder
(12 blocks, 768-dimensional features, 12 attention heads)
and a decoder composed of 8 blocks with 512-dimensional
features and 16 heads. Using our large-scale dataset of real-
world image pairs, we are able to scale to larger ViT archi-
tectures and demonstrate consistent performance gain.

3.1. Collecting real-world image pairs

We now present our approach to automatically select im-
age pairs from real-world datasets that are suitable for pre-
training. To be useful, pairs need to depict the same scene
with some partial overlap. The overlap should not be small
to the point where the task boils down to auto-completion.
It should not be high either to the point where the task be-
comes a trivial ‘copy and paste’, i.e., without requiring any
understanding of scene geometry. On top of that, diversity
should be as high as possible among pairs. We propose to
use datasets that offer ways of getting information about the
geometry of the scene and the camera poses. This signal can
be captured using additional sensors like LIDAR, or it can
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Figure 4: Overview of our pre-training cropped image pair collection method. Given a dataset of posed images, op-
tionally with point clouds (e.g. from SfM) or meshes of the scene, we first measure the visual overlap between pairs and
the viewpoint angle difference. Based on these scores, we use a greedy algorithm to select diverse image pairs and finally
generate crops from them.

be extracted using structure-from-motion (SfM) techniques
if the images offer enough coverage of the scene. We use
this information to obtain an image pair quality score based
on overlap and difference in viewpoint angle. We then use
a greedy algorithm to select a diverse set of image pairs.
Finally, we generate overlapping image crops by leverag-
ing image matching. Figure 4 gives an overview of our ap-
proach and we detail each step below.
Computing overlap scores. The first step is to compute
overlap scores for candidate pairs. We develop several ap-
proaches depending on the available information.

◦ ARKitScenes [8] provides 450,000 frames from 1,667
different indoor environments. The availability of the cor-
responding mesh for each frame enables the computation of
the overlap between every pair of images. For each image
I , we retrieve the set of mesh vertices P(I) that are visible.
We then measure the intersection-over-union (IoU) of the
vertices (3D points) for each pair of images (I1, I2) as:

IoU(I1, I2) =
|P(I1) ∩ P(I2)|
|P(I1) ∪ P(I2)|

. (1)

◦ MegaDepth [47] consists of around 300,000 images
downloaded from the web corresponding to 200 different
landmarks. From these images, a point cloud model for
each landmark obtained using structure-form-motion (SfM)
with COLMAP [66] is also provided. As above, it is pos-
sible to measure the vertex-based IoU between pairs of im-
ages, where each vertex is in this case a 3D point from the
point cloud. Unfortunately, occlusions cannot be taken into
account due to the absence of 3D mesh, which greatly de-
grades the overlap estimation. We propose a simple yet ef-
fective solution: we create an artificial occlusion model by
attaching a ball of fixed radius to each 3D point, which oc-
cludes the vertices placed behind it. This way, we can com-
pute a set of visible vertices for each image and evaluate the
IoU as done previously.

◦ 3D Street View [94] contains 25 million street view im-
ages from 8 cities. In addition to the camera pose, the 3D
location and orientation (normal vector) of the target build-
ings are provided. To compute the overlap score, we create
a pseudo 3D point cloud and apply the same technique as

for MegaDepth. We start from an empty point cloud and
append, for each target building, a 10 × 6 meters grid of
7× 11 balls oriented according to the provided annotation.

◦ Indoor Visual Localization datasets (IndoorVL) [43]
contains over 135,000 images from a large shopping mall
and a large metro station in Seoul, South Korea, captured
regularly with several months interval with 10 cameras and
2 laser scanners. The data is provided with accurate cam-
era poses obtained via LiDAR SLAM refined by SfM-based
optimization. We directly measure the overlap between im-
ages using the intersection between the camera frustrums
using the accurate camera poses provided with the dataset.
To encourage further diversity, we multiply this score by a
factor 0.8 if both images come from the same capture ses-
sion, thus favoring pairs taken with several months interval.
Greedy image pair selection. We rely on the overlap
scores described above to select high quality pairs. This
is however not sufficient: we also need pairs to be diverse,
which would not be the case when randomly selecting good
pairs, as images in the dataset can be very correlated. There-
fore, we use a greedy algorithm to select non-redundant im-
age pairs for pre-training. First, for each image pair (I1, I2)
we use a quality pair score s given by:

s(I1, I2) = IoU(I1, I2)× 4 cos(α)
(
1− cos(α)

)
, (2)

where α denotes the viewpoint angle difference between the
two images (all the datasets above provide camera poses).
The function 4 cos(x)(1− cos(x)) has a maximum value of
1 for x = 60◦, 0 value for x = 0◦ and x = 90◦, and it is
negative for angles above 90◦. This score thus favors pairs
with different viewpoints while still having large overlaps.
Given the score for every pair, we aim at building a large
number of image pairs while ensuring diversity, i.e., avoid-
ing content redundancy. To do this, we use a greedy algo-
rithm, where each time we select a pair of images with max-
imum score, we discard the two images forming the pair, as
well as images that have too large IoU (above 0.75) with
any of the two. We iteratively repeat this process until there
is no pair with a score above a certain threshold.
Crop generation per pair. For pre-training, we use
fixed-size crops of 224×224 pixels, as considering higher-
resolution images would be too costly. In practice, we

5



generate 256×256 crops and apply random cropping dur-
ing pre-training. To generate crops on pairs of images
while maintaining overlaps, we rely on quasi-dense key-
point matching, namely DeepMatching [62], except for
pairs from ARKitScenes where we directly use matches
from the mesh. Given the matches, we consider a grid of
crops in the first image, estimate the corresponding match-
ing crop in the second image and keep those with the most
consistent matches and without overlap in the first image.
Overall statistics. In total, we collected about 5.3
million real-world pairs of crops with the process de-
scribed above, with respectively 1,070,414 pairs from
ARKitScenes [8], 2,014,789 pairs from MegaDepth [47],
655,464 from 3DStreetView [94], and 1,593,689 pairs from
IndoorVL [43]. We added this to 1,821,391 synthetic pairs
generated with the Habitat simulator [64], following the ap-
proach of [84]. Example pairs for each dataset are shown
in Figure 3. They cover various scenarios, from indoor
rooms – synthetic with Habitat or real with ARKitScenes
– to larger crowded indoor environment (IndoorVL), land-
marks (MegaDepth) and outdoor streets (3DStreetView).

