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Abstract

In recent years, many video tasks have achieved break-
throughs by utilizing the vision transformer and establish-
ing spatial-temporal decoupling for feature extraction. Al-
though multi-view 3D reconstruction also faces multiple
images as input, it cannot immediately inherit their suc-
cess due to completely ambiguous associations between
unstructured views. There is not usable prior relation-
ship, which is similar to the temporally-coherence prop-
erty in a video. To solve this problem, we propose a
novel transformer network for Unstructured Multiple Im-
ages (UMIFormer). It exploits transformer blocks for de-
coupled intra-view encoding and designed blocks for to-
ken rectification that mine the correlation between simi-
lar tokens from different views to achieve decoupled inter-
view encoding. Afterward, all tokens acquired from various
branches are compressed into a fixed-size compact repre-
sentation while preserving rich information for reconstruc-
tion by leveraging the similarities between tokens. We em-
pirically demonstrate on ShapeNet and confirm that our de-
coupled learning method is adaptable for unstructured mul-
tiple images. Meanwhile, the experiments also verify our
model outperforms existing SOTA methods by a large mar-
gin. Code will be available at https://github.com/
GaryZhu1996/UMIFormer.

1. Introduction

3D reconstruction, which lifts 2D view images to a 3D
representation of an object, is a challenging problem. It
plays an important role in numerous technologies, includ-
ing intelligent driving, augmented reality and robotics. In
the situation of single-view input, previous works have
attempted to improve performance by strengthening the
network capabilities [9, 13, 22, 32, 37] and leveraging the
geometric information as priors knowledge [36, 40, 41].
However, for multi-view reconstruction, researchers con-
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Figure 1. Comparison of the positional correspondence used for
inter-image-decoupled feature extraction in (a) video tasks and (b)
multi-view 3D reconstruction. Video tasks exploit the temporally-
coherence property to establish the prior relationship as shown in
(a). For multi-view reconstruction, each patch is treated as an an-
chor and associated with its similar tokens from other views to
build the positional correspondence as shown in (b).

centrate on how to extract sufficient feature representa-
tion for the object shape from unstructured multiple im-
ages [5, 30, 34, 35, 39]. This paper is devoted to multi-view
3D reconstruction using the voxel representation.

In our investigation, the deep-learning-based algorithms
for multi-view reconstruction typically involve two steps:
feature extraction and shape reconstruction. The latter is
generally accomplished using a 3D decoder module, while
there are various solutions for the former including CNN-
based and transformer-based methods.

CNN-based methods usually separate the feature extrac-
tion process into two stages. The first stage exploits a
backbone network to encode on intra-view-dimension while
the second stage processing on inter-view-dimension aggre-
gate the features obtained from different views. The fu-
sion method can be a pooling layer [10, 20, 23], a recurrent
unit [5, 11, 17] or an attention operator [39]. In addition,
Pix2Vox series [34, 35] put merger after decoder, which di-
rectly fusion the voxels predicted from different views, and
also achieve good results. To realize the merger adapting
the global state, GARNet [46] sets up two fusion modules,
which are located before and after the decoder respectively.

Transformer-based methods [27,30,38] that can directly
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handle views as a sequence also attend global awareness.
It takes natural advantage of the architecture to couple the
procedures for intra-image and inter-image feature extrac-
tion. However, such approaches work poorly when facing
few views as input since the size of the extracted feature
is too small to hold enough information. In contrast, 3D-
RETR [21] exploits transformer on the intra-view dimen-
sion and then aggregates the features from different views
using an adaptive pooling layer. It is essentially the same
method as before [23] but with a more advanced backbone
network. The success of this method reminds us that the
power of vision transformer (ViT) [6] for the representation
of views cannot be understated.

In video tasks that also face multiple images as input,
recent works [1,2,14] have produced good performance us-
ing ViT as a spatially-decoupled feature extractor and addi-
tionally establish a temporally-decoupled feature extractor.
They benefit from the fact that video frames are temporally
coherent (as shown in Figure 1a). These approaches, how-
ever, cannot be directly transferred to our task since multi-
view reconstruction should deal with unstructured multiple
images without prior positional correspondence.

To address this problem, we propose a novel inter-view-
decoupled block (IVDB) based on mining the correlation
between similar patches from different views (as shown in
Figure 1b). It can be inserted between the blocks of ViT
to create a transformer encoder for unstructured multiple
images. This model maintains the advantages of ViT ini-
tialization pre-trained on large-scale datasets while alternat-
ing decoupling the intra- and inter-view encoding processes.
Moreover, by clustering the tokens according to their simi-
larities and exploiting a down-sampling transformer block,
the tokens from all branches are compressed into a fixed-
size compact representation, ensuring relatively steady per-
formance for the varying number of views input.

In detail, our contributions are as follows:

• To our best knowledge, we are the first to propose a
transformer network that alternates decoupled intra-
and inter-view feature extraction for multi-view 3D re-
construction, a problem facing unstructured multiple
images as input.

• Leveraging the correlations between similar tokens,
we proposes a novel inter-view-decoupled block
(IVDB) that rectifies the tokens according to the re-
lated information from other views and a similar-token
merger (STM) that compresses the features from all
branches.

• Experiments on ShapeNet [4] verify that our method
achieves performance better than previous SOTA
methods by a large margin and has the potential to
be more robust for multi-view reconstruction when in-
creasing training consumption.

