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Abstract

There is an emerging effort to combine the two popular
3D frameworks using Multi-View Stereo (MVS) and Neural
Implicit Surfaces (NIS) with a specific focus on the few-shot
/ sparse view setting. In this paper, we introduce a novel in-
tegration scheme that combines the multi-view stereo with
neural signed distance function representations, which po-
tentially overcomes the limitations of both methods. MVS
uses per-view depth estimation and cross-view fusion to
generate accurate surfaces, while NIS relies on a common
coordinate volume. Based on this strategy, we propose to
construct per-view cost frustum for finer geometry estima-
tion, and then fuse cross-view frustums and estimate the im-
plicit signed distance functions to tackle artifacts that are
due to noise and holes in the produced surface reconstruc-
tion. We further apply a cascade frustum fusion strategy
to effectively captures global-local information and struc-
tural consistency. Finally, we apply cascade sampling and
a pseudo-geometric loss to foster stronger integration be-
tween the two architectures. Extensive experiments demon-
strate that our method reconstructs robust surfaces and out-
performs existing state-of-the-art methods.

1. Introduction
Reconstructing 3D structures from a set of images is

a fundamental task in computer vision, with widespread
applications in fields such as architectural preservation,
virtual/augmented reality, and digital twins. Multi-view
stereo (MVS) is a widely-used technique for addressing
this task, exemplified by MVSNet [52] and its succes-
sors [38, 42, 43, 49, 51]. These methods construct 3D cost
volumes based on the camera frustum, rather than regular
euclidean space, to achieve precise depth map estimation.
However, these methods typically require post-processing
steps, such as depth map filtering, fusion, and mesh recon-
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Figure 1. A regular volume doesn’t simultaneously fit all cameras
well, and can easily run into a dilemma when choosing the resolu-
tion. In a low-resolution volume, a single voxel may cover multi-
ple pixels of an image, resulting in blurred volume features, such
as the blue pixel in view B. In a high-resolution volume, multiple
voxels may cover only a single pixel of an image, causing con-
fusion of different voxels, such as the pink-purple pixels in view
A. Instead, frustum volume is view-dependent and extracts pixel-
level image features. Hence, we build the cost frustum for each
view and adopt the fusion of per-view frustum so as to fit each
view.

struction, to reconstruct the 3D surface of the scene, and can
not well handle noises, textureless regions, and holes.

The implicit scene representation approaches, e.g., Neu-
ral Radiance Fields (NeRF) [27] and its peer Neural Signed
Distance Function [35, 36, 39], achieves remarkable results
in view synthesis and scene reconstruction. The implicit
surface reconstruction approaches typically employ Multi-
layer Perceptrons (MLPs) to implicitly fit a volume field.
We then can extract scene geometry and render views from
the implicit volume field. These approaches usually require
a large number of images from different viewpoints and
adopt a per-scene optimization strategy, which means they
are not generalizable to unknown scenes.

There is an emerging effort [3, 4, 16, 59] to merge the
two technical paths. MVSNeRF [4] combines NeRF [27]
with MVSNet [52] for generalizable view synthesis. RC-
MVSNet [3] utilizes NeRF’s neural volume rendering to
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handle view-dependent effects and occlusions. The most
related to our approach is the SparseNeUS [23] for gen-
eralizable surface reconstruction method for sparse views.
It builds a regular euclidean volume (i.e., cube) to encode
geometric information by aggregating 2D feature maps of
multiple images. The features sampled from it and the cor-
responding positions are used to estimate the signed dis-
tance function (SDF). However, a regular volume doesn’t
fit a camera’s view naturally, which can be better modeled
as view frustum. More specifically, as illustrated in Fig. 1,
a volume with a higher resolution costs more memory and
collect redundant image features, while a coarser volume
causes quality degradation. Instead, we propose to build the
cost frustum for each view and this strategy has been proven
to be effective on MVSNet [52] and its successors.