3.2. Positional embeddings

We replace the cosine embeddings, which inject abso-
lute positional information, by Rotary Positional Embed-
ding (RoPE) [73]. RoPE efficiently injects information
about the relative positioning of feature pairs when comput-
ing attention. Formally, let q and k represent a query and a
key feature, at absolute positions m and n respectively. The
main idea of RoPE is to design an efficient function f(x, p)
that transforms a feature x according to its absolute position
p such that the similarity between the transformed query and
the transformed key ⟨f(q,m), f(k, n)⟩ is a function of q, k
and m − n only. [73] showed that a simple transformation
such as applying rotations on pairs of dimensions according
to a series of rotation matrices at different frequencies sat-
isfy this desirable property. To deal with 2D signals such as
images, we split the features into 2 parts, we apply the 1D
positional embedding of the x-dimension on the first part,
and the embedding of the y-dimension on the second part.

3.3. Scaling up the model

The combination of information extracted from the two
images only occurs in the decoder. Following MAE [29],
CroCo [84] uses a small decoder of 8 blocks consisting of
self-attention, cross-attention and an MLP, with 512 dimen-
sions and 16 attention heads. As the decoder is crucial for
binocular tasks such as stereo or flow, we scale up the de-
coder and follow the ViT-Base hyper-parameters with 12
blocks, 768-dimensional features and 12 heads. We also
scale up the image encoder from ViT-Base to ViT-Large,
i.e., increase the depth from 12 to 24, the feature dimension
from 768 to 1024 and the number of heads from 12 to 16.

Pre-training detailed setting. We pre-train the network for
100 epochs with the AdamW optimizer [52], a weight decay
of 0.05, a cosine learning rate schedule at a base learning
rate of 3.10−4 with a linear warmup in the first 10 epochs,
and a batch size of 512 spread on 8 GPUs. During pre-
training, we simply use random crops and color jittering as
data augmentation. We mask 90% of the tokens from the
first image. Examples of cross-view completion obtained
with our model are shown in Appendix A.

4. Application to stereo matching and flow
We now present CroCo-Stereo and CroCo-Flow, our

ViT-based correlation-free architecture for stereo matching
and optical flow respectively, pre-trained with cross-view
completion. This is much in contrast to current state-of-the-
art methods which rely on task-specific design in the form
of cost volumes [31, 36, 40, 41, 72, 76, 88, 92, 99], image
warping [10, 76], iterative refinement [45, 48] and multi-
level feature pyramids [18, 45, 76, 78]. Both CroCo-Stereo
and CroCo-Flow share the same architecture.
Architecture. When finetuning the model for stereo or
flow, both images are fed to the encoder as during pre-
training (but without masking), and the decoder processes
the tokens of both images. To output a pixel-wise predic-
tion, we rely on DPT [61], which adapts the standard up-
convolutions and fusions from multiple layers used in fully-
convolutional approaches for dense tasks, to vision trans-
formers. This allows to combine features from different
blocks by reshaping them to different resolutions and fus-
ing them with convolutional layers. In practice, we use the
features from 4 blocks, regularly spread by an interval of a
third of the decoder depth, starting from the last block, re-
sulting in 1 block at the end of the encoder and 3 decoder
blocks.
Loss. We parameterize the output of the network with a
Laplacian distribution [39]: given an input pair (x1,x2),
the model outputs a location parameter µi and a scale pa-
rameter di per pixel location i and is trained to minimize the
negative log-likelihood of the ground-truth target disparity,
denoted µ̄, under the predicted distribution:

− log p(µ̄|µ, d) =
∑
i

[
|µi − µ̄i|

di
− 2 log di

]
. (3)

The scale parameter d can be interpreted as an uncertainty
score for the prediction: large errors are penalized less when
d is high, while good predictions are rewarded more if d is
low. It is thus optimal for the network to adapt the scale
parameter. The second term comes from the normalization
term of the Laplacian density and avoids the degenerate so-
lution of always predicting a low scale parameter. Empiri-
cally, we find that using a probabilistic loss improves per-
formance, see Appendix B.4 for the ablation, and is useful

6



Figure 5: Architecture of CroCo-Stereo and CroCo-Flow. The two images (left and right views for stereo, two frames for
flow) are split into patches and encoded with a series of transformer blocks with RoPE positional embeddings. The decoder
consists in a series of transformer decoder blocks (self-attention among token features from the first image, cross-attention
with the token features from the second image, and an MLP). Token features from different intermediate blocks are fed to
the DPT module [61] to obtain the final prediction.