2. Related Works

2.1. Multi-View 3D Reconstruction

In the early years, the traditional algorithms, e.g. SFM
[19] and SLAM [8], build mappings from 2D pixels to 3D
positions based on feature matching. They are hard to deal
with complex situation of view images. At present, neu-
ral network algorithms become the mainstream for solving
multi-view reconstruction.

Among them, CNN-based methods usually extract fea-
tures from each view in parallel and then aggregate these
features to a representation of the shape. Most of the re-
search works focus on the fusion approach. [10,20,23] em-
ploy pooling-based fusion method that concatenates the fea-
ture maps from different views and then compresses them
to a specified size by a maximum pooling or an average
pooling layer. Despite being straightforward, it performs
poorly because it lacks learnable parameters. 3D-R2N2
series [5, 17] and LSM [11] use recurrent neural network
(RNN)-based fusion method that treats features from views
as a sequence. However, a recurrent unit cannot satisfy in-
variant to permutations and is not suitable for facing a large
number of views input due to limited long-term memory.
Attsets [39], Pix2Vox series [34, 35] and GARNet [46] ex-
ploits attention-based fusion method that accumulates the
features from different views weighted according to the
score maps predicted by an extra branch.

To learn the relatively complex latent correlation be-
tween different views, transformer-based methods are pro-
posed. EVolT [30], LegoFormer [38] and 3D-C2FT [27]
treats the input as a sequence on the inter-view-dimension.
However, their reconstruction quality is terrible when facing
few view images due to the insufficient size of the feature.
3D-RETR [21] deals with tokens on intra-view-dimension.
It utilizes ViT [6] to extract features from each view and
fuses them using the pooling-based fusion. Although the
strong representation learning ability of the transformer for
images is utilized, the potential information between views
is not fully discovered.

2.2. Transformer for Multiple Images

The transformer paradigm is proposed by [29] for nat-
ural language processing. ViT [6] widely extends it to
computer vision and mainly works on single-image. Some
research about video tasks introduces the transformer net-
work to solve the problems facing multiple images as input.
Leveraging prior relationships based on spatial and tempo-
ral, TimeSformer [2] proposes decoupled spatial-temporal
attention where the two kinds of attention operation coexist
in a transformer block and DSTT [14] decouples the spa-
tial and temporal encoding into separate transformer blocks
which are used alternately. ViViT [1] factorises the multi-
head dot-product attention operation to execute the two
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Figure 2. The architecture used for feature extraction in UMIFormer. The network encodes unstructured multiple images utilizing the
intra-view-decoupled transformer block and the inter-view-decoupled block alternately. Then, the feature is compressed to a compact
representation by the similar-token merger.

kinds of decoupled attention in parallel. In addition, De-
ViT [3], FGT [44], E2FGVI [12] and MotionRGBD [45]
further mine the relationship in spatial and temporal to ac-
quire a better representation.

These decoupling methods exploit spatial-temporal re-
lations to achieve good representation learning capability.
However, they cannot be transferred to solve multi-view re-
construction because there is no inter-image-coherent when
processing unstructured multiple images.

3. Methods
According to an arbitrary number of view images I =

{I1, I2, · · · , In} with sizes of 2242 × 3 of an object, our
model is to generate the corresponding voxel representation
V with a size of 323. To begin, views are used to extract
a feature representation f (described in section 3.1). Then,
the binary voxel V will be constructed according to the fea-
ture (described in section 3.2). The entire process is formu-
lated as:

V = UMIFormer(I) = R (E (I1, I2, . . . , In)) , (1)

where E and R denote the processes of feature extraction and
shape reconstruction respectively.

3.1. Feature Extraction

The feature extractor is designed based on ViT [6]. It
contains four types of blocks: patch embedding, intra-view-
decoupled transformer block, inter-view-decoupled block
(IVDB) and similar-token merger (STM). The first two of
them are derived from the ViT structure. Patch embedding
is consist of splitting images into patches, linearly map-
ping them and adding position embeddings. The foundation

structure of ViT is actually assembled by all the intra-view-
decoupled transformer blocks.

IVDBs (elaborated in Section 3.1.1), which construct the
relationships between various views, are periodically in-
serted into the ViT backbone. Thus, it is feasible to alternate
intra- and inter-view-dimension encoding. Comparing to
the approaches that separate the two encoding modes, which
extract features from each view and then fuse them, our
method mines richer correlations between different views.
Comparing to the approaches that couple these two dimen-
sions, our method is equivalent to providing prior knowl-
edge to reduce the complexity of representation learning.

STM (elaborated in Section 3.1.2), at the end of the ex-
tractor, downsamples the feature obtained from all branches
into a compact representation. Note that STM is utilized
to compress the feature, as opposed to being employed
for aggregating like the merger blocks in previous works
[5, 23, 39]. Because the connection between various views
has been created by IVDBs and the transformer-based de-
coder can handle sequences with variable lengths, it is not
necessary to set a specific fusion function. STM is designed
for enabling the extractor to provide fixed-size features for
reconstruction when receiving varying numbers of views,
ensuring relatively stable performance.

The process of feature extraction is shown in Figure 2.
The patched view images are alternately decoupled encod-
ing by the transformer blocks and IVDBs and then com-
pressed into a compact representation using STM.

3.1.1 Inter-View-Decoupled Block

Since the unstructured images have no prior positional cor-
respondence, we consider building a substitute property be-

3



Related
Feature

𝑟!

Anchor 𝑥!

𝑦!"

