arXiv:2310.01401v1 [cs.CV] 2 Oct 2023

Pixel-Aligned Recurrent Queries for Multi-View 3D Object Detection

Yiming Xie! Huaizu Jiang®

'Northeastern University

Abstract

We present PARQ — a multi-view 3D object detector with
transformer and pixel-aligned recurrent queries. Unlike
previous works that use learnable features or only encode
3D point positions as queries in the decoder, PARQ lever-
ages appearance-enhanced queries initialized from refer-
ence points in 3D space and updates their 3D location
with recurrent cross-attention operations. Incorporating
pixel-aligned features and cross attention enables the model
to encode the necessary 3D-to-2D correspondences and
capture global contextual information of the input images.
PARQ outperforms prior best methods on the ScanNet and
ARKitScenes datasets, learns and detects faster, is more ro-
bust to distribution shifts in reference points, can leverage
additional input views without retraining, and can adapt in-
ference compute by changing the number of recurrent itera-
tions. Code is available at hitps://ymingxie.github.io/parg.

1. Introduction

The world is composed of objects positioned in 3D
space. Humans have an innate ability to perceive 3D scenes
which allows them to interact with their surroundings. For
machines, understanding all objects in 3D space from one
or few images enables new applications of embodied intel-
ligence such as in robotics and assistive technology. The
problem is defined by the task of 3D object detection: given
a few images of a scene, detect all objects in 3D.

3D object detection unites two distinct problems of com-
puter vision, 2D recognition, and 3D reconstruction. Sim-
ilar to 2D recognition, appearance cues in the input views
drive categorical predictions. Similar to 3D reconstruction,
the model needs to reason about the 3D position of ob-
jects from only 2D views. Modern learning-based meth-
ods build on the traditional multi-view stereopsis [45] and
Structure from Motion (SfM) [14, 39] and lift objects to
3D via optimization [24, 23, 22, 31] or volumetric repre-
sentations [40, 41]. To do so, they require tens or hun-

* Equal advising.

Georgia Gkioxari*?
2California Institute of Technology

Julian Straub*?
3Meta Reality Labs Research

] Geometry Appearanoe%
= ———> Px,9,2) + P D@

P
Offset, Size,
Rot., and Class

Figure 1. PARQ leverages appearance-enhanced queries initial-
ized from 3D points and updates their 3D locations to the 3D ob-
ject center with a recurrent PARQ layer in the decoder. The PARQ
layer chains a transformer decoder layer and a detection head.

dreds of views observing the whole scene. However, in
many real-world applications, like robotics, models are re-
quired to make predictions online and often in real-time
from just a short video snippet. In this work, we tackle on-
line 3D object detection from just a few (e.g., 3) consecutive
views with known camera poses extracted by visual-inertial
SLAM systems [5, 35, 1].

Learning 3D object detectors is challenging as the 3D
prediction space is extensive while objects occupy only a
small portion. Geometry is important. An object visible in
the different input views occupies the same 3D world loca-
tion and vice versa, a 3D object connects to 2D locations
on the input images consistent with its camera projections.
This observation prunes the vast prediction space. In ad-
dition, object appearance changes with viewpoint changes.
For instance, the appearance of the chair in Fig. | changes
as the camera moves. This suggests that appearance and ge-
ometry are critical. Motivated by this insight, we design a
model that captures geometric and appearance interactions
between the 2D input views and the 3D prediction space.

We build on the powerful transformer architecture [42],
and specifically DETR [6], a popular 2D object detection
system. DETR encodes input images into feature maps and
predicts 2D bounding boxes via cross-attention with learn-
able queries. We enhance DETR in three ways. First, we
make the input feature maps 3D-aware by adding 3D posi-

https://ymingxie.github.io/parq

tional information via ray embeddings, following [27]. Sec-
ond, we replace the learnable, randomly initialized queries
in DETR with appearance- and geometry-informed queries.
Our queries encode the 3D location of 3D reference points
that cover the 3D space. They are enhanced with pixel-
aligned appearance features sampled from the input views
at the projected 2D locations. Cross-attention between our
3D-aware inputs and appearance-informed 3D queries un-
leashes our model’s ability to capture 3D-to-2D correspon-
dences quickly and efficiently, as we show in our experi-
ments. Lastly, we deviate from DETR by introducing recur-
rence. DETR makes predictions on the 2D plane while our
predictions live in the vast 3D space. Our initial 3D points
are likely to be far from the objects. So our model starts
by making a coarse prediction that roughly places the ini-
tial queries close to true objects and then gradually refines
them. We model this by designing a recurrent scheme that
encodes the 3D predictions from the previous step into the
current queries. An overview of our proposed pixel-aligned
recurrent queries, dubbed PARQ, is shown in Fig. 1.