pos. encoder decoder pre-train Stereo (bad@1.0px↓) Flow (EPE↓)
emb. data Md ETH SF(c) SF(f) FT(c) FT(f) Si.(c) Si.(f)

cosine ViT-B Small 2M habitat (CroCo [84]) 26.3 1.82 6.7 7.0 3.89 3.56 2.07 2.57
RoPE ViT-B Small 2M habitat 25.3 0.60 6.0 6.3 3.73 3.37 2.13 2.77
RoPE ViT-B Small 2M habitat + 5.3M real 20.7 0.82 5.8 6.1 3.35 2.94 1.76 2.30
RoPE ViT-B Base 2M habitat + 5.3M real 17.1 1.14 5.3 5.6 3.10 2.73 1.51 1.99
RoPE ViT-L Base 2M habitat + 5.3M real (CroCo v2) 15.5 0.38 5.0 5.3 2.85 2.45 1.43 1.99

Table 1: Ablative study of each change to CroCo with the percentage of pixels with error above 1px (bad@1.0) on validation
sets from Middlebury (Md), ETH3D, SceneFlow (SF) in clean (c) and final (f) renderings for stereo, and with the endpoint
error (EPE) on validation sets from FlyingThings (FT) and MPI-Sintel (Si.) in both clean (c) and final (f) renderings for
optical flow. A Small decoder has 8 decoder blocks with 16 attention heads on 512-dimensional features, while the Base one
has 12 blocks with 12 heads on 768-dimensional features.

for tiling strategies during inference, because it provides a
per-pixel confidence estimate, as detailed below. A parame-
terization of di ensures its positiveness: for stereo matching
we use di = e2α(σ(d

′
i/α)−0.5), with σ the sigmoid function

and α = 3, and for optical flow di = 1/β+(β−1/β)σ(d′i)
with β = 4, unless otherwise stated.
Training. We train CroCo-Stereo using 704×352 crops
from various stereo datasets: CREStereo [45], Scene-
Flow [53], ETH3D [67], Booster [60], Middlebury (2005,
2006, 2014, 2021 and v3) [65]. We train CroCo-Flow using
384×320 crops from the TartanAir [81], MPI-Sintel [11],
FlyingThings [53] and FlyingChairs [21] datasets. We refer
to Appendix C for more details on these datasets, the splits
we use for the ablations, the data augmentation strategy, as
well as training hyper-parameters.
Inference. We use a tiling-based approach. We sample
overlapping tiles with the same size as the training crops
in the first image. For each tile, we create a pair by sam-
pling a corresponding tile at the same position from the
second image. We then predict the disparity or flow be-
tween each pair of tiles. Such tiling approach was used e.g.
in [31]. To merge the predictions done at a given pixel,

we use a weighted average with weights e−2ηα(σ(d′
i/α)−0.5)

with η = 5 for stereo matching and α = 5, η = 2 for optical
flow, where d′i is the uncertainty predicted by the model.

5. Experiments

Ablations. We perform our ablations on the validation
pairs (see Appendix C for the splits we use) of Middlebury,
ETH3D and SceneFlow for stereo matching, and FlyingTh-
ings and MPI-Sintel for optical flow. Table 1 reports the
impact of the changes in CroCo v2 to improve CroCo [84]
(pre-training data, positional embedding, larger encoder and
decoder). We observe that they all lead to consistent im-
provements: replacing the cosine absolute positional em-
bedding by RoPE, scaling up the decoder, using larger-
scale pre-training data and a larger encoder. Altogether,
this allows e.g. to improve performance as measured by the
bad@1.0px metric from 26.3 to 15.5 on Middlebury (stereo
matching), or the EPE from 2.07 to 1.43 on MPI-Sintel in
its clean rendering (optical flow).

To further benchmark CroCo v2, we evaluate the pre-
training of the encoder only on monocular tasks follow-

7



Bicyc2 Compu Austr AustrP Djemb DjembL Livgrm Plants Hoops Stairs Nkuba Class ClassE Crusa CrusaP avg↓
nd < 400px D D D D D D D D
LEAStereo [18] 1.83 3.81 2.81 2.52 1.07 1.64 2.59 5.13 5.34 2.79 3.09 2.46 2.75 2.91 3.09 2.89
AdaStereo [72] 2.19 2.29 4.37 3.08 1.40 1.64 3.93 7.58 4.46 2.67 3.69 3.29 3.35 3.78 2.94 3.39
HITNet [78] 1.43 1.87 3.61 3.27 0.90 9.12 2.37 4.07 4.45 3.38 3.45 2.43 3.20 4.67 4.74 3.29
RAFT-Stereo [48] 0.90 1.13 2.64 2.22 0.63 1.22 3.13 3.55 3.54 1.89 4.36 1.46 2.44 4.58 6.00 2.71
CREStereo [45] 1.38 1.06 2.63 2.53 0.64 1.11 1.42 5.31 3.22 2.40 2.51 1.92 2.31 1.78 1.83 2.10
GMStereo [90] 1.34 1.32 2.26 2.23 1.01 1.62 1.84 2.49 3.19 2.18 2.10 2.19 2.08 1.71 1.75 1.89
CroCo-Stereo 0.84 1.45 1.87 1.83 0.69 1.19 2.40 2.28 8.31 1.44 1.96 3.99 4.61 2.48 2.81 2.36

Table 2: Evaluation on Middlebury with the average error over all pixels for each sequence and the average (last column).
Sequences are ordered according to their ‘nd’ value, which is the official threshold of maximum disparity used to clip
predictions before evaluation.

Left image Ground truth CREStereo [45] CroCo-Stereo

Figure 6: Three example results from the Middlebury
test set (Australia, Bicycle2 and Hoops) with from left to
right: the left image, the ground truth, CREStereo [45] and
CroCo-Stereo.

ing the protocol of [4]. For semantic segmentation on
ADE20k [100], we obtain 44.7 mean Intersection over
Union vs. 40.6 for CroCo [84], and for monocular depth
estimation on NYU v2 [70], we obtain 93.2 delta-1 vs. 90.1
for [84].