𝑦!#

𝑦!$

𝑦!%Si
m

ila
r T

ok
en

s 𝑒!"

𝑒!#

𝑒!$

𝑒!%

Ed
ge

 F
ea

tu
re

s

fusion

O
ffs

et
  𝑜
!

⊕

An
ch

or
  𝑥
!"

𝒆𝒊𝟒𝒙𝒊

𝒚𝒊𝟏

𝒚𝒊𝟐

𝒚𝒊𝟒
𝒚𝒊𝟑

𝒆𝒊𝟑

𝒆𝒊𝟏
𝒆𝒊𝟐

𝒙𝒊"𝒐𝒊

Generalized Laplace Operator

Figure 3. Visual illustration of the token rectification used in
IVDB.

tween different views. In fact, a token represents a partic-
ular region of the object and similar tokens correspond to
related regions. Thus, we hold that the relationship created
by similar tokens can be used as the auxiliary condition for
bridging views. We adopt an inter-view KNN layer, which
takes each token as an anchor xi and matches it with the
nearest k tokens yi from each other view in Euclidean space.

To exploit the above relationships, we propose token rec-
tification for mining the inter-view correlation, illustrated in
Figure 3. The tokens are treated as point cloud in a high-
dimensional manifold space. Among them, the neighboring
points, which are regarded as the similar tokens, support the
anchor modified to a more accurate representation.

Firstly, a Generalized Laplace Operator extracts the re-
lated feature ri of the anchor xi. This operator embeds
the edge features based on the related positional relation-
ship between anchor and its similar tokens in feature space
and aggregates them through an attention-based fusion [39].
The definition is as follows:

eij = MLPedge (yij − xi) , (2)

ri = Fusion
(
ei1, ei2, . . . , ei(k(n−1))

)
, (3)

where MLPedge is a MLP (multilayer perceptron) with
non-linear activation function and Fusion indicates the
attention-based fusion approach. Then, the related feature
help to rectify the anchor by predicting the feature offset
oi. Compared with mapping directly to update the anchor,
adding offset better preserves the advantages of ViT initial-
ization pre-trained on large-scale datasets due to keeping the
token in the original feature space. We propose two strate-
gies for predicting offsets:

oi = MLPos (xi, ri) , (4)

oi = MLPow (xi, ri)× xi, (5)

where MLPos is an MLP layer to predict the offset directly,
while MLPow is an MLP with a tanh function to predict the
offset weight. Finally, the rectified anchor token is produced
by a straightforward addition operation:

x′
i = xi + oi. (6)
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Figure 4. Visual illustration of the down-sampling transformer
block used in STM.

3.1.2 Similar-Token Merger

The previous network fetches a large number of tokens from
views. Several of these tokens contain relatively close infor-
mation that may cause information redundancy, especially
when facing extremely high input amounts. Moreover, the
view images are composed of both foreground and back-
ground while only the foreground information supports re-
construction. As a result, we propose the feature compres-
sion method that maximizes diversity while minimizing ir-
relevant information for the preserved feature.

Inspired by [42], we establish the similarity relationship
of tokens again. The tokens are divided into g groups by
the DPC-KNN clustering [7] and then fed into the down-
sampling transformer block (illustrated in Figure 4). We
fuse the features from each group to obtain an aggregated
token set using the attention-based fusion method same
as Fusion in Equation 3. The set is entered into multi-
head attention (MHA) as Q to extract information from
the ungrouped tokens which provide K and V . In con-
trast to the general MHA, we introduce the extra weights
W , which reuse the importance score predicted by the ad-
ditional branch in the attention-based fusion process, to en-
sure that tokens with different importance have different ef-
fects on the result. This MHA is following [42] and defined
as:

Attention(Q,K, V,W ) = softmax

(
QKT

√
dk

+W

)
V,

(7)
where dk is the dimensions of Q, K and V . At the end
of STM, the down-sampled feature is further processed by
a transformer block into the ultimate feature representation
extracted from the multiple image views.

It is a great promotion for the compactness of the com-
pressed representation that similar features are stored in one
token or a few tokens. In this way, the background tokens
with typically limited details are easy to be clustered into
the same group with the nearby certain range tokens and
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Methods 1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views

C
N

N
-B
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ed

3D-R2N2 [5] 0.560 / 0.351 0.603 / 0.368 0.617 / 0.372 0.625 / 0.378 0.634 / 0.382 0.635 / 0.383 0.636 / 0.382 0.636 / 0.382 0.636 / 0.383

AttSets [39] 0.642 / 0.395 0.662 / 0.418 0.670 / 0.426 0.675 / 0.430 0.677 / 0.432 0.685 / 0.444 0.688 / 0.445 0.692 / 0.447 0.693 / 0.448

Pix2Vox++ [35] 0.670 / 0.436 0.695 / 0.452 0.704 / 0.455 0.708 / 0.457 0.711 / 0.458 0.715 / 0.459 0.717 / 0.460 0.718 / 0.461 0.719 / 0.462

GARNet [46] 0.673 / 0.418 0.705 / 0.455 0.716 / 0.468 0.722 / 0.475 0.726 / 0.479 0.731 / 0.486 0.734 / 0.489 0.736 / 0.491 0.737 / 0.492

GARNet+ 0.655 / 0.399 0.696 / 0.446 0.712 / 0.465 0.719 / 0.475 0.725 / 0.481 0.733 / 0.491 0.737 / 0.498 0.740 / 0.501 0.742 / 0.504

