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Abstract

Nowadays, transformer networks have demonstrated su-
perior performance in many computer vision tasks. In
a multi-view 3D reconstruction algorithm following this
paradigm, self-attention processing has to deal with intri-
cate image tokens including massive information when fac-
ing heavy amounts of view input. The curse of informa-
tion content leads to the extreme difficulty of model learn-
ing. To alleviate this problem, recent methods compress
the token number representing each view or discard the at-
tention operations between the tokens from different views.
Obviously, they give a negative impact on performance.
Therefore, we propose long-range grouping attention (LGA)
based on the divide-and-conquer principle. Tokens from all
views are grouped for separate attention operations. The
tokens in each group are sampled from all views and can
provide macro representation for the resided view. The
richness of feature learning is guaranteed by the diversity
among different groups. An effective and efficient encoder
can be established which connects inter-view features us-
ing LGA and extract intra-view features using the standard
self-attention layer. Moreover, a novel progressive upsam-
pling decoder is also designed for voxel generation with rel-
atively high resolution. Hinging on the above, we construct
a powerful transformer-based network, called LRGT. Ex-
perimental results on ShapeNet verify our method achieves
SOTA accuracy in multi-view reconstruction. Code will
be available at https://github.com/LiyingCV/
Long-Range-Grouping-Transformer.

1. Introduction
3D reconstruction, the problem to recover the shape of

an object according to its several view images, is an es-
sential research topic involving the field of computer vi-
sion and computer graphics. One of the main challenges
is how to extract the features from multiple images for gen-
erating the corresponding object with 3D representation. At
present, deep learning reconstructors have provided three
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kinds of solutions, including RNN-based methods [1, 2],
CNN-based methods [3, 4, 5, 6, 7, 8, 9, 10] and transformer-
based methods [11, 12, 13, 14]. In this work, we focus on
the transformer network and aim to improve the accuracy
and robustness of multi-view 3D reconstruction with voxel
representation.

Vision transformer (ViT) [15] promotes the approach to
extract features from an image employing transformer ar-
chitecture. An image is split into fixed-size patches and
then using attention operators learn the association between
them to explore an appropriate representation. If follow-
ing this paradigm to establish a multi-view 3D reconstruc-
tion algorithm, an intuitive approach like [16] is to build
attention layers to connect full-range tokens from all views,
shown in Figure 1a. However, it is extremely difficult for
the model to face heavy amounts of view input, as attention
operators have to predict the potential importance weights
of intricate tokens from views. The curse of information
content increases the complexity of model encoding. It
is necessary to provide relatively large-scale data to sup-
port adequate training, but the commonly used datasets for
multi-view reconstruction are far from satisfying such re-
quirements.

The previous works design three types of strategies to
avoid this problem. 1) Separated-stage strategy [13] indi-
vidually extract the feature from each view and then fusion
them. It is simplified in structure but weak in mining the
inter-view relationships. 2) Blended-stage strategy [11, 12]
compress the number of tokens to represent each view and
make the attention layers to learn the association between
all tokens from different views. They enhance the inter-
view correlation but lose a certain representation capability
for each view. 3) Alternated-stage strategy [14] employs de-
coupling to alternate the feature extraction from intra-view
and inter-view tokens. They discard the attention opera-
tions between the tokens from different views but insert
other modules to achieve similar purposes, which brings
extra computation. The efficiency is significantly dragged
down, especially for a large number of image inputs.

Considering these shortcomings, we hold that grouping
tokens in attention operations is a more reasonable solu-
tion. The role of full-range attention can be equivalent to
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(a) FRA

...

(b) TGA (c) SGA (d) LGA (Ours)

Figure 1: Illustration of different attention strategies for processing multi-view input. (a) Full-Range Attention (FRA); (b) Token-Range
Grouping Attention (TGA); (c) Short-Range Grouping Attention (SGA); (d) Long-Range Grouping Attention (LGA). Tokens in the same
dashed box or on the same dashed line are divided into the same group for attention operation. It means that they will build the correlations.

a combination of two attention layers. ViT can be used as
the basic architecture of encoder independent and parallel
processing on each view, while some of the original atten-
tion layers are replaced by special grouping attention oper-
ations for multi-branch. Adopting the principle of divide-
and-conquer, the tokens from different views are divided
into some groups under certain rules. The amount of tokens
processed by the attention layer is greatly reduced, thus al-
leviating the learning difficulty of the model.