We provide in Appendix B an ablation on the impact of
pre-training (i.e., a comparison with a randomly initialized
network for finetuning), an ablation on the masking ratio
during pre-training as well as a comparison between the L1
loss and Laplacian loss during finetuning.
CroCo-Stereo vs. the state of the art. We now evalu-
ate CroCo-Stereo on the official leaderboards of Middle-
bury [65], KITTI 2015 [55], ETH3D [67] and Spring [54].

On Middlebury (Table 2), CroCo-Stereo obtains the low-
est average error on 6 out of 15 sequences, in spite of using
a generic patch-based transformer without any of the usual
apparatus for stereo matching (e.g. cost-volume, coarse-to-
scale processing, iterative refinement). However, in aver-
age, we obtain a worse error due to the fact that CroCo-
Stereo produces really large errors for a few sequences like
Hoops or ClassE. In fact, these errors correspond to cases
with large maximum disparities (based on the maximum
threshold value applied before evaluation), which is harmful
for our simple tiling-based inference approach. This effect

Method D1-bg↓ D1-fg↓ D1-all↓

AdaStereo [72] 2.59 5.55 3.08
HITNet [78] 1.74 3.20 1.98
PCWNet [69] 1.37 3.16 1.67
GMStereo [90] 1.49 3.14 1.77
ACVNet [88] 1.37 3.07 1.65
LEAStereo [18] 1.40 2.91 1.65
CREStreo [45] 1.45 2.86 1.69
CroCo-Stereo 1.38 2.65 1.59

Table 3: Evaluation on the KITTI 2015 stereo bench-
mark with the percentage of outliers (i.e., error above 3
pixels) for background (D1-bg), foreground (D1-fg) and all
(D1-all) pixels.

is visible in the prediction of the bottom example of Fig-
ure 6 where one can observe tiling artefacts, e.g. next to the
stair pillars. In general, however, our method remains accu-
rate, especially on thin structures like the pins on the map
or the radius of the bicycle wheels in Figure 6.

For KITTI 2015 (Table 3), we finetune CroCo-Stereo on
1216×352 crops from KITTI 2012 [24] and 2015 [55] for
20 epochs. CroCo-Stereo performs the best on the main D1-
all metrics (outliers ratio at a 3px error threshold), with the
best value also on foreground pixels, and at 0.01% of the
best methods on background pixels.

For ETH3D, we use a Laplacian loss without bounds as
it is limited to small disparities, i.e., with parameterization
di = ed

′
i and weights e−3d′

i for tiling. CroCo-Stereo sets a
new state of the art for the ratio of pixels with an error over
0.5px (bad@0.5) and performs on par with CREStereo [45]
for bad@1.0 and the average error, see Table 4. It out-
performs recent approaches like GMStereo [90], RAFT-
Stereo [48], DIP-Stereo [99] or HITNet [78] by a large mar-
gin, e.g. the bad@0.5 for non-occluded pixels is improved
by 3% or more.

Finally, we report results on the recent Spring benchmark
in Table 5 where our model is finetuned for 8 epochs on its
training set. CroCo-Stereo outperforms the leading methods
on all metrics with a large margin, i.e., the main bad@1
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Method bad@0.5 (%)↓ bad@1.0 (%)↓ avg err (px)↓
noc all noc all noc all

AdaStereo [72] 10.22 10.85 3.09 3.34 0.24 0.25
HITNet [78] 7.89 8.41 2.79 3.11 0.20 0.22
RAFT-Stereo [48] 7.04 7.33 2.44 2.60 0.18 0.19
DIP-Stereo [99] 6.74 6.99 1.97 2.12 0.18 0.20
GMStereo [90] 5.94 6.44 1.83 2.07 0.19 0.21
CREStereo [45] 3.58 3.75 0.98 1.09 0.13 0.14
CroCo-Stereo 3.27 3.51 0.99 1.14 0.14 0.15

Table 4: Evaluation on ETH3D with the percentage of pix-
els with an error over 0.5px (bad@0.5), over 1px (bad@1.0)
and the average error over non-occluded (noc) or all pixels.

Method 1px↓ 1px s0-10↓ 1px s10-40↓ 1px s40+↓ Abs↓

RAFT-Stereo [48]‡ 15.273 22.588 10.018 17.086 3.025
AVC-Net [88]‡ 14.772 18.386 11.346 18.145 1.516
CroCo-Stereo 7.135 2.934 7.757 13.247 0.471

Table 5: Evaluation of CroCo-Stereo on the Spring
benchmark with the percentage of outliers (error over 1px)
over all pixels, or over pixels with disparities in [0,10] (s0-
10), in [10,40] (s10-40) and over 40 pixels (s40+), as well
as the average absolute error (Abs). ‡ means methods sub-
mitted by the leaderboard’s authors.

Method clean↓ final↓
PWC-Net+ [76] 3.45 4.60
RAFT† [79] 1.61 2.86
CRAFT† [74] 1.44 2.42
FlowFormer [31] 1.20 2.12
SKFlow [77] 1.30 2.26
GMFlow+ [90] 1.03 2.12
CroCo-Flow 1.09 2.44

Table 6: Evaluation on the MPI-Sintel benchmark with
the EPE (↓) on the clean and final renderings. † means that
the flow prediction from the previous frames is used as ini-
tialization.

metric is reduced from 15% to 7% and the absolute error
from 1.5 to 0.5px.
CroCo-Flow vs. the state of the art. We compare CroCo-
Flow to the state of the art on the official leaderboards of
MPI-Sintel [11], KITTI 2015 [55] and Spring [54].