PARQ differs from prior DETR-style methods for 3D ob-
ject detection in design and attributes. Our recurrent decod-
ing and query design differentiates us from the state-of-the-
art DETR3D [44] and PETR [27]. DETR3D uses learnable
queries and samples local appearance cues from the pro-
jected 2D image locations to update the queries. This limits
the model’s ability to capture long-range 3D-to-2D interac-
tions. PETR enhances the input views with 3D positional
information, similar to ours, but only encodes the 3D lo-
cation of the queries at the start of decoding and without
recurrent updates. This makes it difficult for the model to
capture long-range correspondences driven by appearance
and forces the model to focus on local cues around the
3D queries, as we show in our experiments. A schematic
comparison is shown in Fig. 2. We show that our PARQ
outperforms DETR3D and PETR on the challenging Scan-
Net and ARKitScenes datasets. More importantly, we show
that PARQ exhibits speedier convergence leading to faster
training, is robust to a varying number of queries, and can
leverage additional input views at test time without the need
to retrain. In contrast, we show that PETR and DETR3D
fail to generalize when deviating from the choice of in-
put views and the number of queries during training. By
tuning the number of queries and recurrent iterations, we
show that PARQ detects fastest and most accurately. Fi-
nally, with PARQ we demonstrate zero-shot generalization
to novel scenes.

2. Related Work

There is a long line of work on 3D object detection from
sequences of frames and known camera poses. Late fusion
techniques detect objects per frame and then fuse these de-
tections, while early fusion methods fuse multi-view fea-

Sample Add Output
Input > > o . u
9 3D BBox

Images Proj * *
R ol
Add
Input _»oili Transformer Dec Output
Images : 3D BBox

4 Q

i g Transtormer Dec. e
Images —> mag 1ransformer Dec. 3D BBox

Proposed

Figure 2. Query Design. Schematic comparison of query designs
in DETR3D [44], PETR [27], and our proposed PARQ.

tures and then detect objects from the fused representation.

Late Fusion. 1In [23, 22] 3D objects are first detected
from single images [7, 4] and then are associated from
tens of views via a post-processing optimization step to ob-
tain scene-level predictions. Dynamic scenes make associa-
tions hard as objects move [11]. Here, velocity estimates
can be used to predict associations [18]. In these meth-
ods, the quality of the final prediction depends on single-
view detection which suffers from scale-depth ambiguity.
To overcome this, another line of work regresses 2D bound-
ing boxes [15], and, after association, optimizes 3D quanti-
ties to match them. [24] optimizes 3d bounding boxes and
shapes to project to associated 2d bounding boxes. Sim-
ilarly, [31] uses associated 2d detections to instantiate a
CAD-model-based reconstruction of a scene via a multi-
view constraint optimization formulation. Common to all
late fusion methods is that it is difficult to recover from the
errors at the single-view detection and association stage.

Early Fusion. In early fusion, methods represent geometry
either explicitly, e.g., with point clouds, a voxel or BEV grid
or, implicitly via input-level inductive biases and positional
encodings like ray-encodings [48]. [36, 41, 17, 47] adopt a
volumetric representation to fuse multi-view image features
and predict the 6D pose and the scale of the objects from the
feature volume. [17, 47] incorporate NeRF [32] to improve
3D detection but make predictions offline as they assume
tens or hundreds of input views. [49, 20, 25] transform
multi-view 2D features into a bird-eye-view (BEV) repre-
sentation. However, volumetric representations require a
significant amount of memory which scales with the size
of the scene. BEV representations, commonly used in ur-
ban domains, can mitigate this to some extent by operating
in 2D top-down view but cannot represent more complex
3D environments. [28, 25, 19, 43] exploit the temporal in-
formation across the video to enhance 3D object detection.

