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Abstract

Learning implicit representations has been a widely used
solution for surface reconstruction from 3D point clouds.
The latest methods infer a distance or occupancy field by
overfitting a neural network on a single point cloud. How-
ever, these methods suffer from a slow inference due to the
slow convergence of neural networks and the extensive cal-
culation of distances to surface points, which limits them to
small scale points. To resolve the scalability issue in sur-
face reconstruction, we propose GridPull to improve the
efficiency of learning implicit representations from large
scale point clouds. Our novelty lies in the fast inference
of a discrete distance field defined on grids without using
any neural components. To remedy the lack of continuous-
ness brought by neural networks, we introduce a loss func-
tion to encourage continuous distances and consistent gra-
dients in the field during pulling queries onto the surface
in grids near to the surface. We use uniform grids for a
fast grid search to localize sampled queries, and organize
surface points in a tree structure to speed up the calcula-
tion of distances to the surface. We do not rely on learn-
ing priors or normal supervision during optimization, and
achieve superiority over the latest methods in terms of com-
plexity and accuracy. We evaluate our method on shape
and scene benchmarks, and report numerical and visual
comparisons with the latest methods to justify our effec-
tiveness and superiority. The code is available at ht tps :
//github.com/chenchaol5/GridPull.

1. Introduction

It is vital to reconstruct surfaces from 3D point clouds for
downstream applications. A widely used strategy is to learn
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implicit representations [59, 62, 26, 10, 91, 77, 54, 68, 88]
from 3D point clouds in a data-driven manner. With
the learned implicit representations, we can reconstruct
surfaces in meshes by running the marching cubes algo-
rithm [48]. By learning priors from large scale datasets dur-
ing training, previous methods [57, 21, 31, 46, 78, 73, 17]
generalize the learned priors to either global implicit func-
tions [89, 80, 8, 32, 6, 50] or local ones for unseen point
clouds. However, the generalization ability limits their per-
formances on large structure or geometry variations of train-
ing samples.

More recent methods [23, 12, 2, , 3, 95, 4, 49, 14,

, 35] achieved better generalization by directly overfit-
ting neural networks on single unseen point clouds. They
rely on extensive calculations of distances between queries
and surface points to probe the space, which supervises
neural networks to converge to a distance or occupancy
field [49, 23, 2, , 3, 11,52, 83, 40]. However, this in-
ference procedure is time consuming due to the extensive
distance calculations and the slow convergence of neural
networks. This demerit makes these methods hard to scale
up to large scale point clouds for surface reconstruction.

To address the scalability challenge, we propose Grid-
Pull to speed up the learning of implicit function from large
scale point clouds. GridPull does not require learned priors
or point normal, and directly infers a distance field from a
point cloud without using any neural components. We infer
the distance field on grids near the surface, which reduces
the number of grids we need to infer. Moreover, we orga-
nize surface points in a tree structure to speed up the nearest
neighbor search for the calculation of distances to the sur-
face. Specifically, we infer the discrete distance field by
pulling queries onto the surface in grids of interests. Our
loss function encourages continuous distances and consis-
tent gradients in the field, which makes up the lack of con-
tinuousness brought by neural networks. We justify our ef-
fectiveness and highlight our superiority by numerical and
visual comparisons with the latest methods on the widely
used benchmarks. Our contributions are listed below.
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i) We propose GridPull to reconstruct surfaces from
large scale point clouds without using neural networks.
GridPull speeds up the learning of implicit function,
which addresses the scalability challenge in surface re-
construction.

ii) We introduce a loss function to directly infer a discrete
distance field defined on grids but achieving continu-
ous distances and consistent gradients in the field.

iii) Our method outperforms state-of-the-art methods in
surface reconstruction in terms of speed and accuracy
on the widely used benchmarks.

2. Related Work

Neural implicit representations have made a huge
progress in various tasks [59, 62, 26, 10, ,91,77, 54, 68,

, 39, 36, 60, 28,7, 41, 76]. We can use different supervi-
sion including 3D supervision [58, 64, 63, 56, 13, 92, 87],
multi-view [72, 45, 34, 99, 44, 90, 61, 42, 94, 93, 19,

, 98, 86, 81, 82, 25,22, 29, 69, 74, 33, 55], and point
clouds [89, 43, 57, 21] to learn neural implicit representa-
tions. In the following, we focus on reviewing works on
surface reconstruction by learning implicit representations
point clouds below.
Learning with Priors. With neural networks, one intuitive
strategy is to use neural networks to learn priors from a
training set and then generalize the learned priors to unseen
samples. We can learn either global priors to map a shape
level point cloud into a global implicit function [57, 21, 31,

, 78,73, 17] or local priors for local implicit functions to
represent parts or patches [89, 80, 8, 32, 6, 50] which are
further used to approximate a global implicit function.