Tr
an

sf
or

m
er

-B
as

ed

EVolT [30] - / - - / - - / - 0.609 / 0.358 - / - 0.698 / 0.448 0.720 / 0.475 0.729 / 0.486 0.735 / 0.492

Legoformer [38] 0.519 / 0.282 0.644 / 0.392 0.679 / 0.428 0.694 / 0.444 0.703 / 0.453 0.713 / 0.464 0.717 / 0.470 0.719 / 0.472 0.721 / 0.472

3D-C2FT [27] 0.629 / 0.371 0.678 / 0.424 0.695 / 0.443 0.702 / 0.452 0.702 / 0.458 0.716 / 0.468 0.720 / 0.475 0.723 / 0.477 0.724 / 0.479

3D-RETR (3 views) 0.674 / - 0.707 / - 0.716 / - 0.720 / - 0.723 / - 0.727 / - 0.729 / - 0.730 / - 0.731 / -

3D-RETR † [21] 0.680 / - 0.701 / - 0.716 / - 0.725 / - 0.736 / - 0.739 / - 0.747 / - 0.755 / - 0.757 / -

UMIFormer 0.6802 / 0.4281 0.7384 / 0.4919 0.7518 / 0.5067 0.7573 / 0.5127 0.7612 / 0.5168 0.7661 / 0.5213 0.7682 / 0.5232 0.7696 / 0.5245 0.7702 / 0.5251

UMIFormer+ 0.5672 / 0.3177 0.7115 / 0.4568 0.7447 / 0.4947 0.7588 / 0.5104 0.7681 / 0.5216 0.7790 / 0.5348 0.7843 / 0.5415 0.7873 / 0.5451 0.7886 / 0.5466

Table 1. Evaluation and comparison of the performance on ShapeNet using IoU ↑ / F-Score@1% ↑. The best results are highlighted in
bold. † The results in this row are derived from models that train individually for the various number of input views.

then are compressed to a small number of tokens after merg-
ing, thereby alleviating the information redundancy.

3.2. Shape Reconstruction

We employ a decoder composed of a transformer stage
and a CNN stage for shape reconstruction, which shares
the same structure as [21]. The transformer stage contains
8 transformer decoder blocks while excluding any upsam-
pling layers. A feature map with a size of 64× 768 is gen-
erated. After reshaping to 43×768, it entered into the CNN
stage and upsample to 323 voxel gradually.

3.3. Loss Function

The task to reconstruct the shape of an object can be seen
as a voxel-level segmentation for occupied or empty. Con-
sequently, the loss function is defined as Dice loss [18] be-
tween predicting volume and the ground truth (GT). The
previous work [21] indicates that it is suitable for 3D re-
construction, the problem with an extremely unbalanced
amount of samples between categories. Mathematically,
this loss function is defined as:

L = 1−
∑323

i=1 pigti∑323

i=1 pi + gti
−

∑323

i=1 (1− pi) (1− gti)∑323

i=1 2− pi − gti
(8)

where p and gt indicate the confidence of the grids on the
reconstructed volume and GT.

4. Experiments
4.1. Datasets and Implementation Details

Following [5], our experiments are primarily carried out
on a subset of ShapeNet [4] to evaluate the ability of multi-
view 3D reconstruction. The subset includes 13 categories
and 43,783 objects with a 3D representation and rendered
images from 24 random poses. Moreover, single-view re-
construction experiments on the chair category from Pix3D

[25] dataset including 2,894 data with untruncated and un-
occluded view image are supplemented to verify that our
model is capable of handling real-world data. The recon-
struction results are measured using both 3D Intersection
over Union (IoU) and F-Score@1% [26, 35]. The evalua-
tion strictly follows the metric used in the related advanced
research works to ensure the comparison fairly and reliably.

We adopt the pre-training model of DeiT-B [28], a vari-
ant of ViT, to initialize the intra-view-decoupled trans-
former blocks in our model. To facilitate visualization and
analysis, the cls token and distillation token are removed.
The model contains 12 transformer blocks and we insert
the IVDB with k = 5 after every third block. For STM,
kdpc in DPC-KNN clustering and g are defined as 15 and
196. For multi-view 3d reconstruction, we eventually pro-
vide two models with the same structure called UMIFormer
and UMIFormer+, whose input view numbers are respec-
tively fixed to 3 and 8 during training. The models are
trained by an AdamW optimizer [16] with β1 = 0.9 and
β2 = 0.999 with a batch size of 32 for 150 epochs. The
learning rate is defined as 1e-4 and decreases by 0.1 after
50 and 120 epochs sequentially. UMIFormer is trained on
2 Tesla V100 for 2 days and UMIFormer+ is trained on 8
Tesla V100 for 2.5 days. The fixed threshold for binariz-
ing the probabilities is set to 0.5 for UMIFormer and 0.4 for
UMIFormer+.

4.2. Multi-view 3D Reconstruction Results

The performance qualification results of methods are
shown in Table 1. Undoubtedly, UMIFormer has a sig-
nificant advantage over the previous methods in almost all
metrics. It outperforms current SOTA methods by a large
margin. Even training 3D-RETR models separately for dif-
ferent input view numbers (the row marked in gray) trails
our model by a big gap. Furthermore, UMIFormer+ boasts
a more powerful capability for multi-view reconstruction.
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Figure 5. Multi-view reconstruction results on the test set of ShapeNet when facing 5 views, 10 views, 15 views and 20 views as input.
Our method is compared with 3D-R2N2 [5], AttSets [39], Pix2Vox++ [35], LegoFormer [38], 3D-RETR [21] and GARNet [46].