Reference Point

3D-Aware Features _ -~
--Y \ — — 4

Point PE

l E ' - Flaitan

Input: Posed Images

e | bt :
. Add — Sample Features

Figure 3. Overview of PARQ. Our model predicts 3D object bounding boxes from a short video snippet. We first embed input views
with a CNN and add 3D ray-positional encodings. Recurrent PARQ layers consisting of a single Transformer decoder layer and a detection
head decode pixel-aligned queries to 3D object predictions. Our queries encode the location of 3D reference points and their appearance
cues sampled from the input views. Each iteration updates the 3D query points with offsets predicted by the detection head.

Another line of work explores input-level biases instead
of an explicit scene representation. [44, 27, 25] build on
DETR [6] and transformer architectures [42, 10] where a
query represents an object and interacts with the corre-
sponding 2D views to output 3D predictions. DETR3D [44]
predicts 3D objects from learnable randomly-initialized
queries which are updated using local appearance cues sam-
pled from the input views. But when the prediction is far
from the true object, relying on local appearance alone is
not optimal. PETR [27] encodes 3D reference points into
queries and performs cross-attention with 3D-aware input
features. PETR omits appearance in the queries making
convergence slow as the model cannot capture long-range
appearance interactions with the 2D input. We also adopt
a query-based transformer architecture but unlike PETR,
we enhance queries with appearance-aligned features. As
a result, our model captures local and global geometric and
appearance interactions with the input views. In addition,
through recurrent decoding, the model updates its predic-
tion starting with coarse and then refining its output.

3D object detection is primarily studied in urban and in-
door scenes. On urban domains, input is captured from
camera rigs in autonomous vehicles [20, 44, 27, 25] and
methods mainly focus on the car category. In this work, we
focus on indoor scenes and inputs from monocular videos.

3. Method

In this work, we tackle 3D object detection from
a short video snippet, e.g. 3 views. We propose an
encoder-decoder architecture that translates geometry- and
appearance-informed queries to 3D object detections via re-
current cross-attention with the input views. Fig. 3 shows
our architecture. Given N images from a monocular video
with known intrinsics and extrinsics, we first extract the im-
age features using a CNN [16]. Following [27], ray posi-

tion encodings are generated and added to the 2D image
features, producing 3D-aware feature maps (Sec. 3.1). The
3D-aware feature maps interact with point queries via re-
current transformer layers. Our point queries, anchored on
3D reference points, carry information about their 3D loca-
tion and appearance as seen from the input views (Sec. 3.2).
Via recurrent attention operations with the input views the
queries produce the final 3D object detections (Sec. 3.3).

3.1. 3D-Aware Input Encoding

Our model inputs N RGB images I; with camera pa-
rameters m;, ¢ € [1, N]. Each image is fed to a ResNet-
FPN [16, 26] which outputs a feature map F; € R *WxC,

We enhance the image features with 3D ray embeddings,
following [27]. For each image, we shoot rays originating at
the camera center intersecting the image at each pixel. We
sample D points along each ray, P/*Y ¢ RIXWx(Dx3),
with log-scale sampling. More detaﬂs in the supplementary.

The ray points are transformed to position encodings,
P; € REXWXC yia an MLP of the same hidden dimension
C as the input feature maps. The ray position encoding,
P;, is added to the image feature map, F;, to produce 3D
ray-position-aware features, F’ = F; + P;. The 3D-aware
feature maps are input to the transformer decoder.

3.2. Appearance- and Geometry-Informed Queries

Now, we turn to our queries. The purpose of our queries
is to produce final 3D object detections by interacting with
the input views. We randomly generate a set of reference
points in the 3D space bounding a large region of the view
frustum. Assume z is a 3D point and 7;(x) is its 2D pro-
jection on the ¢-th input view using known camera pose and
projection ;. We bilinearly sample the feature vectors at
the 2D pixel locations, namely f; , = FP(m;(z)). We ag-
gregate the feature vectors across all views with average
pooling — if x projects outside the image border for a view

Algorithm 1. Training Code

def train_loss(images, proj_mat, ref_points, gt, L):
images: [B, N, H, W, 3]
proj_mat: projection matrix [B, N, 4, 4]
ref_points: reference points [K, 3]

gt: ground truth 3D bounding box [B, ~, 8, 3]
B: batch

N: number of views

K: number of queries

L: number of iterations

"

Encode image features
feats = image_encoder (images)

Generate ray positional encodings
ray_encoding = generate_ray_encoding (proj_mat)