These methods require large scale datasets to learn pri-

ors. However, the learned priors may not generalize well
to unseen point clouds that have large geometric variations
compared to training samples. Our method does not require
priors, and falls into the following category.
Learning with Overfitting. To improve the generaliza-
tion, we can learn implicit functions by overfitting neu-
ral networks on single point clouds. Methods using this
strategy introduce novel constraints [23, 2, , 3, 95, 4],
ways of leveraging gradients [49, 14], differentiable pois-
son solver [65] or specially designed priors [50, 51] to learn
signed [49, 23, 2, , 3, 11] or unsigned distance func-
tions [ 14, , 471,

These methods rely on neural networks to infer implicit
functions without learning priors. However, the slow con-
vergence of neural networks is a big limit for them to scale
up to large scale point clouds. Our method addresses the
scalability challenge by directly inferring a discrete distance
field without using neural networks. Our novel loss leads
to less complexity and higher accuracy than the overfitting
based methods.

Learning with Grids. Learning implicit functions with
grids has been used in prior-based methods [77, 54, 66, 79,

, 34, 85]. Using neural networks, these methods learn
features at vertices of grids and further map the interpolated
features into a distance or occupancy field. Some meth-
ods [70, 75, 96, 38] inferred a discrete radiance field defined
on grids to speed up the learning of a radiance field, while
they cared more about the quality of synthesized views than
the underlying geometry. Without using neural compo-
nents, some methods [67, 65] directly infer discrete implicit
functions on grids. To make up the continuousness of neural
networks, they employed different constraints, such as Pos-
sion equations or Viscosity priors, to pursue a continuous
field from a single point cloud. However, these methods
are slowly converged, which makes them hard to scale up
to large scale point clouds. Although we also use grids to
speed up the inference, we introduce a more efficient train-
ing strategy to decrease optimization space and more effec-
tive losses to increase inference efficiency.

3. Method

Overview. GridPull aims to achieve a fast inference of a
distance field, such as a signed distance field, from a 3D
point cloud S = {s;[j € [1, J]} without using any neural
components. As shown in Fig. 1 (b), we represent the dis-
tance field by a signed distance function (SDF) f defined on
a set of discrete grids G' with a resolution of R3, where the
vertices V' = {v;]i € [1,1],I = (R + 1)} shared among
these grids hold learnable signed distances D = {d;}. For
an arbitrary location ¢ in Fig. 1 (e), such as a randomly sam-
pled query or a surface point, we use trilinear interpolation
to approximate the signed distance f(q) from the eight near-
est grid vertices below,

f(q) = trilnter(q, D). (1)

Our goal is to conduct direct optimization in Fig. 1 (c) to
infer the signed distances D on grid vertices by minimizing
our loss function L on queries g below,

min L(£(0)) @

With the learned function f, we run the marching cubes
algorithm [48] to reconstruct a mesh as the surface as shown
in Fig. 1 (d).

Discrete Grids. We split the space occupied by the point
cloud S into discrete grids G with a resolution of R in
Fig. 1 (b). GridPull can work with high resolutions, such as
R = 512, because of our efficient and effective loss func-
tion and training strategy. Within each grid, we interpolate
the signed distance f(q) of query ¢ using the trilinear in-
terpolation in Eq. 1. We organize surface points in a tree
structure to speed up the search of the nearest surface point
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Figure 1. We proposed GridPull for fast inference of SDF defined on discrete grids using effective losses.

for queries g. Since we need to extensively conduct trilin-
ear interpolation on signed distances for queries g, we use
uniform grids for fast nearest grid search for queries. We
did not use an Octree to organize grids, due to its inefficient
and inaccurate grid search for queries.

Geometric Initialization. We initialize the signed dis-
tances d; on grid vertices which represent a sphere in the
field. The initialization can speed up the convergence dur-
ing optimization. Our preliminary results show that a small
sphere with a radius of one or two grids works well. Since
enlarging a small sphere to the target shape can calculate the
continuous distance loss over smaller regions than shrinking
a large sphere.