In this paper, we propose a novel integration scheme that
combines MVS with neural implicit surface reconstruction.
To encode the global and local geometric information of
the scene, we adopt the cascade architecture of CasMVS-
Net [13], which is a volume pyramid. Specifically, we first
construct a volume on the camera frustum and then convert
it into a cascade geometric frustum. As shown in Fig. 1,
to fit each camera’s view well, we build a cascade frustum
for every view and then fuse them using a proposed cross-
view and cross-level fusion strategy that effectively cap-
tures global-local information and structural consistency.
By combining the 3D position, fused feature, and view di-
rection, we estimate the SDF and render colors using vol-
ume rendering [39]. Moreover, we utilize the intermediate
information output by MVS part to apply cascade sampling
and a pseudo-geometric loss, which further improves the
quality of the reconstructed surface. Our experiments on
the DTU [1] and BlendedMVS [53] datasets demonstrate
the effectiveness and generalization ability of our proposed
method, surpassing existing state-of-the-art generalization
surface reconstruction techniques.

Our approach makes the following contributions:
• We introduce a novel exploration approach that in-

tegrates MVS and implicit surface reconstruction ar-
chitectures for end-to-end generalizable surface recon-
struction from sparse views.

• We propose a cross-view and cross-level fusion strat-
egy to effectively fuse features from multiple views
and levels.

• We further utilize information from the MVS part to
apply cascade sampling and a pseudo-geometric loss
to the neural surface part, promoting better integration
between the two architectures.

2. Related Work
Neural Surface Reconstruction Neural implicit repre-
sentations enable the representation of 3D geometries as

continuous functions that are computable at arbitrary spatial
locations. Due to the ability to represent complex and de-
tailed shapes in a compact and efficient manner, these repre-
sentations show significant potential in tasks such as 3D re-
construction [7,15,17,29,30,39,54,55,57], shape represen-
tation [2,12,26,31], and novel view synthesis [20,27,33,37].

To avoid relying on ground-truth 3D geometric informa-
tion, many of these methods employ 2D images as super-
vision through classical rendering techniques, such as sur-
face rendering and volume rendering. While some meth-
ods [17, 21, 29, 55] reconstruct the surface and render 2D
images using surface rendering, they often require accurate
object masks, which can be challenging to obtain in prac-
tical scenarios. As NeRF [27] successfully integrates im-
plicit neural functions and volume rendering and generates
photo-realistic novel views, some methods [7, 30, 39, 54]
incorporate SDF into neural volume rendering to achieve
surface reconstruction without additional masks. Despite
these advancements, further improvement in surface qual-
ity is achieved by introducing additional geometric pri-
ors [11,59]. However, these methods require a large number
of dense images, and it is difficult to generalize to unknown
scenes, which restricts the deployment at the level of these
methods.

Some methods [4, 6, 22, 40, 56] generate novel views
in unknown scenarios in a generalization manner. These
methods construct radiative neural fields on sparse views,
and can inference on unknown scenarios without any fine-
tuning after training in multiple known scenarios. More-
over, some other methods [8,14,28] synthesize novel views
on a single scene with sparse views. However, these meth-
ods are difficult to generate high-quality geometries.

To overcome these deficiencies, SparseNeUS [23] pro-
vides a preliminary solution by encoding geometric infor-
mation using a regular euclidean volume, VolRecon [32] in-
troduces multi-view image features through the view trans-
former to advance this scheme, ReTR [18] uses hybrid ex-
tractor to obtain multi-level euclidean volume and then uti-
lize reconstruction transformer to improve the performance.
However, these methods are challenging to achieve high-
quality reconstructions due to the regular volume doesn’t fit
a camera’s view naturally. Moreover, VolRecon [32] and
ReTR [18] additionally introduce ground truth depth labels,
which are usually expensive to obtain.