IVDB Fusion 3 views 5 views 8 views 12 views 16 views 20 views

% PBM 0.7325 0.7406 0.7447 0.7472 0.7487 0.7493

% ABM 0.7394 0.7479 0.7522 0.7545 0.7560 0.7566

% STM 0.7477 0.7557 0.7587 0.7598 0.7606 0.7606

! PBM 0.7372 0.7453 0.7488 0.7514 0.7530 0.7536

! ABM 0.7412 0.7503 0.7548 0.7574 0.7588 0.7593

! STM 0.7518 0.7612 0.7661 0.7682 0.7696 0.7702

Table 2. The ablation experiments on ShapeNet evaluated by IoU
about IVDB and STM. Among them, STM is compared with two
mainstream fusion methods: pooling-based merger (PBM) and
attention-based merger (ABM).

Whereas, it has a somewhat limited capacity for single-view
reconstruction.

Figure 5 shows two examples of the reconstruction re-
sults when facing various view amounts as inputs. Com-
pared with the other methods, our two models produce more
accurate results for rifle reconstruction. In addition, the tex-
ture on predicted volumes is adjusted slightly and optimized
gradually with increasing view inputs. It not only demon-
strates the effectiveness of our algorithm but also verifies
that our model can continue to mine information from the
increasing input. For lamp reconstruction, our models, es-

pecially UMIFormer+, realize a relatively complete repre-
sentation for the intermediate bracket, which is difficult for
the other methods. Certainly, it also demonstrates the strong
learning ability of our feature extractor for details.

4.3. Ablation Experiments

Ablation analysis on IVDB and STM is based on exper-
imental results as shown in Table 2.

Effect of IVDB. We observe that employing IVDB can
consistently improve the reconstruction performance for
various amounts of view inputs. Table 3 presents experi-
mental results related to several rectification strategies (dis-
cussed in Section 3.1.1) used in IVDB. Token rectification
by mapping directly performs terribly. It maps tokens to
a new feature space that does not match the prior knowl-
edge of the backbone network learned during pre-training.
As a result, the benefits of pre-training are significantly dis-
rupted. However, the other two strategies adjust tokens on
their original feature space to avoid the problem and achieve
the expected performance. Among them, predicting offset
works better for the case of few input views and predicting
offset weight is suitable for processing a large number of in-
put views. In this paper, we adopt predicting offset weight
as the default setting.

6



Rectification
Strategy 3 views 5 views 8 views 12 views 16 views 20 views

FC Mapping 0.6935 0.7022 0.7049 0.7038 0.7028 0.7022

Offset 0.7546 0.7632 0.7672 0.7688 0.7695 0.7694

Offset Weight 0.7518 0.7612 0.7661 0.7682 0.7696 0.7702

Table 3. Comparison of performance on ShapeNet evaluated by
IoU when using different rectification strategies in IVDB. FC map-
ping refers to using a fully connected layer to map the concate-
nation of an anchor and its related features to the rectified token
directly. Offset and offset weight respectively correspond to the
strategies defined in Equation 4 and 5.

IoU ↑
Pix2Vox++ [35] 3D-RETR [21] GARNet [46] UMIFormer

0.279 0.297 0.291 0.300
F-Score@1% ↑

Pix2Vox++ 3D-RETR GARNet UMIFormer
0.113 0.125 0.116 0.129

Table 4. Evaluation and comparison of the performance for single-
view reconstruction on Pix3D.

Effect of STM. All three types of merger — pooling-
based merger [23], attention-based merger [39] and our pro-
posed STM — compress features from all branches to a
fixed size of 196× 768 in our network. Notably, the model
using STM can achieve better reconstruction performance.
It verifies that STM preserves richer information than other
compression methods.

Furthermore, experimental results indicate that using
IVDB and STM together performs much better than using
them alone.

4.4. Evaluation on Real-World Dataset

Pix3D dataset [25] is usually used as the testing set for
evaluating the performance of single-view reconstruction.
Most of the view images in it are real-world images with
complex backgrounds. Therefore, we attempt to validate
the effectiveness of UMIFormer on this dataset to verify that
it works on various domains of image. Following previous
works, the training set uses the data from the chair cate-
gory in ShapeNet and the view images are re-synthesized
by Render for CNN [24] with random backgrounds from
the SUN database [33]. Among them, each object includes
60 view images.

IVDB is not used in this experiment because it is irrel-
evant for single-view input. In addition, g in STM is de-
fined as 32. Table 4 shows the performance qualification
results of UMIFormer and other SOTA methods which can
be used for both single-view reconstruction and multi-view
reconstruction. In comparison, our model slightly outper-
forms them. Figure 6 shows that our method performs bet-
ter on the restoration of texture, particularly for the thin strip
shapes.

Pix2Vox++ 3D-RETR GARNet GTUMIFormerInput

Figure 6. Single-view reconstruction results on real-world data
(Pix3D test set).

Anchor IVDB 1 IVDB 2 IVDB 3 IVDB 4

Figure 7. Visualization of several anchors (marked with red
frames) and their similar tokens (marked with green frames) paired
by inter-view KNN in IVDBs during multi-view reconstruction
processing.