Signed Distance Inference. For a query ¢, we infer its
signed distance f(q) through pulling it onto its nearest sur-
face point in the point cloud S. As shown in Fig. 1 (e), we
first obtain f(gq) as the interpolation of the signed distances
d; on the nearest eight vertices of q. We implement the tri-
linear interpolation by solving @ = [ao, .., a7] in a linear
regression system on the eight vertices v; below,

f(q) = ap+a1T+a2y+a3z+as1TyY+asrz+agyz+arTyz,

3)
where [z,y, 2] is the coordinate of ¢ and the eight con-
straints are { f(v;) = d; }.

With the predicted signed distance f(q) and the gradient
Vf(q) = 0f/dq, we pull a query g onto the surface and
obtain a pulled query pby p = q¢—f(q)xV f(q)/|IV f(q)||2
in Fig. 1 (f).

Our goal is to minimize the distance between the pulled
query p and the nearest surface point NN (q) € S of query
q below,

Lpui = |[p — NN(q)|l2- 4

We adopt this pulling loss from [49]. Instead, we do not
rely on neural network in the pulling procedure. We use the

trilinear interpolation on signed distances d; on grid vertices
to obtain signed distances and gradients according to Eq. 3.

We sample queries ¢ around surface points in each
epoch. For each randomly sampled surface point, we sam-
ple queries using a gaussian distribution with the surface
point as the center and a two-grid length variance. We build
a KD-tree on surface points so that we can speed up the
searching of the nearest neighbor from a large number of
surface points for each query.

To speed up the optimization, we only calculate the

pulling loss on grids near the surface. We regard the grids
containing surface points as the base and find the union of
their M, nearest neighboring grids. These grids form a M -
bandwidth near the surface in Fig. 1 (c).
Continuous Distance Fields. Although the pulling loss
can infer correct signed distances at grid vertices, it fails
to learn continuous signed distances across the field, espe-
cially near the surface. Fig. 2 (a) shows severe artifacts on
the surface and gradients near the surface are messy and in-
consistent, which are caused by the discontinuous signed
distances across neighboring regions.

Neural network based methods [49, 51] do not have this
issue, since the continuous character of neural networks
makes the sudden change of signs on the same shape side
hard. While our method uses signed distances d; on grid
vertices to represent a discrete field, this makes that one
d; can change separately without considering the change of
neighboring d;, which leads to a poor continuousness in the
field.

To resolve this issue, we impose a total variation (TV)
loss as a continuous constraint on our signed distances d;
on grid vertices. Our key idea is to make the change of
one d; affect the change of its neighboring N N (d;), which
smoothes the local distance field and propagates local up-
dates to the rest grids. Hence, as shown in a 2D case in
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Figure 2. The effect of losses on reconstruction.
Fig. 1 (g), we approximate one d; to each one of its six
neighbors by minimizing the difference between each two
below,

LTV = \/ZG_{I,y,z} ea+1(di)2 —+ eafl(di)27 (5)

where e,1(d;) is the difference between d; and the signed
distance along the a axis, i.e., x, y, z axis. Fig. 2 (b) shows
that the continuous constraints can significantly improve the
signed distance field in terms of continuousness and gradi-
ents.

One remaining issue is its computational complexity.
Since we are targeting grids at a high resolution, such as
R = 512, it is very time consuming to impose this con-
straint on all d; across the field.

To resolve this issue, we focus on grids near the surface.

Similar to imposing the pulling loss on grids in the M-
bandwidth near the surface, we impose our continuous con-
straints on the grids in the Ms-bandwidth near the surface,
which significantly reduces the number of learnable param-
eters to optimize.
Signed Distance Supervision. For signed distances, one
supervision we can directly use is the input point cloud S.
It is a discrete surface indicating the zero level-set of the
signed distance function. Hence, as introduced in Fig. |
(h), we can constrain the signed distances at the points s on
the surface below,

LSuv'face = ||f(3)||2 (6)

Although Fig. 2 (c) indicates that Lgy,fqce slightly im-

proves the signed distance field and leads to a little bit more
continuous surface, it is helpful to determine the zero level
set with other losses. For noises on .S, our continuous con-
straint can relieve the impact of noises on this supervision.
We will show this in experiments.
Consistent Gradients. Fig. 2 (a) indicates that the pulling
loss produces gradients that are messy and non-orthogonal
to the surface. This leads to inaccurate signed distance in-
ference during the pulling procedure.