Multi-view Stereo With the rapid advancements in deep
learning techniques, MVS methods [5, 24, 25, 38, 42, 44, 45,
52] based on depth map fusion have shown remarkable per-
formance on various benchmarks [1, 53]. The pioneering
MVSNet [52] architecture constructs a 3D cost volume by
leveraging differentiable homography warping operations,
and generates the depth map through cost volume regular-
ization. The key to success lies in its utilization of camera
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frustums instead of regular euclidean spaces for construct-
ing 3D cost volumes. Some attempts [13, 51] progressively
optimize the depth map by refining the camera frustum in a
coarse-to-fine manner. Some attempts [9, 19, 41, 60] intro-
duce transformers to improve reconstruction performance.
Some other attempts [3, 10, 46–50] train networks in an un-
supervised manner. However, these methods require a se-
ries of post-processing operations, such as depth map filter-
ing, depth map fusion, and mesh reconstruction, to recon-
struct the 3D structure of the scene, and can not well handle
noises, textureless regions, and holes.

The Integration of MVS and Neural Implicit Scene Rep-
resentation The integration of MVS and neural implicit
scene representation generates significant interest among
researchers, leading to several recent explorations [3, 4, 16,
59]. MVSNeRF [4] constructs a cost volume to enable
geometry-aware scene reasoning. It then uses volume ren-
dering [27] in combination with position, view direction,
and volume features to perform neural radiation field re-
construction and achieve generalizable view synthesis. RC-
MVSNet [3] adds an independent cost volume for vol-
ume rendering, allowing the network to learn how to han-
dle view-dependent effects and occlusions and improve the
quality of depth maps. MVSDF [59] leverages the geome-
try and feature consistency of Vis-MVSNet [58] to optimize
the SDF, resulting in more robust geometry estimation.

However, MVSNeRF [4] is difficult to generate high-
quality surfaces, RC-MVSNet [3] requires cumbersome
post-processing steps to obtain surfaces, and MVSDF [59]
cannot generalize to unknown scenes and requires dense im-
ages. Our method, on the other hand, differs significantly as
it focuses on achieving high fidelity and generalizable sur-
face reconstruction for sparse views.

3. Method
In this section, we explain the detailed structure of our

proposed C2F2NeUS, which is a novel integration scheme
that better combines MVS with neural implicit surface rep-
resentation. With this integration, C2F2NeUS achieves high
fidelity and generalizable surface reconstruction for sparse
views in an end-to-end manner. As illustrated in Fig. 2, by
fusing the view-dependent frustums in the MVS part, we
obtain more accurate geometric features which are sent to
the neural implicit surface part to predict SDF and extract
surfaces.

Specifically, we first construct a view-dependent cascade
geometric frustum for each view to encode geometric in-
formation of the scene and fully exploit the advantage of
MVS(Sec. 3.1). For a given set of 3D coordinates, we
then sample and fuse the feature from these frustums by
using the proposed cross-view and cross-level fusion strat-
egy (Sec. 3.2). This strategy can effectively capture global-

local information and structural consistency. Next, we in-
troduce how to predict SDF and render color from the fused
feature (Sec. 3.3). And the SDF prediction network gener-
ates an SDF field which is used for surface reconstruction,
this representation leverages the smooth and complete ge-
ometry of SDF. To train the SDF prediction network in an
unsupervised manner, we render color via volume render-
ing. Finally, we introduce the training loss of our end-to-
end framework (Sec. 3.4).

3.1. Cascade Geometric Frustum Generation

To make the implicit neural surface reconstruction gen-
eralizable and capture the scene information more accu-
rately, we follow the volume pyramid of CasMVSNet [13]
and encode the global and local geometric information of
the scene by building a cascade geometric frustum. Unlike
SparseNeUS [23], which utilizes a regular euclidean vol-
ume, we construct the volume from the perspective MVS.
In MVS, the reference view is most important, and other
source views contribute to the depth estimation for the ref-
erence view. Since a single view-dependent frustum cannot
describe the complete scene, we create a frustum for each
image and treat the image as the reference view and other
images as source views. Besides, we estimate the corre-
sponding depth maps from each cost frustum to construct
the cascade geometric frustums.