3D-aware image features
feats = feats + ray_encoding

supervise the prediction in each iteration
loss_list = []
for 1 in range(L):
pixel-aligned features
pa_feat = sample_and_pool_feats (feats, ref_points
, proj_mat)

point positional encoding
point_pos = positional_encoding(ref_points)

transformer decoder layer
output = layer (tgt=pa_feat, memory=feats,
query_pos=point_pos)

detection head
box_param = det_head (output)

get the object centers
box_param[’center’] += ref_points

new reference points for the next iteration
ref_points = box_param[’center’].detach()

loss computation
loss_list.append(loss (box_param, gt))

return loss_list

it is omitted. The query for reference point x is defined as:

Gz = MLP(y(2)) + % > fia » (1)

MLP is a small neural net that embeds the Fourier positional
encoding of z, v(x) [42, 33].

By encoding the 3D location of the reference point x
and its appearance from the input views, query g, carries
both appearance and geometric cues. Our appearance- and
geometry-informed queries attend to the 3D-aware input
feature maps which allows the model to encode 3D-to-2D
correspondences and make 3D predictions from just 2D in-
put views. This is unlike PETR [27], where queries encode
only the coordinates of the reference points. We show in
our experiments that the absence of appearance cues in the
queries leads to lower performance and slower convergence
rates. Note that PIFu [37] also remarked the importance of
pixel-aligned features when making 3D predictions for the
task of human shape reconstruction from images.

3.3. Recurrent Query-Based Decoding

The goal of the decoder is to predict how a 3D reference
point, encoded by the query, should be translated in order
to match a true object center. Initially, the reference point is
far from the object, as it is randomly sampled from the 3D
space. In order to predict how to correctly translate it, we
need to capture long-range contextual and geometric cues
with the input views. We achieve this via cross-attention
between our proposed appearance- and geometry-informed
queries and 3D-aware input feature maps.

Our decoder is one recurrent PARQ layer which chains a
single DETR [6] transformer decoder layer and a detection
head (see Sec. 3.4). The pixel-aligned queries cross-attend
to the image features through the multi-head attention oper-
ation inside the DETR transformer decoder layer. Since the
reference point is initially far from the object, we perform L
iterative predictions via recurrent decoding. The reference
points are initially randomly positioned in 3D space. They
are recurrently updated with offsets predicted by the PARQ
layer. If z is the initial 3D reference point,

x; = PARQ (w—1,{F}'}) + 211 2

Note that all L updates share the same weights in the trans-
former decoder. This is unlike DETR [6] and PETR [27]
where distinct non-shared layers in the transformer decoder
make object predictions. In addition to sharing weights
across updates, we differ from PETR [27] as we encode
the newly predicted object location and its appearance in
the query of the subsequent update. PETR only encodes the
initial location of the reference point, zy. Our experiments
show that our design choice is more effective and robust to
distribution shifts when sampling reference points.

3.4. 3D Detection Head and Objective

The detection head inputs the output of the decoder and
makes 3D predictions. 3D objects are represented as 3D
bounding boxes with four parameter groups, each predicted
by MLPs: (1) center offset: [Ax,Ay,Az] € R? repre-
sents the relative offset of the object center from the refer-
ence points, (2) rotation: p € R® represents the continuous
6D [50] rotation of the object, (3) object size: [w, h, f] are
the box dimensions log-normalized with category-specific
pre-computed means, and (4) object class: ¢ € RICIH1 are
confidence scores across the object classes C (+1 for no-
object). More details in the supplementary.

Following DETR [6], we match predictions to ground
truths using the Hungarian algorithm [21]. Aside from Hun-
garian matching, we also match the GT box and the pre-
dictions whose corresponding reference points are in close
proximity to this GT box (< 0.2m), since for two adjacent
reference points which have similar queries, they should
both detect nearby objects. We supervise the object detec-
tion output in each iteration. The training objective, L, is a

weighted sum of the losses for center offset £, rotation £,
object size L and classification L.

Lg=0aoLlo+ o Ly +asLls+acLle. 3)

L, and L, is an L1 loss, £, is an L2 loss, and L. is the
cross entropy loss. We set v, o, vy t0 5.0 and . to 1.0.