We additionally introduce a constraint on gradients to
improve the field near the surface. As shown in Fig. 1 (i),
we aim to encourage the gradient at a query ¢ to point to the
same direction of the gradient at its nearest surface point

NN (q). We use a cosine distance below to achieve more
consistent gradients,

Ly =1—cos(Vf(q), VF(NN(q))). (7

Ly constrains the gradients in the field and corrects in-
accurate gradients. Fig. 2 (d) shows that more consistent
gradients can improve the surface to be more continuous us-
ing small planes on the surface which however the surface
not smooth at all.

Loss Function. We learn signed distances on grid vertices
D by minimizing the loss function below,

L= LPull + QLTV + ﬂLSurface + ’YLV (8)

where «, (3, and -y are balance weights to make each term
contribute equally. Fig. 3 shows the signed distance field on
a slide of D during optimization. Our optimization starts
from an initial sphere and only optimizes variables in the
bandwidth. We skip the grids that are not optimized after
the initialization during the marching cubes for surface re-
construction. Please watch our video for more details.

4. Experiments and Analysis

We evaluate GridPull by numerical and visual compar-

isons with the latest methods on synthetic and real datasets
in surface reconstruction.
Datasets and Metrics. We use benchmarks for shapes
and scenes in evaluations. For shapes, we conduct evalu-
ations on five datasets including a subset of ShapeNet [1],
FAMOUS [17], ThingilOk [103], Surface Reconstruction
Benchmark (SRB) [89] and D-FAUST [5]. For scenes,
we also report comparisons on five datasets including
3DScene [104], SceneNet [27], 3DFRONT [18], Matter-
port [9] and KITTI [20].

We use L2 Chamfer distance (C'Dy5), C Dy and Haus-

dorff distance(HD) to measure the error between the recon-
structed surface and the ground truth. Moreover, we use
normal consistency (NC) and F-score to evaluate the accu-
racy of normal on the reconstructed surface. We also re-
port our time and storage complexity to highlight our advan-
tage towards scalability. We also use the intersection over
union (IoU) to measure the reconstruction for fair compari-
son with the latest methods.
Details. We use R = 256 to infer a distance field. We
calculate the pulling loss on grids in a bandwidth with
M; = 3. We impose the continuous constraint on grids
in a bandwidth with My = 14 for shapes and My = 25
for scenes, since scenes contain open surfaces with larger
empty spaces. We run the marching cubes for surface re-
construction at a resolution of 256.

We use the Adam optimizer with an initial learning rate
of 1.0. We decrease the learning rate with a decay rate of
0.3 every 400 iterations. We use 50,000 queries in each
iteration, and run 1600 iterations for each point cloud during
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Figure 4. Visual comparison under ShapetNet dataset.

optimization. We set the balance weights « = 1, 8 = 1, and
~ = 0.005 for equal contribution from the three terms.

4.1. Surface Reconstruction for Shapes

ShapeNet. Following predictive context prior (PCP) [51]
and NeuralPull (NP) [49], we report our results on a subset
in ShapeNet in terms of C' Dy in Tab. 1, Normal Consis-
tency (NC) in Tab. 2, and F-Score with thresholds of 0.002
and 0.004 in Tab. 3 and Tab. 4, which show our superiority
over PCP and NP in numerical comparisons over all classes,
even though PCP employs a local shape prior learned from
a large scale dataset. The visual comparison in Fig. 4 shows
that we can reveal more accurate and detailed geometry.

Class | NP[10] | PCP[51] | Ours
Display | 0.039 | 0.0087 | 0.0082
Lamp | 0.080 | 0.0380 | 0.0347
Airplane | 0.008 | 0.0065 | 0.0007
Cabinet | 0.026 | 0.0153 | 0.0112
Vessel | 0.022 | 0.0079 | 0.0033
Table | 0.060 | 00131 | 0.0052
Chair | 0.054 | 00110 | 0.0043
Sofa | 0.012 | 0.0086 | 0.0015
Mean | 0.038 | 0.0136 | 0.0086

150th Iteration

200th Iteration
Figure 3. Visualization of signed distances in optimization.