For the ambiguous associations between view inputs in
the multi-view reconstruction task, it is necessary to select
a suitable grouping strategy for the special attention opera-
tion. There are some different grouping strategies in the pre-
vious research works about transformer. The token-range
grouping attention as shown in Figure 1b, which assigns
tokens with the same location from different views as a
group, ignores the auxiliary role of the intra-view token-
to-token association in building inter-view dependencies.
The short-range grouping attention as shown in Figure 1c
(e.g., [17]) increases the connectivity between local tokens
in each view. However, it is hard to construct long-distance
associations and only reinforces the sensitivity of tokens
towards local information, hence it is applicable to multi-
input problems with temporal coherence such as video.

For our task, we propose the long-range grouping atten-
tion (LGA) as shown in Figure 1d. The tokens from the
same view in each group can provide a certain macro repre-
sentation for their view but are not limited to local features.
To further enhance differences between the tokens from dif-
ferent views, we also introduce the inter-view feature signa-
tures (IFS) to assist the attention processing. In addition,
we propose a novel progressive upsampling decoder that
integrates the transposed convolution into the transformer
block. It fully exploits the self-attention to mine features in
the relatively high-resolution voxel space.

The contributions can be summarized as follows:

• We propose the long-range grouping attention which
can simply and efficiently establish the correlations be-
tween different images. A novel encoder for handling
multi-view input is formed by integrating this attention
operator into a standard transformer architecture.

• We overcome the difficulty of transformer block work-
ing on the relatively high-resolution voxel directly to
propose a progressive upsampling decoder that can
strengthen the reconstruction ability.

• Experimental results on ShapeNet [18] demonstrate
that our method outperforms other SOTA methods in
multi-view reconstruction. Additional experiment re-
sults on Pix3D [19] also verify its effectiveness on real-
world data.

2. Related Works
2.1. Multi-View 3D Reconstruction

Traditional methods such as SfM [20] and SLAM [21]
reconstruct scenes by matching features and estimating
camera pose. However, they struggle to handle images in
complex situations. Recently, deep learning-based methods
have gained significant attention in multi-view 3D recon-
struction.

In RNN-based and CNN-based methods, the encoder
and fusion modules are separated. 3D-R2N2 [1] and
LSM [2] use RNN to fuse multi-view features. How-
ever, RNNs are permutation-invariant and time-consuming.
3DensiNet [4] aggregates multi-view features using max-
pooling, but this approach cannot establish a learnable view
connection. Attsets [9], Pix2Vox [7, 8], and GARNet [10]
employ attention layer to capture inter-view correlations.
Although these methods have achieved promising results,
they are weak for mining the inter-view relationships be-
cause the relevant structure is too simple.
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(d) HR Basic Unit

Figure 2: Illustration of our proposed LRGT and its details. Among them, the IFS module only includes a convolutional layer.

In transformer-based methods, EVolT [11] and Lego-
Former [12] compress the number of tokens to represent
each view using CNN-backbone network, in order to inte-
grate feature extraction and view feature fusion into a sin-
gle transformer network. However, they lose a certain rep-
resentation capability for each view. On the other hand,
3D-RETR [13] handles each view employing the trans-
former network independently and fuses the features using
the pooling method. In fact, it is the same structure that sep-
arates encoder and fusion as aforementioned, which ignores
multi-view associations. UMIFormer [14] adopts decou-
pled intra- and inter-view feature extraction to strengthen
the correlation between views, whereas it introduces addi-
tional modules to estimate inter-view relationships.

Different from the above methods that focus on solving
multi-view fusion problems, the optimization-based meth-
ods, such as BARF [22], NeRS [23], and FvOR [24], jointly
optimize 3D shape and camera pose estimation. They have
good performance but sacrifice efficiency.