On MPI-Sintel (Table 6), CroCo-Flow performs better
than RAFT [79] which include many specialized refinement
steps and use previous flow estimation as initialization. We
rank second on the clean rendering and perform competi-
tively on the final rendering, on par with most recent ap-
proaches such as GMFlow+ [90], SKFlow [77] or Flow-
Former [31]. Figure 7 shows some visualizations of flow
prediction.

First image Ground truth GMFlow+ [90] CroCo-Flow

Figure 7: Two examples from the MPI-Sintel test set with
from left to right: the first image, the ground truth, GM-
Flow+ [90] and CroCo-Flow.

Method Fl-bg↓ Fl-fg↓ Fl-all↓

PWC-Net+ [76] 7.69 7.88 7.72
RAFT† [79] 4.74 6.87 5.10
CRAFT† [74] 4.58 5.85 4.79
FlowFormer [31] 4.37 6.18 4.68
GMFlow+ [90] 4.27 5.60 4.49
CroCo-Flow 3.18 5.94 3.64

Table 7: Evaluation of CroCo-Flow on the KITTI 2015
benchmark with the percentage of outliers for background
(F1-bg), foreground (F1-fg) and all (F1-all) pxiels. † means
that the flow prediction from the previous frames is used as
initialization.

For KITTI 2015 (Table 7), we finetuned the model on
the training set from KITTI 2012 and 2015 for 150 epochs
on crops of size 1216×352. CroCo-Flow performs best on
the main F1-all metrics, i.e., the percentage of outliers, with
a large margin: the F1-all is reduced from 4.49% to 3.64%
compared to GMFlow+ [90]. This gap mainly comes from
the background pixels, while we perform on par with the
best methods on foreground pixels.

Finally, on Spring, for which we finetune the model on
its training set for 12 epochs, we obtain state-of-the-art per-
formance, see Table 8. We obtain an EPE of 0.50, compared
to 0.64 for the second best method, with an outlier ratio re-
duced for all flow norm ranges.
Limitations. The tiling-based inference strategy may pre-
vent an accurate estimate in case of extremely large dispar-
ity or flow, where the corresponding pixels can be outside of
the tile of the second image. A tiling strategy smarter than
taking the same cropping coordinates in a pair of images
could be considered.

6. Conclusion
For the first time, we have shown that large-scale pre-

training can be successful for dense geometric tasks, thanks
to a well-adapted pretext task and real-world data at scale.
This enables to reach state-of-the-art performance with a
ViT-based architecture without using task-specific designs,
and thereby opening novel routes to tackle these problems,
and new avenues towards more universal vision models.
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Method 1px↓ 1px s0-10↓ 1px s10-40↓ 1px s40+↓ EPE↓

FlowFormer [31]‡ 6.510 3.381 5.530 35.344 0.723
MS-Raft+ [32]‡ 5.724 2.055 5.022 38.315 0.643
CroCo-Flow 4.565 1.225 4.332 33.134 0.498

Table 8: Evaluation of CroCo-Flow on the Spring bench-
mark with the number of outliers (error over 1px) over all
pixels, or over pixels with flow norm in [0,10] (s0-10), in
[10,40] (s10-40) and over 40 pixels (s40+) as well as the
endpoint error (EPE). ‡ means methods submitted by the
leaderboard’s authors.
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Laptev, Hervé Jegou, and Edouard Grave. Are Large-scale
Datasets Necessary for Self-Supervised Pre-training? arXiv
preprint arXiv:2112.10740, 2021. 1, 3

[23] Yuxin Fang, Li Dong, Hangbo Bao, Xinggang Wang, and
Furu Wei. Corrupted Image Modeling for Self-Supervised
Visual Pre-Training. In ICLR, 2023. 3

[24] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In CVPR, 2012. 8, 15

[25] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
supervised Representation Learning by Predicting Image
Rotations. In ICLR, 2018. 1

[26] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-
tow. Unsupervised monocular depth estimation with left-
right consistency. In CVPR, 2017. 4

[27] Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J Brostow. Digging into self-supervised monocular
depth estimation. In ICCV, 2019. 4

[28] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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Reference image Masked target CroCo [84] CroCo v2 Target image

Figure 8: Cross-view reconstruction examples (pre-training pretext task) on scenes unseen during pretraining for the origi-
nal CroCo [84] and with our improvements. The images come from the Middlebury stereo benchmark [65].

Appendix
In this appendix, we first provide visualizations of the

capabilities of CroCo v2 on the pretext task of cross-view
completion (Section A). We then present additional exper-
imental results in Section B, including in particular (a) the
impact of pre-training, (b) the runtime of our model and (c)
an analysis of the probabilistic distributions regressed by
our CroCo-Stereo model for the stereo matching task. We
finally detail our training setup and the dataset splits. (Sec-
tion C).