1000th Iteration

Class NP [49] | PCP[51] | Ours
Display 0.964 0.9775 | 0.9847
Lamp 0.930 0.9450 | 0.9693
Airplane | 0.947 0.9490 | 0.9614
Cabinet 0.930 0.9600 | 0.9689
Vessel 0.941 0.9546 | 0.9667
Table 0.908 0.9595 | 0.9755
Chair 0.937 0.9580 | 0.9733
Sofa 0.951 0.9680 | 0.9792
Mean 0.939 0.9590 | 0.9723

Table 2. Reconstruction accuracy under ShapeNet in terms of NC.

Class NP [49] | PCP [51] Ours
Display 0.989 0.9939 | 0.9963
Lamp 0.891 0.9382 | 0.9455
Airplane | 0.996 0.9942 | 0.9976
Cabinet 0.980 0.9888 | 0.9901
Vessel 0.985 0.9935 | 0.9956
Table 0.922 0.9969 | 0.9977
Chair 0.954 0.9970 | 0.9979
Sofa 0.968 0.9943 | 0.9974
Mean 0.961 0.9871 | 0.9896

Table 3. Reconstruction accuracy under ShapeNet in terms of F-

Score with a threshold of 0.002.

Class NP [49] | PCP [51] Ours
Display 0.991 0.9958 | 0.9963
Lamp 0.924 0.9402 | 0.9538
Airplane | 0.997 0.9972 | 0.9989
Cabinet 0.989 0.9939 | 0.9946
Vessel 0.990 0.9958 | 0.9972
Table 0.973 0.9985 | 0.9990
Chair 0.969 0.9991 | 0.9990
Sofa 0.974 0.9987 | 0.9992
Mean 0.976 0.9899 | 0.9923

Table 4. Reconstruction accuracy under ShapeNet in terms of F-
Score with a threshold of 0.004.

which contains almost no geometry details. Worse than that,
it fails to reconstruct some point clouds in more than eight
hours, hence we remove these shapes from its results. We
highlight our superiority in visual comparison in Fig. 5. We

Table 1. Reconstruction accuracy under ShapeNet in terms of
CDy2 x 100.

FAMOUS. We follow the experimental setting in PCP [51]
and NP [49] to evaluate GridPull on FAMOUS. We com-
pare GridPull with the latest methods with priors including
PCP, GenSDF, FGC and no priors including NP and IGR.
GridPull outperforms these methods in terms of C'Dy,5 and
running time. Although FGC is fast, it does not reconstruct
a watertight mesh but just a polygon soup with no normal,

can reveal details like hair and expressions more clearly.

Method CDpo x 100 | Min time | Mean time
IGR [24] 1.650 402s 407s
GenSDF [15] 0.668 230s 232s
NP [49] 0.220 593s 605s
FGC [97] 0.055 10s Timeout
PCP [51] 0.044 3416s 3534s
Ours 0.040 198s 201s

Table 5. Reconstruction accuracy under FAMOUS.
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Figure 6. Visual comparison under SRB dataset.

SRB. We follow the experimental setting in VisCo [67] to
evaluate GridPull on real scans in SRB. We report the com-
parison with the latest overfitting based methods in terms of
C Dy, in Tab. 6. Meanwhile, we also report their one-sided
distances between the reconstructed mesh and the input
noisy point cloud. The numerical comparison shows that
our method significantly outperforms the latest. Moreover,
we also report our results of learning unsigned distances in
Tab. 7. We replace our pulling loss with the pulling loss
introduced for unsigned distances in CAP-UDF [102], and
remove the gradient loss due to the nondifferentiable char-
acter of UDF on surface. Visual comparison in Fig. 6 shows
that our method can reconstruct surfaces that are more com-
pact than the methods learning SDF like SIREN or more
smooth than the methods learning UDF like CAP-UDF.
Thingil0K. We follow the experimental setting in SAP [65]
to evaluate GridPull in Thingil0K. Tab. 8§ indicates our su-
periority over the overfitting based methods in the numer-
ical comparison. Visual comparisons in Fig. 7 show our
more accurate surfaces with complex details.