2.2. Group Self-Attention

[25] proposes a transformer network and makes suc-
cess in natural language processing. In order to migrate
this method to process images, [26] divides the 2D atten-
tion into two groups based on the height and width dimen-

sions. [27] employs both long-range and short-range meth-
ods to construct multiple feature groups from a single im-
age. Recently, ViT [15] which processes an image by split-
ting it into patches has demonstrated superior performance
in many vision tasks. STTN [16] introduces ViT into video
inpainting and serves as a pioneering attempt to apply the
transformer architecture to address a problem with multi-
view inputs. It utilizes full-range attention for all tokens in
the spatial-temporal dimension. To mitigate the difficulty to
process massive information, DSTT [17] employs the short-
range grouping attention. It allows the model to capture the
local features while paying less attention to the non-local
relationships. Therefore, this grouping strategy is suitable
for addressing the problem with multi-input with temporal
coherence such as video. However, for our task with am-
biguous associations between views, it requires a method to
establish long-distance dependency relationships.

3. Methods

The overall framework of our proposed method is il-
lustrated in Figure 2a. The view image set of an object
I = {I1, I2, . . . , IN} is processed by the encoder E to
extract the feature representation for reconstruction. Then
the decoder D generates the corresponding voxel-based 3D
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shape O. The overall process is formulated as:

O = LRGT(I) = D(E(I)). (1)

3.1. Encoder

The encoder is based on the architecture of ViT [15] and
is divided into two stages: an independent branch stage
and an interleaving branch stage. The first stage consists
of N1 standard transformer blocks. The second stage in-
cluding N2 basic unit alternately handles intra-view tokens
and inter-view tokens separately. The former still employs
standard transformer blocks to parallelize all views, while
the latter utilizes transformer blocks with the long-range
grouping attention (LGA) to establish communication be-
tween views and inter-view feature signatures (IFS) to help
distinguish the feature of different views as shown in Fig-
ure 2b. At last, we introduce the similar-token merger [14]
to compress the tokens from all branches to the specified
size.

Long-Range Grouping Attention. This is a special at-
tention layer for establishing the correlations between dif-
ferent views. Given specific i-th view feature Xi ∈ RP×De ,
where P is the number of tokens and De is the token di-
mension. We perform uniform and regular sampling based
on the length and width of Xi to obtain g groups. It is note-
worthy that tokens in each group are not adjacent to each
other in terms of the original view features. Rewrite Xi

as Xi = {xi
1, . . . , x

i
j}, i = 1, . . . , N , where xi

j represents
the tokens from j-th group i-th view, and N represents the
amount of input view. As shown in Figure 1d, the tokens
sharing the same color belong to a group, which implies
that each group not only includes intra-view tokens but also
contains the inter-view tokens from their corresponding po-
sitions. After grouping, self-attention operations process
the tokens in each group independently. Essentially, this
method utilizes the principle of divide-and-conquer to re-
duce the difficulty of model training. The attention oper-
ations for all groups are predication about the relationship
of views, but there are certain differences between them.
Feature diversity is beneficial for building high-quality rep-
resentations.

Inter-View Feature Signatures. The multi-view recon-
struction task is invariant to permutations, hence the posi-
tional encoding we set is the same for all views. It may
cause the LGA to neglect the relationship whether some
tokens are from the different view. Inspire by [28], we
introduce a simple structure that only includes a convo-
lutional layer as IFS to enhance differences between to-
kens from various views. Given series tokens xi

j from j-th
group i-th view, we obtain the token features by a train-
able linear projection ϕ. The ϕ shares the linear projection
which is used to predict Vj in this transformer block, where
ϕ(xi

j) ∈ R
P
g ×De , and g, P , De represent the number of

groups, the number of tokens and token dimension. The
feature signatures f i

j from j group i view is obtained as fol-
low:

f i
j = IFS(ϕ(xi

j)), (2)

Furthermore, we define inter-view feature signatures Fj =
{f1

j , . . . , f
N
j }, j = 1, . . . , g, where N represent the number

of views. Formally, for each view features xi
j from Xi, the

LGA with IFS becomes:

Attn(Qj ,Kj ,Vj) = Softmax(
QjK

T
j√

d
)Vj + Fj , (3)

Where Qj ,Kj ,Vj represent queries, keys, values from
Xj = {x1

j , . . . , x
N
j } respectively, and d is the channel num-

ber of the queries. The attention maps obtained from in-
dividual groups in the group dimension are concatenated,
thereby completing an inter-view association computation.