A. Cross-view completion examples

To qualitatively evaluate the impact of CroCo v2, i.e., of
the improvements that we propose on top of the CroCo [84]
pre-training, we show several examples of cross-view com-
pletions on real-world scenes, coming either from Middle-
bury v3 [65] in Figure 8 or KITTI [55] in Figure 9. Note that
these methods, as MAE [29], regress pixel values that are
normalized according to the mean and standard deviation
inside each patch, we thus apply the inverse transform for

display: this means that the overall color of each patch will
be correct, as it comes from the ground-truth values. While
the most important measure of performance of these models
is their transfer to downstream tasks, as explored in the main
paper, a qualitative observation of the fact that our improved
method is better at solving the pretext task is noteworthy.
We clearly observe that the reconstructions from the origi-
nal CroCo [84] tend to be quite blurry in many areas, which
might come from the fact that it relies on a smaller model
and was pre-trained only on synthetic data from indoor en-
vironments, while details are impressively preserved thanks
to our improvements. In Figure 8, note how the lines and
the eyes are well reconstructed in the first row, or the roads
on the maps of the third row, despite the high masking ratio
that is applied to the masked image (90%). Similarly, the
text is clearly readable on the first row of Figure 9. Some
predictions by our model have some blur (e.g. left of the
first and thirds rows of Figure 8), which makes sense be-
cause these parts are not visible in the reference image.
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Reference image Masked target CroCo [84] CroCo v2 Target image

Figure 9: Cross-view reconstruction examples (pre-training pretext task) on scenes unseen during pre-training for the
original CroCo [84] and with our improvements. The images come from the stereo benchmark of KITTI [24].

Network initialization Stereo (bad@1.0px↓) Flow (EPE↓)
Md ETH SF(c) SF(f) FT(c) FT(f) Si.(c) Si.(f)

RoPE positional embedding, ViT-L encoder, Base decoder, 2M Habitat + 5.3M real pre-training pairs
CroCo v2 pre-training 15.5 0.38 5.0 5.3 2.85 2.45 1.43 1.99
random init. 43.4 1.06 11.0 11.2 10.53 10.57 4.84 5.49

cosine positional embedding, ViT-B encoder, Small decoder, 2M Habitat (synthetic only) pre-training pairs
CroCo [84] pre-training 26.3 1.82 6.7 7.0 3.89 3.56 2.07 2.57
MAE [29] (ImageNet) pre-training (encoder only) 35.8 1.68 8.6 8.8 5.13 4.83 2.92 3.82
random init. 87.5 5.42 24.6 24.6 14.28 14.31 8.99 9.76

Table 9: Impact of pre-training. We compare the performance of our final model (first row) with improved cross-view
completion pre-training to a randomly initialized version (second row). To compare to MAE [29], that is pre-trained on
ImageNet [63], and which is based on cosine positional embeddings, we make the comparison with the original CroCo in the
bottom rows.

B. Further experimental results

B.1. Impact of pre-training

In Table 9, we measure the impact of the pre-training on
the downstream performance when the model is finetuned
for stereo matching or optical flow. The first two rows com-
pare our model, using our improved cross-view completion
pre-training vs. a random initialization. We observe a clear

gain of performance, e.g. on the FlyingThings flow test set
in the final rendering with an EPE of 2.45 pixels with pre-
training vs. 10.57 without it, or on the Middlebury v3 stereo
validation set with a bad@1.0px of 15.5% with pre-training
vs. 43.4% without it.

We are not aware of any other pre-training strategy, other
than cross-view completion, that readily includes a binoc-
ular decoder or architecture. While it is still possible to
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Masking Stereo (bad@1.0px↓) Flow (EPE↓)
ratio Md ETH SF(c) SF(f) FT(c) FT(f) Si.(c) Si.(f)

80% 32.5 1.96 7.3 7.5 4.29 4.06 2.06 2.71
85% 59.2 1.15 8.7 9.0 3.48 3.08 1.99 2.41
90% 20.7 0.82 5.8 6.1 3.35 2.94 1.76 2.30

Table 10: Impact of the pre-training masking ratio for a model with RoPE positional embeddings, a ViT-B encoder, a
Small decoder, pre-trained on 2M Habitat + 5.3M real pairs.

initialize part of the layers using other pre-training strate-
gies, this means that some important parts of the network
are still being initialized at random. Nevertheless, to com-
pare to other pre-training strategies, we consider MAE [29]
pre-trained on ImageNet [63], thus with a cosine positional
embedding, a ViT-Base encoder, and with a Small decoder
that is randomly initialized. We compare that to the original
CroCo [84] pre-trained on synthetic data only. We observe
that CroCo pre-training obtains the lowest errors, signifi-
cantly outperforming the MAE pre-training and the random
initialization.

Interestingly, the performance of this smaller model is
also significantly better than the large one without pre-
training. This again highlights the importance of the pre-
training with such generic architecture.
Masking ratio. CroCo [84] finds that using a masking ratio
of 90% performs best for cross-view completion on their
synthetic data. This is higher than the 75% masking ratio
of MAE [29], as the unmasked reference view of the same
scene adds redundancy. A question is whether this masking
ratio of 90% that has been found optimal on synthetic data
generalizes to real data. Table 10 reports the performance
on stereo and flow downstream tasks for a masking ratio of
80%, 85% and 90%. We find that a masking ratio of 90%
performs best also in the case of using real data.

B.2. Smaller training data

Most optical flow methods also report the performance
on the MPI-Sintel training set when training on Fly-
ingChairs and FlyingThings only. We report these values in
Table 11. For RAFT [89] and GMFlow [90], we report the
numbers before and after using iterative refinement proce-
dures. Interestingly, CroCo-Flow performs better than these
two methods before their refinement. Overall, our ranking
is similar to the ones on the MPI-Sintel test set where we
use more training data. This indicates that our finetuning on
geometric downstream tasks do not necessarily need large-
scale training data, despite the size of our architecture.

B.3. Runtime and tiling

Runtime. In Table 12, we report the runtime for different
sizes of our model. On one single tile of the same size as
training for stereo, i.e., 704×352, on a NVIDIA A100 GPU.