D-FAUST. We also follow the experimental setting in
SAP [65] to evaluate GridPull in D-FAUST. Tab. 8 shows
that we outperform the overfitting based methods with more
surface details. As shown in Fig. 7, we recover more accu-

Poisson [37] | IGR [24] | SIREN [71] | VisCo [67] | SAP [65] | Ours

CDry 0.60 0.22 0.32 0.21 0.12 0.093

Anchor HD 14.89 4.71 8.19 3.00 2.38 1.804
dg 0.60 0.12 0.10 0.15 0.08 0.066

dg 14.89 1.32 2.43 1.07 0.83 0.460

CDpry 0.44 0.25 0.21 0.26 0.07 0.062

Daratech HD 7.24 4.01 430 4.06 0.87 0.648
dg 0.44 0.08 0.09 0.14 0.04 0.039

dg 7.24 1.59 1.77 1.76 0.41 0.293

CDry 0.27 0.17 0.15 0.15 0.07 0.066

e HD 3.10 222 2.18 222 1.17 1.103
dg 0.27 0.09 0.06 0.09 0.04 0.036

dg 3.10 2.61 2.76 2.76 0.53 0.539

CDpa 0.26 0.16 0.17 0.17 0.07 0.063

Gargoyle HD 6.80 3.52 4.64 4.40 1.49 1.129
dg 0.26 0.06 0.08 0.11 0.05 0.045

dg 6.80 0.81 0.91 0.96 0.78 0.700

CDpy 0.20 0.12 0.17 0.12 0.05 0.047

Lord Quas HD 4.61 1.17 0.82 1.06 0.98 0.569
dg 0.20 0.07 0.12 0.07 0.04 0.031

dg 4.61 0.98 0.76 0.64 0.51 0.370

Table 6. Reconstruction accuracy under SRB.

NDF [14] | CAP-UDF [102] | Ours(UDF)
CDpq 0.238 0.073 0.070
F-Score 68.6 84.5 85.1

Table 7. Accuracy of reconstruction with UDF under SRB.
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Figure 7. Visual comparison under ThingilOk and D-FAUST.

IGR [24] | SAP[65] | Ours
CDri | 0440 0.054 | 0.051
Thingl0k | F-Score | 0.505 0.940 | 0.948

NC 0.692 0.947 | 0.965
CD., | 0235 0.043 | 0.015
DFAUST | F-Score | 0.805 0.966 | 0.975
NC 0.911 0.959 | 0.978

Table 8. Reconstruction accuracy under ThingilOk and D-FAUST
in terms of C'Dr,q and F-Score with a threshold of 0.01.

rate human bodies and more detailed expressions on faces.

4.2. Surface Reconstruction for Scenes

3DScene. We follow PCP [51] to report CDyq, CDyo
and Normal Consistency(NC) for evaluation. We report the
comparisons with the latest methods in Tab. 9. We out-
perform both kinds of methods with learned priors such as
ConvOcc [73] and PCP [51] and overfitting based NP [49]
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Figure 9. Visual comparison under SceneNet dataset.

in all scenes. The visual comparisons 8 shows that our
method can work well with real scans on scenes and reveal
more geometry details on surfaces.

ConvOcc [73] | NP [49] | PCP[51] | Ours

CDrs x 100 26.69 1.76 0267 | 0.246

Burghers CDry 0.077 0.010 0.008 | 0.008
NC 0.865 0.883 0914 | 0.926

CDrs x 100 8.68 39.71 0.061 0.055

Lounge CDr1 0.042 0.059 0.006 | 0.005
NC 0.857 0.857 0928 | 0.922

CDypo x 100 10.99 0.51 0.076 | 0.069

Copyroom CDpy 0.045 0.011 0.007 0.006
NC 0.848 0.884 0918 | 0.929

CDps x 100 19.12 0.063 0.061 0.058

Stonewall CDr1 0.066 0.007 0.0065 | 0.006
NC 0.866 0.868 0.888 0.893

CDyps x 100 1.16 0.19 0.10 0.093

Totepole CDpy 0.016 0.010 0.008 0.007
NC 0.925 0.765 0.784 | 0.847

Table 9. Reconstruction accuracy under 3DScene.

SceneNet. Following the experimental setting in PCP [51],
we report our C' Dy, NC, and F-score in Tab. 10. The com-
parison indicates that we outperform these methods by pro-
ducing more accurate and smooth surfaces. This is also ver-
ified by our visual comparison in Fig. 9, where the latest
methods reveal either no or inaccurate indoor geometry.
3D-FRONT. We follow the experimental setting in Neu-
ralPoisson [16] to report C'Dy1, IoU and L2 distance over
the voxelization of meshes. IoU and L2 distances are cal-
culated as the error between the reconstructed surfaces and
the ground truth over the voxelization at a resolution of 128.
The comparison in Tab. 11 shows that our results are more
accurate than the latest method. Our visual comparison with
SIREN in Fig. 10 shows that GridPull can infer an accurate
zero level set which leads to very sharp corners.
Matterport. We follow the experimental setting in
NGS [30], and report the comparison in terms of C'Dp1,
NC, and F-score in Tab. 12. We achieve the best perfor-