3.2. Decoder

In our investigation, the previous transformer-based de-
coders for voxel reconstruction employ transformer blocks
to generate a low-resolution (LR) feature representation
(e.g., 43) and then upsample to the target size in hasty steps.
Because the relatively high-resolution (HR) tensor corre-
sponds to a large number of tokens which is unbearable for
attention operations. However, it is difficult to reconstruct
details through a rapid upsampling approach on the last few
layers of the model. To overcome the limitations, we design
a progressive upsampling transformer-based decoder.

Our proposed decoder upsamples the feature map of size
43 extracted by the encoder to 323 gradually through 4 ba-
sic units. Each basic unit includes 1 deconvolution layer
and 2 transformer blocks. Convolution and multi-head self-
attention and processing are complementary [29]. Decon-
volution is better at encoding local information and sup-
ports upsampling with relatively low consumption, while
the transformer has excellent global representation capabil-
ities. Therefore, we hold that combining the advantages of
both can build a powerful model.

The structure of a basic unit can easily handle LR feature
inputs in the way shown in Figure 2c. However, as afore-
mentioned, the transformer block cannot normally deal with
a large number of tokens brought by HR features. To this
end, we modify it to be an HR basic unit as shown in Fig-
ure 2d.

In the HR basic unit, the adjacent voxels are uniformly
grouped and sequentially combined to compress the num-
ber of tokens. Given voxel features V = {v1, . . . , vt},
V ∈ RT×Dr , where vt is t-th voxel token, T,Dr repre-
sent the number of token numbers and token dimension,
respectively. In the resolution of S × S × S, we define
T = S × S × S. Grouping every I × I × I adjacent voxel
token together, we obtain the voxel features V ∈ RT ′×Dr

′
,
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where T ′ = S
I × S

I × S
I , Dr

′ = I3 ×Dr. As a result, voxel
features V are grouped into sizes that can be processed by
self-attention while preserving the original feature informa-
tion in a relatively high resolution (e.g., 163 and 323). In the
end, we take voxel features V as input and apply multi-head
self-attention to explore voxel location relationships.

It is worth noting that the attention layer under such a
method loses certain concern about the relevance of voxels
assigned to the same token. We consider that the convolu-
tion layers in the network which focus on the local feature
can be used to supplement the lack, so we add a skip con-
nection to combine the features represented by the decon-
volution and transformer layer.

3.3. Loss function

Following [13], we use Dice loss [30] as the loss function
which it is suitable for high unbalanced voxel occupancy.
The Dice loss could be formulated as:

L = 1−
∑323

i=1 pigi∑323

i=1 pi + gi
−

∑323

i=1 (1− pi) (1− gi)∑323

i=1 2− pi − gi
. (4)

where pi and gi represent the confidence of i-th voxel grid
on the reconstructed volume and ground truth.

4. Experiments
4.1. Datasets

The experiments are performed on ShapeNet
dataset [18]. Following [1], we utilize a subset of
ShapeNet consisting of 13 categories and 43,783 3D
objects for a fair comparison. Additionally, we evaluate
our model on real-world data from the Pix3D dataset [19],
which includes 2,894 untruncated and unoccluded chair
images following [7, 8].

4.2. Metrics

Following the same evaluation methods as the current
advance works, we measure the reconstruction quality of
our models using the mean Intersection-over-Union (IoU)
and F-score@1% [8]. Higher IoU and F-score@1% values
indicate better performance.

IoU: The mean Intersection-over-Union (IoU) is formu-
lated as:

IoU =

∑
(i,j,k) I(p̂(i, j, k) > t)I(p(i, j, k))∑

(i,j,k) I[I(p̂(i, j, k) > t) + I(p(i, j, k))]
, (5)

where p̂(i, j, k) and p(i, j, k) represent the predicted occu-
pancy probability and ground truth at (i, j, k). I(·) is an
indicator function and t denotes a voxelization threshold.