3.5. Implementation Details

For the image backbone we use ResNet50 [16], pre-
trained on ImageNet, integrated with a feature pyramid net-
work (FPN) [26]. Unless otherwise stated, we use 3-frame
snippets (/N=3), 8 recurrent updates during decoding (L=8),
and sample 256 reference points. We use the same number
of queries for baselines [27, 44]. The dimension of query
and image features is 1024. In the transformer decoder
layer, we use 4 decoder heads, and the feedforward dimen-
sion is 768. The dropout rate is 0.1. The camera coordinates
of the middle snippet frame define the snippet coordinate
system. All 3D predictions are defined with reference to
that snippet coordinate system. We define the bounding re-
gion to sample 3D points of size 6m x 2.5m x 5m aligned
with the snippet coordinate system. This volume contains
93.7% of training box centers on ScanNet. We implement
our model using PyTorch [34] and train across 8§ NVIDIA
A5000 GPUs with a batch size b = 16 (2 per GPU). We
use the AdamW optimizer [30] and an initial learning rate
of 10~*. We scale the learning rate by b/256 [12] and use
a cosine annealing schedule [29]. Algorithm | provides the
pseudo-code for PARQ’s training procedure. See more im-
plementation details in the supplementary.

4. Experiments

We tackle 3D object detection from a few (e.g. 3) consec-
utive RGB frames of complex indoor scenes with many ob-
ject types. We provide an extensive quantitative and qualita-
tive analysis of our model’s performance and show that our
approach outperforms the previous state-of-the-art methods
for the task. More importantly, we show that appearance-
informed queries lead to better performance, faster conver-
gence and can leverage more input views during inference.
Finally, we test our model’s generalization ability by de-
ploying it on user-captured videos without any finetuning.
There, scenes are captured with an iPhoneXR, and camera
poses are obtained from ARKit [1].

Datasets. We experiment on the popular ScanNetv2 [8]
and ARKitScenes [3] datasets. The ScanNet dataset con-
tains RGB-D videos of 1613 indoor scenes with multiple
objects in complex spatial arrangements. Scan2CAD [2]
aligns CAD models which are used to extract 3D bounding
box annotations for all objects in the scene. Following [41],
we evaluate on 9 classes and use the official train/val splits
by [8]. On ScanNet, the input image size is 320 x 240 and

the image feature map size is 80 x 60. ARKitScenes is a
challenging dataset of indoor scenes which includes manu-
ally labeled 3D oriented bounding boxes for a large taxon-
omy of furniture. We follow the official train/val/test split
and evaluate for all 17 classes. The orientation of the im-
ages in the ARKitScenes dataset vary from video to video.
Even though they sky direction of each video is provided in
the metadata, some labels are inaccurate . We follow the
metadata to rectify the images. We use the videos with sky
directions ‘Up’ and ‘Down’. On ARKitScenes, the input
image size is 256 x 192 and the image feature map size is
64 x 48.

Extracting video snippets. We focus on online 3D ob-
ject detection from a short video snippet. Given a monocu-
lar video and per-frame camera poses, extracted from [9, 1],
we split the video into snippets of NV frames as follows: The
first frame is selected. Similar to [38, 46], the next frame is
added if its relative translation is greater than 0.1m or its
relative rotation angle is greater than 15° compared to the
last selected frame. Once IV frames are selected, they form
the snippet. Our selection process ensures that snippets con-
tain consecutive video frames which are relatively visually
diverse. Examples of our snippets are shown in Fig. 7.

Next, we extract 3D box annotations for each snippet.
Both Scan2CAD and ARKitScenes provide 3D annotations
for the entire scene in world space, which is not suitable
for us. For each snippet, we keep annotations belonging to
the visible objects in the snippet. To determine whether an
object is within the snippet frustum, we project the corners
of its 3D box on the views and calculate the IoU between
the projected 2D box and the image border. If the IoU is
less than 0.5 we remove the box. To determine whether
an object is severely occluded in the snippet views, we un-
project the ground-truth view depth maps and calculate the
number of points inside the 3D box. If the number of points
is less than 100 we remove the box.

Metrics. For all experiments, we adopt the popular eval-
uation protocol from ODAM [22] which evaluates at the
scene level. For each scene, we keep the predictions above
a confidence threshold s from each input snippet. Hungar-
ian matching [21] with 3D Intersection-over-Union (IoU) is
used to match predictions between the current and the previ-
ous snippet. For two matched boxes, we only keep the box
with the higher score as one of the scene-level predictions.
3D NMS is used to filter out potential duplicate predictions.
More details in the supplementary. We use the same track-
ing and fusion strategy for baselines and our model for a
fair comparison.