Ours GT

NP [49] | PCP[51] | Ours

CDpq 0.088 0.017 0.015

Livingroom | NC 0.881 0.933 0.922
FScore | 0.801 0.966 0.953

CDpq 0.036 0.016 0.013

Bathroom NC 0.912 0.945 0.952
FScore | 0.860 0.977 0.974

CDrs 0.034 0.014 0.014

Bedroom NC 0.905 0.948 0.951
FScore | 0.876 0.980 0.986

CDr1 0.049 0.015 0.014

Kitchen NC 0.900 0.945 0.952
FScore | 0.825 0.976 0.984

CDry 0.062 0.024 0.022

Office NC 0.879 0.919 0.931
FScore | 0.729 925 0.940
CDpq 0.054 0.017 0.0156
Mean NC 0.895 0.938 0.9416
FScore | 0.818 965 0.9674

Table 10. Reconstruction accuracy under SceneNet. FScore is with
a threshold of 0.025.

SIREN
Figure 10. Visual comparison under 3Dfront dataset.

Ours GT

Method CD 10U L2
SIREN [71] 0.0183 | 0.524 | 2.373
NeuralPoisson [16] | 0.0161 | 0.545 | 2.073
Ours 0.0141 | 0.562 | 1.984

Table 11. Reconstruction accuracy under 3DFRONT.

mance in terms of accuracy. NGS [30] has a pretty fast
inference but it costs about four to five days to learn priors
from the training set in Matterport. Visual comparison in
Fig. 11 shows that we can reconstruct more accurate sur-
faces while NGS is poorly generalized to unseen scenes.

KITTI. We evaluate GridPull on a large scale real scan
from KITTI odometry (Sequence00, frame 3000 to 4000)
which contains about 13.8 million points. The comparison
in Fig. 12 shows that we can reconstruct a more accurate
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Figure 12. Visual comparison under Kitti dataset.

surface in much less time (3810s) than the overfitting based
method SAP (13005s) [65].

Method CDpy x 1000 | F-Score(0.002) | NC | Time
ConvOcc [73] 6.21 88.9 92.0 | 34s
SAP [65] 4.17 91.2 91.4 | 643s
NGS [30] 3.04 97.3 95.7 | 2.1s
Ours 2.93 97.7 96.3 | 223s

Table 12. Reconstruction accuracy under Matterport3D.

4.3. Ablation Studies

We conduct ablation studies on FAMOUS [17] to justify
the effectiveness of modules in GridPull.
Loss. We justify the effectiveness of our loss in terms of
CDjs in Tab. 13. For the pulling loss, it is able to estimate
a coarse shape but with discontinuous meshes and artifacts.
The gradient loss can improve the continuousness on the
surface. Using the TV loss, we obtained a more continu-

R

on R.

Figure 13. Effect of Resoluti

ous field, which removes most of artifacts and significantly
improve the accuracy. The surface loss encourages a more
accurate zero level-set, which also improves the accuracy.

Loss CDps x 100
Lpun 0.184
Lpuy + Ly 0.126
Lpuyy + Lv + Ly 0.056
Lpui+ Ly + L1y + Lsurface 0.040

Table 13. Effect of losses.

Resolution R. We compare the effect of resolution R
on the reconstructed surfaces. We try several candidates
{32,64, 128,256,512} to learn the discrete distance field.
We use the same bandwidth for the calculation of the pulling
loss and the TV loss, and reconstruct meshes by running the
marching cubes at the same resolution. The numerical and
visual comparisons show that higher resolutions can infer
more geometry details but also cost more inference time.

32 64 128 256 512
CDpo x 100 | 0.186 | 0.097 | 0.048 | 0.040 | 0.035
Time 50s 67s 84s 201s | 645s

Table 14. Effect of Resolution R.

Point Number. We compare our performance on dif-
ferent numbers of points. We use the same set of
shapes but with different numbers of points including
{10K,100K,1000K}. The numerical comparison in
Tab. 15 shows that our method can estimate a discrete dis-
tance field from different numbers of points well, which
leads to more accurate reconstructed surfaces than the latest
overfitting based methods. In addition, our time complexity
is not affected by the number of points a lot, while the latest



methods require more time to converge on more points.