Method MPI-Sintel(↓)
clean final

LiteFlowNet2 [34] 2.24 3.78
FM-RAFT [35] 1.29 2.95
FlowFormer [31] 1.01 2.40
RAFT [79] before refinement 4.04 5.45
RAFT [79] 1.41 2.69
GMFlow [90] before refinement 1.31 2.96
GMFlow [90] 1.08 2.48
CroCo-Flow 1.28 2.58

Table 11: Optical flow results when training on Fly-
ingChairs and FlyingThings only. We report the EPE on
MPI-Sintel training set (clean or final rendering). Numbers
for the first three rows come from [31], numbers for RAFT
and GMFlow (before and after refinement) from [90].

Pos. Encoder Decoder runtime #Parameters

cosine ViT-B Small 25ms 139.4M (85.6M+34.0M+19.7M)
RoPE ViT-B Small 26ms 139.4M (85.6M+34.0M+19.7M)
RoPE ViT-B Base 29ms 219.7M (85.6M+114.0M+20.1M)
RoPE ViT-L Base 53ms 437.4M (303.1M+114.2M+20.1M)

Table 12: Runtime and number of parameters. Run-
time is measured for a single tile of size 704×352, on a
NVIDIA A100 GPU. For the number of parameters we re-
port in parenthesis the numbers for the encoder, the decoder
and the DPT head separately.

Our method remains relatively fast on one tile, in the order
of a few tens of milliseconds.

Number of parameters. We also report the number of
trainable parameters in Table 12. This number of param-
eters is one order of magnitude higher than most existing
stereo and flow methods. We did not study how this number
of parameters could be reduced, and we also do not claim
that our models are better than existing work for a fixed
computational budget. Indeed, task-specific approaches
have the advantage of being more sample efficient, i.e., re-
quiring less data, by leveraging prior knowledge about the
task. They also have the drawback of not being readily com-
patible with large-scale training on unlabeled data, because
of task-dependent components, which limits the use of large
generic models. Existing methods cannot be scale up to a
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Figure 10: Impact of the overlap ratio between tiles during inference. We plot the stereo performance (bad@1.0px in
%) on Middlebury v3 (left) and the flow performance on MPI-Sintel in its final rendering (middle) when varying the overlap
ratio during inference with tiling. We also plot the number of tiles it represents for a 1920×1080 image (right), which is
proportional to the total runtime, for a crop size of 704×352 as CroCo-Stereo.

larger number of parameters easily, as training large mod-
els requires lot of data. In the case of stereo and optical
flow, for which labeled data is limited, this means using
self-supervised learning, which cannot be straightforwardly
applied for models that involve task-specific designs like
cost volumes, image warping, etc. Thus, our contribution
and our aim in this work is to show that pre-training large,
generic architectures and finetuning them for stereo match-
ing and optical flow is a valid path forward.
Impact of the overlap ratio during tiling. In Figure 10,
we report the performance and the number of tiles for a
Full HD image (1920×1080) when varying the overlap ratio
during inference with the tiling strategy. While the perfor-
mance improves with a higher overlap ratio, the number of
tiles can rapidly explodes. With an overlap around 0.5 or
0.7, performance is quite close to the one obtained with 0.9
while the number of tiles remains reasonable. This may thus
be the best trade-off in practical scenarios where inference
time has to stay small.

B.4. Laplacian-based loss

For flow and stereo, we regress a Laplacian distribution:
the location parameter corresponds to the disparity or flow
prediction, while the scale parameter could be seen as a
measure of uncertainty. We thus denote here by ‘uncer-
tainty’ the logarithm of the predicted scale of the Lapla-
cian distribution that our downstream model outputs, i.e.,
log(di) from Equation 3.
Visualization of the uncertainty. We visualize in Fig-
ure 11 this uncertainty for a few examples. We observe
that it is highly linked with the error of the predicted dis-
parity as red areas in the error correspond to blue areas in
the uncertainty maps.
Statistics on the uncertainty. To better measure the corre-
lation of our predicted uncertainty with the error of the dis-
parity prediction, we plot a few statistics in Figure 12. On
the left one, we show some percentiles of the error when
varying the predicted scale of the Laplacian distribution.

First image Prediction error Uncertainty

Figure 11: Visualization of the uncertainty predicted by
CroCo-Stereo on a few examples from the SceneFlow test
set. The first column shows the first image, the second col-
umn shows the error of the prediction clamped within the
segment [0, 10], the third column shows the logarithm of
the predicted scale of the Laplacian distribution output by
the model: green colors denote confident areas while blue
colors denote uncertain areas.

We observe that a lower uncertainty clearly corresponds to
pixels with lowest errors, while a high uncertainty corre-
sponds to pixels with a higher error. On the right plot, we
order pixels from the less uncertain to the more uncertain
and show the percentiles of errors when increasing the ratio
of pixels considered. We observe the same behavior, show-
ing the correlation of our uncertainty with the error of the
prediction. Note that 95% of the pixels have an error below
1, thus the scale of the y-axis of the plot.