F-Score@1%: Following the same setting as [8], we take
F-Score [31] as an extra metric to evaluate the performance

of 3D reconstruction results, which can be formulated as

F-Score(d) =
2P(d)R(d)

P(d) + R(d)
, (6)

where P(d) and R(d) denote the precision and recall for
a distance threshold between prediction and ground truth.
More formally,

P(d) =
1

nR

∑
r∈R

[ming∈G ||r − g|| < d], (7)

R(d) =
1

nR

∑
r∈G

[minr∈R||g − r|| < d], (8)

where [·] is the iverson bracket. R and G denote the recon-
structed and ground truth point clouds, respectively. nR and
nG are the numbers of points in R and G. For voxel repre-
sentation, we generate the object surface by the marching
cubes algorithm [32]. Then 8,192 points are sampled from
the object surface to compute F-Score between prediction
and ground truth. F-Score@1% indicates the F-Score value
when d is set to 1%.

4.3. Implementation Details

We utilize the pre-training model of DeiT-B [33] to ini-
tialize our encoder and the cls token and distillation token
are removed. Our encoder consists of 12 transformer blocks
where N1 = 6 and N2 = 3. In LGA Transformer blocks,
the g is defined as 49 in LGA. For our decoder, the I is 2
and 4 in the first and second HR basic unit, respectively. To
validate the reconstruction performance of the model, we
provide two models with the same structure namely LRGT
and LRGT+ which use 3 and 8 views as input during train-
ing following [10, 14]. During inference, the models can
adapt to an arbitrary number of image inputs. In detail, fol-
lowing [8], we use 224× 224 RGB images as input and set
the voxelized output to 32×32×32. LRGT and LRGT+ are
trained by an AdamW optimizer [34] with a β1 of 0.9 and
a β2 of 0.999. The training batch size is 32 for 110 epochs.
The learning rate is set to 0.0001 and sequentially decayed
by 0.1 after 60 and 90 epochs. We use a threshold of 0.5 for
LRGT and 0.4 for LRGT+ to obtain the occupancy voxel
grid. Notably, the experiments in Section 4.5 and 4.6 take
3-view-input during training as an instance.

4.4. Multi-view 3D Object Reconstruction

Quantitative results. We compare LRGT and LRGT+
with the SOTA methods [1, 9, 8, 11, 12, 13, 14, 10] on the
ShapeNet dataset and the results are shown in Table 1. Ob-
viously, LRGT significantly outperforms the previous meth-
ods in all evaluation metrics for both single-view and multi-
view reconstruction. LRGT+ degrades part of the perfor-
mance for single-view reconstruction while further improv-
ing the ability to process multi-view inputs.
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Methods 1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views

3D-R2N2 [1] 0.560 / 0.351 0.603 / 0.368 0.617 / 0.372 0.625 / 0.378 0.634 / 0.382 0.635 / 0.383 0.636 / 0.382 0.636 / 0.382 0.636 / 0.383

AttSets [9] 0.642 / 0.395 0.662 / 0.418 0.670 / 0.426 0.675 / 0.430 0.677 / 0.432 0.685 / 0.444 0.688 / 0.445 0.692 / 0.447 0.693 / 0.448

Pix2Vox++ [8] 0.670 / 0.436 0.695 / 0.452 0.704 / 0.455 0.708 / 0.457 0.711 / 0.458 0.715 / 0.459 0.717 / 0.460 0.718 / 0.461 0.719 / 0.462

GARNet [10] 0.673 / 0.418 0.705 / 0.455 0.716 / 0.468 0.722 / 0.475 0.726 / 0.479 0.731 / 0.486 0.734 / 0.489 0.736 / 0.491 0.737 / 0.492

GARNet+ 0.655 / 0.399 0.696 / 0.446 0.712 / 0.465 0.719 / 0.475 0.725 / 0.481 0.733 / 0.491 0.737 / 0.498 0.740 / 0.501 0.742 / 0.504

EVolT [11] - / - - / - - / - 0.609 / 0.358 - / - 0.698 / 0.448 0.720 / 0.475 0.729 / 0.486 0.735 / 0.492

Legoformer [12] 0.519 / 0.282 0.644 / 0.392 0.679 / 0.428 0.694 / 0.444 0.703 / 0.453 0.713 / 0.464 0.717 / 0.470 0.719 / 0.472 0.721 / 0.472