Number | Method | CDys x 100 | Time | Memory
NP 0.351 548s 4.5G
10K SAP 0.275 147s 3.5G
Ours 0.122 82s 3.3G
NP 0.224 615s 4.6G
100K SAP 0.076 354s 3.6G
Ours 0.040 84s 3.3G
NP 0.175 1304s 4.8G
1000K SAP 0.063 841s 3.7G
Ours 0.039 90s 34G

Table 15. Effect of point numbers.

Initialization. We highlight our geometric initialization
of distances on grid vertices by comparing it with random
initialization. The comparison in Tab. 16 shows that ran-
dom initialization makes the optimization converge hard,
and cannot work well with the TV loss, especially with a
bandwidth, which produces lots of artifacts in empty spaces.
Moreover, we try an Eikonal constraint on gradients based
on the geometric initialization, but did not get improvement.

Random | Geometric | |[V|| =1
CDy2 x 100 0.155 0.040 0.054

Table 16. Effect of Initialization.

Bandwidth. We report the effect of bandwidth A/; and
M in the pulling loss and the TV loss in Tab. 17. For
both losses, the bandwidth controls the scope of query sam-
pling and continuous constraints. A larger bandwidth would
cover more parameters which require more time and make
the optimization converge slowly. For instance, if we sam-
ple queries and impose the pulling in all R? grids, the speed
is even slower than NeuralPull which uses neural network
for the pulling, since neural networks can generalize signed
distances nearby and do not need to infer in all grids. Al-
though a small bandwidth would save time, a too small
bandwidth would cover too few grids around the surface,
which leads to discontinuousness and artifacts. While if
the bandwidth is large enough, we may not see surface im-
provement but just cost more time. Moreover, even with the
same loss, NeuralPull does not produce better results than
ours. Comparing with methods using neural networks, our
discrete SDF can have faster convergence, as indicated by
the angular error of gradients in Fig. 14.

Bandwidth CDys x 100 | Time

Lpu (M =3) 0.040 84s

L pyy (All Grids) 0.043 628s
Lry (My =2) 0.079 83s

Lry (My = 14) 0.040 84s
Lpy (My = 30) 0.041 89s
Lpy (My = 50) 0.040 96s
Ly (All Grids) 0.040 101s
NeuralPull 0.220 552s
NeuralPull+Lv+Lsurface 0.203 554s

Table 17. Effect of Bandwidth.
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Figure 14. Gradients comparison with neural networks.

Noises. We report our performance on point clouds with
noise. We follow the experimental setting in PCP, and report
our results with middle and large level noise in Tab. 18. To
handle noise, we weight more on the continuous constraint
L7y using a larger a = 2 to decrease the impact of noise.
The comparison shows that our method can handle noise
better than the neural network based methods. Since the
continuousness of neural networks make gradients near the
surface over smooth to overfit all noise, this makes it hard
to infer accurate zero level-set.

Noise level | NP [49] | PCP [51] | Ours
F-med-noise 0.280 0.071 0.044
F-max-noise 0.310 0.298 0.060

Table 18. Effect of noises.

Normals. We report our performance on point clouds with
normals. If GT normal is available, we could add a super-
vision on normals at points on the surface. What we do is
to supervise the gradients \f at points on the surface us-
ing their ground truth normals. The comparisons in Tab. 19
show that the normal supervision improves the performance
a little. This indicates that our method can infer pretty ac-
curate gradients on the surface or near the surface, where
gradients on the surface can be highly accurate to the nor-
mal ground truth on surfaces.

Class Ours | Ours(Normals)
CDys | 0.0401 0.0403

Table 19. Effect of normals.

5. Conclusion

We introduce GridPull for the fast inference of distance
fields from large scale point clouds without using neural
components. We infer a distance field using learnable pa-
rameters defined on discrete grids, which we can directly
optimize in a more efficient way than neural networks. Be-
sides the complexity advantage, our loss function manages
to achieve more continuous distance fields with more con-
sistent gradients, which leads to higher accuracy in surface
reconstruction. We evaluate GridPull and justify its effec-
tiveness on benchmarks. Numerical and visual comparisons
show that GridPull outperforms the latest methods in terms
of accuracy and complexity, even without using priors, nor-
mal, and neural networks.
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