To accomplish this, we first extract feature maps
{Fi}N−1

i=0 using a 2D feature extraction network for N im-
ages {Ii}N−1

i=0 of the scene. With the corresponding camera
parameters {Ki, Ri, Ti}N−1

i=0 of each image, we then build
a 3D cost frustum C ∈ Rc×d×h×w for the reference camera
via differential homography warping operations, where c, d,
h, w are dimensions of feature, number of depth samples,
height, width respectively. In our implementation, we con-
struct a 3D cost frustum {Ci}N−1

i=0 for each image as the ref-
erence view and use the remaining images as source views.
The 3D cost frustums Ci are then regularized by 3D CNN
Ψ1 to obtain the intermediate volumes Vi ∈ Rc×d×h×w. On
the one hand, the intermediate volumes Vi are used to esti-
mate the probability volumes Pi ∈ R1×d×h×w which are
used to regress the depth maps Di ∈ R1×1×h×w of the cur-
rent reference views Ii. On the other hand, the intermediate
volumes Vi are further regularized by a new 3D CNN Ψ2 to
obtain the geometric frustums Gi ∈ Rc×d×h×w.

Vi, Pi, Di = Ψ1(Ci), Gi = Ψ2(Vi). (1)

The depth maps Di are used to redefine the depth hypoth-
esis and construct the cascade 3D cost frustums, ultimately
constructing cascade geometric frustums {Gj

i}
j=0,...,L−1
i=0,...,N−1,

where L is the cascade level number.
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Figure 2. The overview of C2F2NeUS. We first construct the cascade geometric frustum of each view to capture global and local geometric
information about the scene. Then we apply a cross-view and cross-level fusion strategy to effectively fuse features from multiple views
and levels. Finally, the positions of 3D points and their corresponding fused features are fed to an SDF prediction network which is trained
by rendered colors from volume rendering.

3.2. Cross-view and Cross-level Fusion Strategy

The cost frustum of each view and level has different
importance. Intuitively, regions with relatively smaller an-
gles w.r.t. the viewpoint in finer frustums are more cru-
cial. Therefore, we estimate the weight for each frustum
to represent importance, similar to Vis-MVSNet [58]. An-
other problem in the fusion process is that points near the
surface can sample features from all three pyramid levels,
but points far away from the surface can only extract fea-
tures from the coarse level. Straightforward fusion strate-
gies, such as adding features from all views and levels, will
confuse features of different levels, while directly concate-
nating all features together make it difficult to deal with an
arbitrary number of input views. Consequentially, we pro-
pose a cross-view and cross-level fusion strategy that treats
each view and level differently. This fusion strategy effec-
tively captures the spatial and structural information of the
scene and produces a more precise surface.

We introduce an adaptive weight Aj
i ∈ R1×d×h×w for

each geometric frustum Gj
i , which is normalized using the

sigmoid function. Therefore, we can rewrite Equ. 1 as

Vi, Pi, Di = Ψ1(Ci), Gi, Ai = Ψ2(Vi). (2)

To integrate both the global information from coarser frus-
tums and the local information of finer frustums, we con-
catenate features at different levels and sum the features
at different viewpoints according to their weights. Specifi-
cally, we sample the corresponding features gji = Gj

i (p) ∈
R1×c and weights aji = Aj

i (p) ∈ R1×1 of a given 3D
position p ∈ R1×3 from all frustums using bilinear in-
terpolation. Then, we concatenate features and sum the
weights of different levels j = 0, ...L − 1 for each view-
point Ii, and obtain new features gLi = cat({gji }), and new

weights aLi (p) = sum({aji}), respectively, where gLi (p) ∈
R1×Lc and aLi (p) ∈ R1×1. Finally, we fuse the con-
catenated features gLi from different viewpoints {Ii}N−1

i=0

based on their respective weights aLi . The final geomet-
ric feature of the given 3D position p is defined as fgeo =
ΣN−1

i=0 aLi · gLi /Σ
N−1
i=0 aLi , where fgeo ∈ R1×Lc.