4.5. Visualization of Similar Tokens

In our algorithm, mining the correlations between sim-
ilar tokens is involved several times. To further investi-
gate the behavior of our algorithm, we attempt to visualize
the pertinent procedures. Taking the UMIFormer dealing
with 2 view inputs from ShapeNet as an example, Figure 7
shows the results that an anchor (marked with a red frame)
finds its similar tokens (marked with green frames) from an-
other view image through the inter-view KNN layers in the
4 IVDBs. We observe that regions relating to the anchor
content are surrounded by the matched tokens. Therefore,
there is indeed a semantic relationship between them, which
can be used as the position correspondence for decoupling.

Figure 8 shows some examples of token grouping by
the clustering layer in STM. As anticipated, the patches
corresponding to the foreground regions are divided finely,
whereas the background patches are only assigned to a few
groups. Nevertheless, cluster maps do not clearly distin-
guish subject edges since the features for clustering have
been highly abstracted by the previous layers. It does not
affect STM to maximize diversity while minimizing irrele-
vant information at the feature level.
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Encoder 1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views
Independent Branches 0.6923 0.7292 0.7394 0.7445 0.7479 0.7522 0.7545 0.7560 0.7566

Video
Transformer

Joint Attention [43] 0.6771 0.7112 0.7201 0.7241 0.7264 0.7275 0.7269 0.7261 0.7252
Factorised Transformer Block [14] 0.6809 0.7179 0.7288 0.7337 0.7365 0.7403 0.7424 0.7437 0.7441

Factorised Attention [2] 0.6918 0.7287 0.7400 0.7451 0.7485 0.7528 0.7552 0.7566 0.7572
Factorised Dot-Product [1] 0.6684 0.7139 0.7275 0.7331 0.7373 0.7423 0.7445 0.7457 0.7463

Ours 0.6802 0.7384 0.7518 0.7573 0.7612 0.7661 0.7682 0.7696 0.7702

Table 5. Comparison of the reconstruction performance exploiting different decoupling strategies in feature extractor. To control the
variables, all of them are based on the structure of ViT. For more setup details refer to the supplementary material.

Figure 8. Visualization of clustering results in STM, including the
case of multi-view reconstruction on ShapeNet (left) and single-
view reconstruction on Pix3D (right).

5. Discussion
In this work, we expect to leverage ViT and decoupled

encoding strategy to establish a robust representation learn-
ing model for multiple image inputs. The effectiveness of
the model has been verified by several works [1,2,14] about
video transformer algorithms. Although both video tasks
and multi-view reconstruction are oriented to multi-image
input problems, their inter-image relationships are quite dif-
ferent. The inter-view-decoupled encoder established in
this way is theoretically not suitable for processing unstruc-
tured multiple images.

In Table 5, we compare the performance of multi-view
3D reconstruction using different feature extraction meth-
ods. Encoding for independent branches using ViT as
shown in the first row treats as the baseline. To control
the variables, the four video transformer methods are all
implemented based on ViT, which may differ from the ar-
chitecture in the original paper. Encoder with joint atten-
tion means that all tokens from various views are processed
uniformly without decoupled encoding. We observe that
the performance is significantly worse than the baseline
and the reconstruction results are worse when dealing with
more than 8 views as input. Since the positional encod-

ing for each image in a multi-view reconstruction is con-
sistent, the prior association between tokens in the atten-
tion layer is completely lost. It is very challenging to mine
the correlation solely relying on the adaptive capability of
the network. This problem becomes more serious as the
number of views increases. The other three video trans-
former approaches respectively use factorised transformer
block, factorised attention layers and factorised dot prod-
ucts in the self-attention layer to establish decoupled en-
coding. These methods increase the connection between
branches relative to the baseline while they do not conform
to the nature of unstructured multiple images. Actually,
these kinds of inter-view-decouple feature extraction meth-
ods do not simplify the multi-view reconstruction problem.
Therefore, these methods cannot achieve the desired per-
formance. Summarizing these results, we confirm that the
inter-view-decoupled strategy based on mining the correla-
tion between similar tokens is most suitable for handling
unstructured multiple images.

6. Conclusion

Limitations. 1) Our model requires large memory oc-
cupation since it is based on the parallel transformer net-
work and devoted to a 3D reconstruction task. Therefore,
it is hard to generalize to high-resolution voxel reconstruc-
tion under existing mainstream hardware devices. 2) The
computational consumption of both the inter-view KNN
layer and the DPC-KNN clustering layer grows exponen-
tially with the increasing number of input views. Therefore,
the predicting efficiency of our algorithm is not dominant
when facing an extremely high number of view inputs.

In this paper, we propose a transformer-based method for
multi-view 3D reconstruction which achieves brilliant per-
formance. The feature extractors alternate decoupled intra-
and inter-view encoding for unstructured multiple images
by mining the correlation between similar tokens. In fu-
ture work, we expect to overcome its limitation on higher-
resolution reconstruction by compressing the model and
alleviate the inference efficiency problem by accelerating
KNN and DPC-KNN clustering algorithm. Furthermore,
this encoding mode may also be extended to other issues
involving unstructured multiple images.
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Supplementary Material
1. Voxel Representation
In this paper, our method employs voxel-based 3D representation. It is not necessary to use any extra information for recon-
struction. However, methods using implicit representation require camera parameters and methods with mesh representation
need an assistive tool.