3D-RETR [13] (3 view) 0.674 / - 0.707 / - 0.716 / - 0.720 / - 0.723 / - 0.727 / - 0.729 / - 0.730 / - 0.731 / -

UMIFormer [14] 0.6802 / 0.4281 0.7384 / 0.4919 0.7518 / 0.5067 0.7573 / 0.5127 0.7612 / 0.5168 0.7661 / 0.5213 0.7682 / 0.5232 0.7696 / 0.5245 0.7702 / 0.5251

UMIFormer+ 0.5672 / 0.3177 0.7115 / 0.4568 0.7447 / 0.4947 0.7588 / 0.5104 0.7681 / 0.5216 0.7790 / 0.5348 0.7843 / 0.5415 0.7873 / 0.5451 0.7886 / 0.5466

LRGT (Ours) 0.6962 / 0.4461 0.7462 / 0.5005 0.7590 / 0.5148 0.7653 / 0.5214 0.7692 / 0.5257 0.7744 / 0.5311 0.7766 / 0.5337 0.7781 / 0.5347 0.7786 / 0.5353

LRGT+ (Ours) 0.5847 / 0.3378 0.7145 / 0.4618 0.7476 / 0.4989 0.7625 / 0.5161 0.7719 / 0.5271 0.7833 / 0.5403 0.7888 / 0.5467 0.7912 / 0.5497 0.7922 / 0.5510

Table 1: Evaluations of multi-view 3D reconstruction results on ShapeNet using IoU / F-score@1%. The best score is highlighted in bold.
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Figure 3: Multi-view reconstruction results on the test set of ShapeNet when facing 5 views, 10 views, 15 views and 20 views as input.

Qualitative results. Figure 3 shows two sets of re-
construction examples using different methods according
to varying numbers of input views on the test set of the
ShapeNet dataset. LRGT and LRGT+ outperform the other
methods in restoring the overall shape and fine-grained de-
tails of the object. Compared with other methods, our model
captures more accurate contours of the airplane and restores
the chair details better especially the backrest.

4.5. Grouping Attention Strategy

Figure 4 shows the reconstruction quantitative results
for the methods using different grouping strategies. The
baseline method indicates the model that extracts the fea-
ture from views independently while without any inter-view
communications. The other control methods are obtained
by replacing LGA in our proposed LRGT with the speci-
fied attention layer. Note that, the full-range attention here
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Figure 4: Comparison of the performance between different
grouping strategies when facing various numbers of input views.
To control the variables, all experiments employ the same decoder
as LRGT and uniformly do not use IFS in the encoder. These ex-
periments are based on ShapeNet and the evaluation metric is IoU.

is not used on all transformer blocks, so its performance is
in a normal state. Actually, we find in extra experiments
that the performance of the model which uses full-range at-
tention in every transformer block is terrible and far worse
than the models shown in this figure. It is consistent with
our previous analysis. In addition, random-range grouping
attention is a special experiment that groups the tokens ran-
domly and evenly.

The model with full-range attention exhibits superior
overall performance relative to the baseline. It verifies that
establishing inter-view associations is indeed conducive to
feature representation. However, the performance of the
method using full-range attention tends to be saturated or
even degraded as the number of input views gradually in-
creases (especially on 16-20 views). Too many tokens from
views bring great inference difficulty to the attention oper-
ation. The method with token-range grouping attention is
even worse than the baseline because the tokens that estab-
lish the association between views are weak in representing
the views they located.

The remaining three grouping attention methods have
achieved relatively good performance, and these attention
layers can save about 98% of the computational complexity
compared to the full-range attention layer when facing 20-
view input. The method using short-range grouping atten-
tion focuses on the local information change between differ-
ent views. It is difficult to construct non-local correlations
between intra-view tokens. Therefore, the multi-view in-
put without temporal coherence in our task is not suitably
handled by this method. The random-range grouping atten-
tion has the potential to represent the macro feature of each
view in the groups, however, it is not stable enough due to
random. Only long-range grouping attention can provide

LGA IFS 3 view 5 views 8 views 12 views 16 views 20 views
% % 0.7539 0.7622 0.7663 0.7678 0.7681 0.7682
! % 0.7552 0.7654 0.7699 0.7723 0.7735 0.7742
! ! 0.7590 0.7692 0.7744 0.7766 0.7781 0.7786