3.3. SDF Prediction and Volume Rendering

We would like to exploit the advantage of neural im-
plicit surface reconstruction, i.e., the surface extracted from
a neural SDF network is usually very smooth and consis-
tent.

SDF Prediction. Given an SDF prediction network Φ
consisting of MLP and an arbitrary 3D position p with its
corresponding geometric feature fgeo, we first encode the
position p using position encoding γ(·). We then use the
encoded position and geometric feature fgeo as input to the
SDF prediction network Φ to predict the SDF s(p) of 3D
position p. Our SDF prediction operation is defined as:

s(p) = Φ
(
γ(p), fgeo

)
. (3)

Blending Weights. Similar to IBRNet [40], we use
blending weights to estimate color of a 3D position p and
view direction r. We extract 2D color feature maps from N
input images via a new feature extract network. For a given
3D position p with its corresponding geometric feature fgeo
and view direction r, we project p onto N input views and
extract corresponding color features f col

i from color feature
maps using bilinear interpolation. We then compute the
mean u and variance v of the sampled color features f col

i

for different views to capture cross-image information and
concatenate each feature f col

i with u and v. A small shared
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MLP Γ is used to process the concatenated features and gen-
erate new features f col2

i that contain color information. We
also compute the direction difference ∆r = r− ri between
the view direction r and each input image’s viewpoint ri.
The color features f col2

i , direction differences ∆r, and ge-
ometric features fgeo are fed into a new MLP network Γcol

for generating blending weights wi(p).

wi(p) = Γcol(Γ(f
col
i , u, v),∆r, fgeo). (4)

Finally, we use the softmax operator to normalize blending
weights {wi(p)}N−1

i=0 .

Volume Rendering. As there is no ground-truth 3D ge-
ometry, to supervise the SDF prediction network, we render
the color of the query ray and calculate its consistency with
the ground-truth color. Specifically, we perform the ray
point sampling, where each sampled position p and view-
point d are used to predict the corresponding SDF s(p) and
blending weights wi(p). We then project the position p onto
N input images to extract their respective colors ci(p) and
compute the color c(p) of position p as a weighted sum of
the sampled color ci(p) and blending weights wi(p). Next,
we apply volume rendering as in NeUS [39] to render the
color of the ray by aggregating the SDF and color of each
position p along the ray. The rendered color is compared to
the ground-truth color for calculating the consistency loss.

Cascade Sampling and Pseudo-depth Generation. To
further leverage the benefits of MVS and enhance the qual-
ity of the extracted surfaces, we incorporate cascade sam-
pling on the frustum and a pseudo-geometric loss, which
enforce a stronger integration between MVS and neural im-
plicit surface. In this work, we apply an adaptive sampling
strategy using the intermediate probability volume Pi of the
cascade frustum generation network. Specifically, we take
the query image as the reference view, and other input im-
ages as the source views, and send them to the cascade frus-
tum generation network to obtain the depth maps Dj

que and
probability volumes P j

que at different levels. We use the
probability volume P j=0

que of the coarsest layer for cascade
sampling. We then compute the mean α and standard β
deviation of the probability volume P j=0

que along the depth
channel. The adaptive sample ranges [tn, tf ] are defined as
follows:

[tn, tf ] = [α− β, α+ β]. (5)

With the high-resolution depth maps Dj=L−1
que , Dj=L−1

i of
the query image and other input images, we compute the
geometric consistency to obtain the respective effective
masks. The masked depth maps can be considered pseudo-
depth labels, which use to supervise the SDF prediction
network. Specifically, the masked depth map of the query
image is used to compute a pseudo-depth consistency loss.

Further, we fuse the masked depth maps of different images
into point clouds, which are used to directly supervise the
SDF prediction network.

3.4. Loss Function

Ground-truth 3D geometric labels are difficult to obtain,
to address this issue, our framework employs an unsuper-
vised learning approach. Specifically, we introduce a train-
ing loss Ltotal as a combination of two unsupervised losses
for training the depth map and SDF, respectively.