2. Evaluation Metrics
In Section 4.1, we mention that Intersection over Union (IoU) and F-Score@1% are used as the evaluation metrics to measure
the performance of methods. It is emphasized that these two metrics are commonly used and recognized in works related
to voxel-based 3D reconstruction. Their details are also kept the same as previous research works and will be elaborated as
follow:
Intersection over Union. The predicted probabilities p should be binarized according to a preset threshold and then compare
the voxel grids with the ground truth gt, which is defined as:

IoU =

∑
(i,j,k) I(p(i,j,k) > t)I(gt(i,j,k))∑

i,j,k I[I(p(i,j,k) > t) + I(gt(i,j,k))]
, (9)

where I(·) is an indicator function and the subscript (i, j, k) denotes the occupancy probability of the grid located on the
corresponding position.
F-Score@1%. [26] firstly proposes F-Score and [35] introduces it as an extra metric to 3D reconstruction task. F-Score is
defined as:

F-Score (d) =
2P(d)R(d)

P(d) + R(d)
, (10)

where P (d) and R (d) indicate the precision and recall while the distance threshold is d. The precision and recall can be
calculated as:

P(d) =
1

|R|
∑
r∈R

[ming∈G∥r− g∥ < d] , (11)

R(d) =
1

|R|
∑
r∈G

[minr∈R∥g − r∥ < d] , (12)

where R and G are respectively the point clouds of the reconstruction object and ground truth. The surface of voxel objects
is generated by the marching cubes algorithm [15]. The point clouds with 8192 points sampled from the surface are utilized
to calculate F-Score. F-Score@1% means the F-Score value when d = 1%. The above settings are completely consistent
with [35].

3. Setup Details of Experiments in Table 5
The experiments as shown in Table 5 attempt to verify that the inter-view-decoupled strategy based on mining the correlations
between similar tokens is most suitable for handling unordered multiple images in the multi-view 3D reconstruction task.
Consequently, the control groups adapt different encoding strategies and end up with attention-based fusion [39], the most
advanced aggregate approach before our work, to connect to the shape reconstruction stage. In addition, all methods are
based on ViT [6] with 12 transformer blocks to manipulate the variables. The setup details of them are as follows:

• Independent Branches. As the baseline, ViT [6] extracts the feature from view images in parallel while there is no
communication between each branch until the fusion module.

• Video Transformer with Joint Attention [43]. All tokens from various views are processed uniformly in each attention
layers without decoupled encoding.

• Video Transformer. The three methods establish intra-view-decoupled encoding utilizing ViT and insert inter-view-
decoupled encoding based on the temporally-coherence property in different ways.
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– Factorised Transformer Block [14]. The 12 transformer blocks are divided into 2 types: intra-view-decoupled
transformer blocks and inter-view-decoupled transformer blocks. The former independently processes each image.
Whereas, the latter processes on different images at the same spatial regions and the regions are defined to a size
of 7× 7 tokens without overlap. These two types of blocks are executed alternately.

– Factorised Attention [2]. An extra multi-head attention (MHA) layer initialised with zero for its all weights is
inserted between the original MHA layer and feed-forward network in each transformer block. The original MHA
layer computes self-attention on the intra-view-dimension and the inserted MHA layer does on the inter-view-
dimension.

– Factorised Dot-Product [1]. In each MHA, intra-view-decoupled attention operation and inter-view-decoupled
attention operation are factorised to compute using different heads in parallel. This method has the same number
of parameters as ViT.

• Ours. This experiment adapts the UMIFormer model.

Obviously, the inter-view-decoupled strategies used in video transformer networks do not conform to the nature of unordered
multiple images, while the strategy based on mining the correlations between similar tokens can establish a relatively reason-
able connection between views. Therefore, our proposed inter-view-decoupled strategy is more suitable for multi-view 3D
reconstruction, as demonstrated by the experiment results.

4. Number of View Input during Training
For multi-view reconstruction algorithms, the performance to process a heavy amount of input can be better by increasing the
view number during training. All SOTA methods we compared in Table 1 employ not less than 3 views as input for training.
Among them, the training view number of AttSets [39] even attain 24. Therefore, the effectiveness of UMIFormer can be
fully verified through the great multi-view reconstruction performance when only adopting 3 views during training.

5. Supplementary Experiments
5.1. 24-View Reconstruction Results

As a work on multi-view 3D reconstruction, it is necessary to pay attention to the performance when facing a large number
of view inputs. As shown in Table 6, we take 24 view inputs as an example. UMIFormer and UMIFormer+ have significant
advantages over the other SOTA methods in terms of reconstructing each category.

5.2. More Reconstruction Examples

Figure 9, Figure 10 and Figure 11 supplement more reconstruction examples on the test set of ShapeNet using various
methods, including UMIFormer, UMIFormer+ and [5, 21, 35, 38, 39, 46] when facing 5 views, 10 views, 15 views and 20
views as input.

24-view IoU 24-view F-Score@1%

Category Pix2Vox++ [35] EVolT [30] GARNet [46] GARNet+ UMIFormer UMIFormer+ Pix2Vox++ EVolT GARNet GARNet+ UMIFormer UMIFormer+