Comparison with an L1 loss. In Table 13, we quantita-
tively evaluate the effect of using a loss on a Laplacian dis-
tribution (Equation 3) compared to using only an L1 loss.
In the latter case, we cannot leverage the predicted scale of
a Laplacian distribution for merging overlapping tiles. We
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Figure 12: Statistics on the uncertainty predicted by CroCo-Stereo. We subsample 1000 points per test image from
SceneFlow in its clean renderings and compute the error of the prediction and the logarithm of the predicted scale of the
Laplacian, i.e., the pixelwise uncertainty. On the left plot, we show the median of the error for a given predicted uncertainty
(orange line), the 25- and 75-percentile in dark blue, and the 10- and 90-percentile in light blue. On the right plot, we sort
pixels according to their predicted uncertainty from the less uncertain to the more uncertain and show the median of the error
over the fractions of pixels considered (orange line), the 25- and 75-percentile in dark blue, and the 10- and 90-percentile in
light blue.

loss Stereo (bad@1.0px↓) Flow (EPE↓)
Md ETH SF(c) SF(f) FT(c) FT(f) Si.(c) Si.(f)

L1 23.0 0.95 6.1 6.3 3.02 2.69 1.51 2.13
Lap. 15.5 0.38 5.0 5.3 2.85 2.45 1.43 1.99

Table 13: Impact of the loss. We compare a standard L1
loss vs. the Laplacian (Lap.) loss.

thus follow [31] and use a weights that decrease with the
distance to the center of the image. We observe that the
Laplacian loss outperforms the L1 loss on all stereo and
flow benchmarks. A Laplacian loss can be interpreted as
an L1 term, weighted for each pixel according to an un-
certainty measure, thus allowing to downweight uncertain
pixels in practice. In addition, having access to the scale
of the Laplacian allows a more elegant merging strategy for
the overlapping tiles.

B.5. Towards smarter tiling

One limitation of our approach mentioned in the main
paper is the tiling-based inference. For instance, CroCo-
Stereo is based on crops with a width of 704 pixels, this
means that for large disparity values, the matching pixels
would be out of the scope of the corresponding tile in the
second image. As an alternative, we have tried a strategy
where a second tile in the second image is also considered,
which is shifted by 150 pixels, thus reducing the dispar-
ity value by the same amount. With the model with ViT-
Base encoder and Base decoder, such a strategy allows to
reduce the bad@1.0 from 17.1% to 12.0% on Middlebury
v3 validation set, when replacing the predictions over 200px
from the original tile, with the ones from the secondary tile.
While this strategy seems promising, it is however not really
satisfactory as it multiples the number of tiles to proceed by
2. We hope to find better strategies in the future.

C. Training details

CroCo-Stereo training. We train CroCo-Stereo for 32
epochs using batches of 6 pairs of 704×352 crops. We de-
tail the training/validation pairs we use for our ablations in
Table 14. We use the AdamW optimizer [52] with a weight
decay of 0.05, a cosine learning rate schedule with a sin-
gle warm-up epoch and a learning rate of 3.10−5. During
training, we apply standard data augmentations: color jit-
tering (asymmetrically with probably 0.2), random vertical
flipping with probably 0.1, random scaling with probability
0.8 in the range [2−0.2, 20.4] and stretching (resize different
along the x and y axis) with probability 0.8 in the range
[2−0.2, 20.2], and slightly jitter the right image with proba-
bility 0.5. When submitting to the official leaderboards, we
include the pairs that were kept apart from the training sets
for validation into the training epochs.
CroCo-Flow training. We train CroCo-Flow for 240
epochs of 30, 000 pairs each, randomly sampled from all
available data, using batches of 8 pairs of crops of size
384×320. We detail the training/validation pairs we use for
our ablations in Table 15. To better balance the datasets, we
set the probability of choosing a random pair from these
datasets, see Table 14. We use the AdamW optimizer,
a weight decay of 0.05, a cosine learning rate schedule
with linear warm-up over 1 epoch, and a base learning rate
of 2.10−5. During training, we apply standard augmen-
tations [90]: random color jittering (asymmetrically with
probably 0.2), random scaling with probably 0.8 with a
scale sampled in [2−0.2, 20.5] and stretching with probabil-
ity 0.8 in the range [2−0.2, 20.2].
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stereo dataset # pairs comment

CREStereo [45] 200,000 all training pairs
SceneFlow[53] 70,908 Driving, Monkaa and FlyingThings in both clean and final renderings

4,370 validation pairs from FlyingThings test for each rendering (clean and final)
ETH3D Low Res [67] 30× 24 ‘delivery area 3s’, ‘electro 3l’ ‘playground 3l’ (3 pairs) are kept apart for validation
Middlebury v3 [65] 50× 14 ‘Vintge’ (1 pair) is kept apart for validation, we use the ‘full’ resolution
Middlebury 21 50× 335 ‘traproom1’ and ‘traproom2’ are kept apart for validation (20 pairs)
Middlebury 14 50× 132 ‘Umbrella-umperfect’ and ‘Vintage-perfect’ are kept apart for validation (6 pairs)
Middlebury 06 50× 171 ‘Rocks1’ and ‘Wood2’ are kept apart for validation (18 pairs)
Middlebury 05 50× 45 ‘Reindeer’ is kept apart for validation (9 pairs)
Booster [60] 213 only the ‘balanced’ subset, ‘Vodka’ and ‘Washer’ sequences (15 pairs) kept apart for validation

total 306,691

Table 14: Overview of our stereo training data. We indicate here the train/val split used for the ablations, as well as the
number of training pairs. For ETH3D and Middlebury, we also consider multiple times each pair in each epoch.

flow dataset # pairs prob. comment

FlyingChairs [21] 22,232 12% -
FlyingThings [53] 80,604 40% 40,302 pairs for both ‘clean’ and ‘final’ renderings

we use the same 1,024 validation pairs from the test set as [90]
MPI-Sintel [11] 943 10% sequences ‘temple 2’ and ‘temple 3’ (98 pairs) are kept apart for validation
TartanAir [81] 306,268 38% -

total 410,047 100%

Table 15: Overview of our flow training data. We indicate here the train/val split used for the ablations, as well as the
number of remaining training pairs. During training, we set a number of images per epoch and randomly sample them among
the available datasets with the percentages shown in the column ‘prob.’.
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