Table 2: Ablation experiments on the effect of long-range group-
ing attention (LGA) and inter-view feature signatures (IFS). The
purpose of IFS is to assist LGA, thereby LGA is preserved in
ablation experiments about IFS. The experiments are based on
ShapeNet and the evaluation metrics is IoU.

reliable macro information in the group of attention opera-
tion relatively stably. As a result, the method using long-
range grouping attention consistently exhibits superior per-
formance compared to other grouping types whatever the
number of view inputs. Even for a large number of view
inputs (e.g., 18 to 20 views), it still demonstrates a more
substantial performance improvement than other grouping
types. Therefore, we consider that the long-range grouping
attention is more appropriate for our task.

4.6. Ablation Study

4.6.1 Encoder

The results of the ablation experiment on our encoder are
shown in Table 2.

Effect of LGA. To validate the effect of LGA, we re-
place it with the original multi-head self-attention that han-
dles the branches of each view independently. It leads to a
notable decline in performance, especially when the number
of input views is extensive. Specifically, the performance
decrease is more pronounced for facing 16 views (0.70%)
or 20 views (0.78%) than facing 5 views (0.42%). It shows
that LGA plays an essential role in exploring multi-view
relationships. As the number of views increases, the per-
formance improved after using LGA becomes increasingly
evident. It demonstrates that LGA is beneficial to establish-
ing communication among views.

Effect of IFS. To validate the effect of IFS, we attempt
to remove it from the encoder. As a result, there is a certain
decline in performance. Furthermore, the results reflect that
the reconstruction performance reduces more significantly
as the number of input views enlarges. The performance
drops 0.49% when facing 5 views while dropping 0.53%
when facing 20 views input. It verifies that the IFS enhances
the inter-view differences to assist with inter-view tokens
association.

Effect of Encoder Strategies. As mentioned in Sec-
tion 1, the intuitive approach to introduce the transformer
paradigm to extract features from multi-view input is to
adopt FRA. However, it is hard for the model to predict the
correlation between tokens when facing a heavy amount of
input due to the curse of information content. As shown
in Figure 5, the method with FRA performs rather terribly
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Figure 5: Comparison of the reconstruction performance between
different encoder strategies on the test set of ShapeNet evaluated
by IoU. To control the variables, the experiments utilize the same
decoder as LRGT.

Skip
Connection 3 views 5 views 8 views 12 views 16 views 20 views

% 0.7573 0.7668 0.7717 0.7735 0.7746 0.7752

! 0.7590 0.7692 0.7744 0.7766 0.7781 0.7786

Table 3: Ablation experiments on the effect of skip connection in
HR basic unit of decoder. The experiments are based on ShapeNet
dataset and the evaluation metrics is IoU.

Decoder Type 3 views 5 views 8 views 12 views 16 views 20 views
EVolT 0.7576 0.7677 0.7724 0.7744 0.7759 0.7765

LegoFormer 0.7513 0.7614 0.7664 0.7693 0.7708 0.7711
3D-RETR 0.7511 0.7608 0.7650 0.7669 0.7680 0.7681

Ours 0.7590 0.7692 0.7744 0.7766 0.7781 0.7786

Table 4: Comparison of the performance between our decoder
and others from prior works (EVolT [11], LegoFormer [12], 3D-
RETR [13]). To control the variables, all experiments employ the
same encoder as LRGT. The experiments are based on ShapeNet
and the evaluation metrics is IoU.

on multi-view reconstruction. Especially, its performance
gradually degrades when increasing the number of inputs
over 6. Methods using the separated-stage strategy and
blended-stage strategy can alleviate the problems caused by
FRA, however, our LRGT can lead to better performance.

4.6.2 Decoder

First of all, we should validate the effect of skip connection
in the HR basic units of our decoder. As shown in Table 3,
the reconstruction performance drops significantly when the
skip connection is discarded. It indicates that the advan-
tages of convolutional layers for local representations make
up for the loss caused by combining adjacent voxels in the
transformer block with the assistance of this structure.