Ltotal = Ldep + Lsdf . (6)

For the loss Ldep, we supervise the intermediate depth
map Dj

i of cascade geometric frustum network by utilizing
several losses of SMU-MVSNet [49].

For the loss Lsdf , we adopt the same loss item of
SparseNeUS [23], i.e. the color consistency loss Lcc, the
Eikonal term Leik, the sparseness regularization term Lspa.
Moreover, we introduce a geometry-based loss derived from
pseudo-depth, which can provide reliable guidance with-
out relying on expensive ground-truth geometry labels. The
overall loss Lsdf is defined as follows:

Lsdf = Lcc + Leik + Lspa + Lpdc + Lpgs. (7)

The pseudo-depth consistency loss Lpdc is an L1 dis-
tance between the rendered depth and the pseudo-depth la-
bel. Lpdc is defined as:

Lpdc =
1

X

X−1∑
x=0

|d− d̂|1, (8)

where d and d̂ are the rendered depth and ground-truth depth
respectively. Lpgs is the pseudo-geometry SDF loss [11].
The SDF values of the pseudo point cloud are zeroes. Lpgs

is defined as:

Lpgs =
1

||Q2||
∑

q2∈Q2

|s(q2)|, (9)

where Q2 is a set of 3D points randomly selected from the
pseudo point clouds.

4. Experiments
In this section, we demonstrate the effectiveness of our

proposed method. Firstly, we provide a detailed account of
our experimental settings, which includes implementation
details, datasets, and baselines. Secondly, we present quan-
titative and qualitative comparisons on two widely used
datasets, namely DTU [1] and BlendedMVS [53]. Finally,
we conduct detailed ablation studies to analyze the contri-
bution of different components of our proposed method.
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Image a) COLMAP f) Oursd) MVSNeRFb) NeUS c) SparseNeUS-ft e) SparseNeUS

Per-scene optimization Generalization

Figure 3. The qualitative comparison of our method with other state-of-the-art methods on DTU.

Scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean
COLMAP [34] 0.90 2.89 1.63 1.08 2.18 1.94 1.61 1.30 2.34 1.28 1.10 1.42 0.76 1.17 1.14 1.52

IDR [55] 4.01 6.40 3.52 1.91 3.96 2.36 4.85 1.62 6.37 5.97 1.23 4.73 0.91 1.72 1.26 3.39
VolSDF [54] 4.03 4.21 6.12 0.91 8.24 1.73 2.74 1.82 5.14 3.09 2.08 4.81 0.60 3.51 2.18 3.41

UNISURF [30] 5.08 7.18 3.96 5.30 4.61 2.24 3.94 3.14 5.63 3.40 5.09 6.38 2.98 4.05 2.81 4.39
NeUS [39] 4.57 4.49 3.97 4.32 4.63 1.95 4.68 3.83 4.15 2.50 1.52 6.47 1.26 5.57 6.11 4.00

IBRNet-ft [40] 1.67 2.97 2.26 1.56 2.52 2.30 1.50 2.05 2.02 1.73 1.66 1.63 1.17 1.84 1.61 1.90
SparseNeUS-ft [23] 1.29 2.27 1.57 0.88 1.61 1.86 1.06 1.27 1.42 1.07 0.99 0.87 0.54 1.15 1.18 1.27

PixelNerf [56] 5.13 8.07 5.85 4.40 7.11 4.64 5.68 6.76 9.05 6.11 3.95 5.92 6.26 6.89 6.93 6.28
IBRNet [40] 2.29 3.70 2.66 1.83 3.02 2.83 1.77 2.28 2.73 1.96 1.87 2.13 1.58 2.05 2.09 2.32

MVSNeRF [4] 1.96 3.27 2.54 1.93 2.57 2.71 1.82 1.72 2.29 1.75 1.72 1.47 1.29 2.09 2.26 2.09
SparseNeUS [23] 1.68 3.06 2.25 1.10 2.37 2.18 1.28 1.47 1.80 1.23 1.19 1.17 0.75 1.56 1.55 1.64
VolRecon† [32] 1.20 2.59 1.56 1.08 1.43 1.92 1.11 1.48 1.42 1.05 1.19 1.38 0.74 1.23 1.27 1.38