airplane 0.729 0.741 0.724 0.739 0.769 0.789 0.614 0.636 0.606 0.628 0.667 0.691

bench 0.686 0.707 0.698 0.707 0.738 0.761 0.522 0.548 0.536 0.551 0.498 0.600

cabinet 0.829 0.832 0.841 0.840 0.861 0.877 0.456 0.464 0.473 0.473 0.498 0.515

car 0.883 0.894 0.888 0.894 0.895 0.903 0.598 0.624 0.608 0.623 0.622 0.641

chair 0.647 0.681 0.674 0.683 0.713 0.735 0.341 0.373 0.369 0.384 0.399 0.419

display 0.613 0.674 0.668 0.665 0.742 0.768 0.335 0.403 0.386 0.396 0.454 0.485

lamp 0.493 0.520 0.516 0.513 0.570 0.610 0.351 0.366 0.366 0.369 0.410 0.451

speaker 0.762 0.772 0.773 0.772 0.820 0.840 0.326 0.339 0.338 0.346 0.392 0.418

rifle 0.686 0.711 0.697 0.709 0.760 0.784 0.624 0.653 0.634 0.647 0.707 0.736

sofa 0.782 0.800 0.807 0.810 0.825 0.840 0.454 0.478 0.489 0.500 0.505 0.528

table 0.666 0.675 0.693 0.692 0.726 0.744 0.419 0.431 0.449 0.452 0.467 0.481

telephone 0.849 0.867 0.871 0.879 0.887 0.904 0.666 0.687 0.698 0.716 0.709 0.736

watercraft 0.668 0.693 0.693 0.696 0.723 0.745 0.460 0.494 0.494 0.504 0.534 0.567

Overall 0.720 0.738 0.737 0.742 0.771 0.790 0.473 0.497 0.493 0.505 0.525 0.548

Table 6. Evaluation and comparison of the performance for 24-view reconstruction on the test set of ShapeNet using IoU / F-Score@1%.
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5.3. Various Decoders

In Table 7, we provide extra ablation experiments that use other decoder architectures (from EVolT [30] and LegoFormer [38])
to supplement the experiment results in Table 2. It verifies that IVDB and STM hold effective under various decoder networks.
Among them, the performance when using the decoder of EVolT is even better than our proposed model shown in the
main paper which uses the decoder of 3D-RETR [21]. However, EVolT lacks some implementation details in the public
information, hence we are worried whether our reproduction follows the original work exactly. Therefore, we do not use this
better-performance version in this paper.

IVDB Fusion
Decoder of EVolT [30] Decoder of LegoFormer [38]

3 views 5 views 8 views 12 views 16 views 20 views 3 views 5 views 8 views 12 views 16 views 20 views
% ABM 0.7399 0.7484 0.7523 0.7546 0.7561 0.7567 0.7325 0.7401 0.7443 0.7465 0.7480 0.7485
% STM 0.7504 0.7594 0.7631 0.7649 0.7655 0.7655 0.7453 0.7532 0.7581 0.7596 0.7610 0.7615
! ABM 0.7419 0.7509 0.7555 0.7577 0.7592 0.7598 0.7425 0.7512 0.7560 0.7588 0.7605 0.7609
! STM 0.7536 0.7633 0.7676 0.7699 0.7710 0.7714 0.7490 0.7589 0.7642 0.7664 0.7681 0.7682

Table 7. Supplementary ablation experiments about various decoders.

5.4. Scheme of Inserting IVDB

Our proposed UMIformer model uses multiple IVDBs. In order to prove the necessity of this scheme, Table 8 compares the
performance when using IVDB once and using it repeatedly. Obviously, using IVDB once is also effective while weaker
than using it repeatedly. It makes us realize that the number of IVDBs used is actually a tradeoff between performance and
efficiency.

Scheme 3 views 5 views 8 views 12 views 16 views 20 views

w/o IVDB 0.7477 0.7557 0.7587 0.7598 0.7606 0.7606

only IVDB once 0.7476 0.7564 0.7606 0.7624 0.7633 0.7636

IVDB repeatedly 0.7518 0.7612 0.7661 0.7682 0.7696 0.7702

Table 8. Comparison of the performance when using different schemes of inserting IVDB.

5.5. Pre-Training of ViT

In Section 4.2, we mention that inserting IVDB needs to preserve the pre-training advantages of ViT. Because the model
performance relies heavily on it. If intra-view modules are without pre-learned parameters, the performance will be extremely
poor as shown in Table 9. There is even an abnormal result that performance seriously degrades when the view increases.

Pre-training 3 views 5 views 8 views 12 views 16 views 20 views

% 0.6075 0.5903 0.5505 0.5247 0.5144 0.5082

! 0.7518 0.7612 0.7661 0.7682 0.7696 0.7702

Table 9. Comparison of the performance of whether the intra-view-decoupled transformer blocks are initialized by the pre-trained ViT.

13



3D-R2N2 AttSets Pix2Vox++ LegoFormer GARNet

5
vi
ew

s
10

vi
ew

s
15

vi
ew

s
20

vi
ew

s

GT3D-RETR UMIFormer UMIFormer+

3D-R2N2 AttSets Pix2Vox++ LegoFormer GARNet

5
vi
ew

s
10

vi
ew

s
15

vi
ew

s
20

vi
ew

s

GT3D-RETR UMIFormer UMIFormer+

3D-R2N2 AttSets Pix2Vox++ LegoFormer GARNet

5
vi
ew

s
10

vi
ew

s
15

vi
ew

s
20

vi
ew

s

GT3D-RETR UMIFormer UMIFormer+

Figure 9. Qualitative reconstruction results when facing 5 views, 10 views, 15 views and 20 views as input for telephone, chair and lamp.
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Figure 10. Qualitative reconstruction results when facing 5 views, 10 views, 15 views and 20 views as input for table, lamp and display.
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Figure 11. Qualitative reconstruction results when facing 5 views, 10 views, 15 views and 20 views as input for watercraft, airplane and
rifle.
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