Besides, we compare the reconstruction performance of

IoU
Pix2Vox++ 3D-RETR GARNet UMIFormer LRGT LRGT†

0.279 0.297 0.291 0.300 0.299 0.304
F-score@1%

Pix2Vox++ 3D-RETR GARNet UMIFormer LRGT LRGT†

0.113 0.125 0.116 0.129 0.127 0.130

Table 5: Comparison of single-view object reconstruction results
on Pix3D using IoU and F-score@1%. “†” means the original
transformer blocks replace the LGA transformer blocks in LRGT
and other structures are consistent with LRGT.

our decoder with the decoders proposed in prior advance
works [11, 12, 13]. As shown in Table 4, our decoder out-
performs the others for multi-view 3D reconstruction un-
doubtedly. Their methods firstly obtain a voxel feature with
the size of 43 with lots of transformer blocks and then up-
sample it to the target resolution in hasty steps using simple
structures such as several fully connected layers or convo-
lution layers. It does not take full advantage of the powerful
transformer structure to help the upsampling process which
is hard to learn. However, we employ a progressive upsam-
pling architecture which reduces the training difficulty by
breaking down the upsampling process. The transformer
blocks are distributed to each upsampling stage to achieve
better representation.

4.7. Visualization of Grouping Diversity

In Figure 6, we visualize several attention weight maps
from different groups in an LGA. Each map represents the
importance scores between the tokens in a group. In one
map, the horizontal axis represents all tokens within this
group and the weights refer to the relationship between to-
kens from the group across views. The part with higher
weight means that gains more attention. Due to the group-
ing mechanism, the corresponding tokens in various groups
have proximity positions in the image and similar seman-
tics. However, the weight distribution of the groups with
similar semantic arrangements exhibits significant diversity
in different maps. It implies that the features get connec-
tion following diverse patterns in distinct groups of LGA.
Therefore, this structure has a strong representation ability.

4.8. Evaluation on the Pix3D Dataset

It is crucial to evaluate the ability of the proposed meth-
ods to handle real-world data. Therefore, we measure our
methods on the Pix3D dataset, which provides single-view
reconstruction testing with real-world view images. In de-
tail, following [7, 8], we generate the training set using the
data from the category of Chair in ShapeNet and synthe-
size images [35] with random background from the SUN
database [36]. Each object has 60 synthesized images.

We provide two models, LRGT and LRGT†. In LRGT†,
LGA and IFS are removed and replaced by the original self-
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Figure 6: Visualization of the attention weight maps from different groups in the 1-st head of the 2-nd LGA when processing 3-view input.
There is a significant difference in the regions concerned by the attention operations between the groups, which ensures a diversity of the
overall features. The complete maps are provided in the supplementary material.

attention layer while the other structure is the same as in
LRGT. Table 5 shows the performance of LRGT, LRGT†,
and other methods [8, 13, 10, 14]. As LGA and IFS are
explicitly designed for multi-view input and Pix3D only
provides a single view of each object, the performance of
LRGT is slightly lower than LRGT†. Nevertheless, the per-
formance of LRGT is still comparable to previous methods.
LRGT† outperforms other methods, which shows the excel-
lent performance of our decoder to reconstruct real-world
data. The qualitative examples as shown in Figure 7 ver-
ify that our method outperforms the others in capturing fine
details of chairs.

Pix2Vox++ 3D-RETR GARNet GTLRGT†

Figure 7: Single-view reconstruction results on Pix3D.

5. Conclusions and Limitations
In this paper, we propose a novel transformer-based

network for multi-view 3D reconstruction which achieves
SOTA accuracy. Its encoder extracts the reliable features
from multi-view employing the LGA to establish commu-
nication between views and the IFS to enhance the feature
differences between various views. Besides, a progressive
upsampling decoder is designed for powerful voxel recon-
struction performance. In conclusion, our method has cor-
responding contributions in handling multi-view input and

generating 3D objects. Therefore, we expected that these
approaches can be introduced to other suitable application
scenarios. The major limitation of our proposed method is
that the group strategy in LGA method adheres to a fixed
pattern. Although it simplifies the problem compared to the
FRA method, the relationship between different views still
needs to rely on network learning. We expect to continue
optimizing this scheme with learnable grouping in future
work.
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