ReTR† [18] 1.05 2.31 1.44 0.98 1.18 1.52 0.88 1.35 1.30 0.87 1.07 0.77 0.59 1.05 1.12 1.17
Ours 1.12 2.42 1.40 0.75 1.41 1.77 0.85 1.16 1.26 0.76 0.91 0.60 0.46 0.88 0.92 1.11

Table 1. The quantitative results of different methods on DTU. † indicates supervised by ground truth depth labels

4.1. Experimental Settings

Implementation Details. We implement our method in
PyTorch. In the cascade geometric frustum generation net-
work, we adopt the same cascade scheme with CasMVS-
Net [13], but make the following changes: we use the 2D
feature extraction network consisting of 9 convolutional
layers, share the 3D CNN Ψ across levels, and set the di-
mension of image and volume features to c = 8. Dur-
ing training, we take N = 5 images with a resolution of

640 × 512 as input and use an additional image as the
query image to supervise the SDF prediction network Φ.
The cascade stage number is set to L = 3. We train our
end-to-end framework on one A100 GPU with a batch size
of 2 for 300k iterations. We set the same learning rate
and cosine decay schedule as NeUS [39]. The ray num-
ber is set to X = 512, and the sample number on each
ray is Y = Ncoarse + Nfine, where Ncoarse = 64 and
Nfine = 64. The weights of Lpdc and Lpgs in Equ. 7 are
0, 0 before 10k iterations and 0.05, 1 after that.

6
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Figure 4. The qualitative comparison of our method with other state-of-the-art methods on BlendedMVS. We reconstruct the surface with
our method without any fine-tuning.

Datasets. The DTU dataset [1] is a well-known indoor
multi-view stereo dataset, consisting of 124 scenes cap-
tured under 7 distinct lighting conditions. Consistent with
prior research [11, 23, 39, 59], we employ 75 scenes for
training and 15 non-overlapping scenes for testing. Each
test scene contains two sets of three images offered by
SparseNeUS [23]. We evaluate our method using three
views with a resolution of 1600 × 1152. To ensure fair-
ness in evaluation, we adopt the foreground masks provided
by IDR [55] to assess the performance of our approach on
the test set, as in previous studies [11, 23, 39, 59]. To exam-
ine the generalization ability of our proposed framework,
we conduct a qualitative comparison of our method on the
BlendedMVS dataset [53] without any fine-tuning.

4.2. Comparisons on DTU

We perform surface reconstruction for sparse views
(only 3 views) on the DTU dataset [1] and evaluate the
predicted surface against the ground-truth point clouds us-
ing the chamfer distance metric. Tab. 1 and Fig. 3 present
a summary of the comparison between our method and
other existing methods, which demonstrate that our method
achieves better performance. It is important to note that
our method is solely trained on the training set without
any fine-tuning on the test set to assess its generalization
capability. Our method surpasses the generalizable ver-
sion of SparseNeUS [23] by 32% and significantly out-
performs its fine-tuning variant. Furthermore, our method
exhibits superior performance compared to VolRecon [32]
and ReTR [18] , which are the state-of-the-art generalizable
neural implicit reconstruction methods and are supervised
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Figure 5. The qualitative comparison of our method with MVS.
We present the surface reconstructed by our method, and point
clouds of unsupervised CasMVSNet.

with ground-truth deep labels

4.3. Generalization on BlendedMVS

To showcase the generalization capabilities of our pro-
posed method, we conduct additional tests on the Blended-
MVS dataset [53] without any fine-tuning. The qualitative
comparison between our method and other methods is pre-
sented in Fig. 4. The results indicate that our method ex-
hibits a robust generalization ability and produces a more
refined surface when compared to other generalizable neu-
ral implicit reconstruction methods.

4.4. Comparison with Unsupervised MVS

To compare our method with MVS, we retrain CasMVS-
Net [13] with the unsupervised loss in Equ. 6. We estimate
the depth maps of three views, filter the depth maps using
geometric consistency and the masks provided by IDR [55],
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Method Inp. Size Vol. Size Cham. Dis. GPU
Euclidean 800*600 96*96*96 1.77 2231 M
Euclidean 800*600 192*192*192 1.62 7073 M
Frustum 200*144 200*144*48 1.50 2291 M
Frustum 400*288 400*288*48 1.42 4621 M

Table 2. Effect of camera frustum and regular euclidean space.
We evaluate the two methods without cascade under different im-
age sizes and volume sizes. Our method achieves a better perfor-
mance.

Stage1 Stage2 Stage3 Lpdc Lpgs Cham. Dis
√

1.42√
1.28√ √
1.24√ √ √
1.18√
1.19√ √ √
1.11

Table 3. Effect of different components. The performance contin-
ues to improve as components increase, which demonstrates the
effectiveness of each component.

and fuse them into a point cloud. The qualitative compari-
son is shown in Fig. 5, which demonstrates that our method
is more robust and reconstructs a more complete surface.

4.5. Ablation Studies

Effect of Camera Frustum and Regular Euclidean
Space. Regular volume doesn’t simultaneously fit all
cameras well, which leads to blurred features, particularly
in sparser scenes. Instead, camera frustum volume can bet-
ter model. We present a performance comparison between
the regular euclidean volume and the camera frustum vol-
ume without cascade in Table 2. The comparison results re-
veal that our method achieves better performance with sim-
ilar GPU memory.

Effect of Different Components. In this experiment, we
present the results of different components to demonstrate
their effectiveness. We fellow CasMVSNet [13] and adopt
three level pyramid structure. Stage1 indicates that only
the first level of the pyramid is used for the SDF network.
Stage2 means we sample features from the first and second-
level volumes and fuse them together. Similarly, Stage3
fuses the features from the first, second, and third-level vol-
umes. As shown in Tab. 3, the reconstructed surface qual-
ity significantly improves as we increase the cascade stage
numbers. Moreover, The introduction of Lpdc and Lpgs fur-
ther improves the surface quality.

Effect of Cross-view and Cross-level Fusion Strategy.
To demonstrate the effectiveness of the proposed cross-view
and cross-level fusion strategy, we remove this strategy on
Stage3 and adopt simple addition. As shown in Tab. 4

Method Cham. Dis
Stage3 w/o fusion strategy 2.71
Stage3 w/ fusion strategy 1.19

Table 4. Effect of cross-view and cross-level fusion strategy. The
performance severely degrades without the fusion strategy.
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Figure 6. The qualitative comparison between with and without
fusion strategy. Without our fusion strategy, the reconstructed sur-
face becomes noisy.

and Fig. 6, using only simple addition will lead to severe
performance degradation and extract noisy surfaces. On
the other hand, with our fusion strategy, the performance
is significantly improved, and a finer surface is extracted.
This demonstrates the effectiveness of our proposed fusion
strategy in capturing global-local information and structural
consistency.

5. CONCLUSIONS
We propose a novel integration scheme, C2F2NeUS, for

exploiting both the strengths of MVS and neural implicit
surface reconstruction. Previous methods rely on regular
euclidean volume for cross-view fusion, which doesn’t si-
multaneously fit all cameras well and may lead to blurred
features. We instead present a cascade geometric frustum
for each view and conduct an effective fusion of all the
views. Our method achieves state-of-the-art reconstruction
quality for sparse inputs, which demonstrates its effective-
ness. However, our method still suffers from several limita-
tions, one is that the frustums can overlap with each other
in 3D space resulting in redundant computations, and our
approach constructs a cost frustum for each view, making it
infeasible for dense views. In the future, we plan to opti-
mize the frustum space and reduce computation in overlap-
ping areas.
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