A prediction is considered a true positive if its 3D IoU
with a ground-truth of the same class is above a prede-

Thttps://github.com/apple/ARKitScenes/issues/10

https://github.com/apple/ARKitScenes/issues/10

@IoU > 0.25 chair table cabinet trashbin bookshelf display sofa bathtub other average
ODAM [22] 50.6 425 9.3 32 19.9 14.8 3938 28.5 0.0 33.0/47.1/38.8
ImVoxelNet [36] 66.0 55.8 442 52.8 13.0 0.0 48.1 233 319 55.2/48.6/51.7
DETR3D [44] 516 354 30.4 224 18.5 156 348 19.1 11.2 24.4/44.7/31.6
PETR [27] 71.0 493 46.4 46.6 29.0 265 444 402 232 49.6/50.5/50.0
PARQ (ours) 725 46.2 443 51.8 20.4 30.6 405 46.8 21.6 54.2/48.2/51.1
@]JoU > 0.5 chair table cabinet trashbin bookshelf display sofa bathtub other average
ODAM [22] 225 99 5.0 7.6 4.8 2.7 16.2 6.7 0.0 12.1/17.3/14.2
ImVoxelNet [36] 43.8 17.5 18.8 21.5 0.8 0.0 16.7 12.3 13.8 28.6/25.2/26.8
DETR3D [44] 254 6.7 11.6 3.7 3.0 2.1 12.0 4.5 1.9 8.8/16.1/11.4
PETR [27] 442 20.5 25.8 12.7 9.3 5.1 222 16.8 9.3 25.4/25.9/25.6
PARQ (ours) 52.0 207 27.9 18.3 6.0 7.1 19.0 209 9.9 31.8/28.3/30.0
@IoU > 0.7 chair table cabinet trashbin bookshelf display sofa bathtub other average
ODAM [22] 23 0.6 0.0 1.6 0.0 0.0 1.0 0.8 0.0 1.2/1.7/1.4
ImVoxelNet [36] 6.7 1.8 2.2 0.9 0.0 0.0 3.7 2.7 1.7 4.1/3.6/3.8
DETR3D [44] 32 0.2 0.4 0.0 0.0 0.2 0.0 1.3 0.0 0.9/1.7/1.2
PETR [27] 9.1 2.0 7.7 0.4 0.1 0.0 1.2 1.9 1.4 4.6/4.6/4.6
PARQ (ours) 11.8 29 7.0 2.0 1.2 0.4 3.8 2.0 1.6 6.5/5.8/6.1

Table 1. Performance on ScanNet. We compare PARQ to prior works ODAM [22], ImVoxelNet [36], DETR3D [44] and PETR [27]. We
report F1 for each of the 9 classes of ScanNet and Precision/Recall/F1 for average performance. Note that ODAM omits the ‘other’ class,
so we exclude it from the average. See full Precision/Recall/F1 performance for all classes in the supplementary.

Prec./Rec./F1 @IoU>0.25 @IoU>0.5 @IoU>0.7
ImVoxelNet [36] 44.5/40.3/42.3 15.9/14.4/15.1 1.3/1.2/1.3
PETR [27] 36.6/53.2/43.4 14.8/21.5/17.5 2.5/3.7/3.0
Ours 54.1/44.4/48.8 26.7/21.9/24.1 6.3/5.2/5.7

Table 2. Performance on ARKitScenes with 3 views. We report
average Precision/Recall/F1 for all 17 classes. The complete table
is provided in the supplementary.

fined threshold 7. Duplicate predictions, namely predic-
tions paired to an already matched true object, are marked
as false positives. We report Precision, Recall, and F1:

N, N, 2 x Prec. .
Prec. = tp , Rec. = i, Fl= sx rec. x fec. fec “é)
pred gt Prec. + Rec.
Nip, Npred, Ngi are the numbers of true positives, predic-

tions, and true objects. We set 7 = [0.25,0.5,0.7].
4.1. Comparison to Other Methods

We compare our method to recent multi-view 3D object
detection models. Two adopt a DETR-style approach, one
is a volumetric approach and one is a late fusion method.
DETR3D [44] follows DETR [6] and uses learnable queries
to predict the 3D bounding boxes. The learnable queries in
DETR3D predict the reference points which are then used
to sample local appearance cues from the input views at the
projected 2D locations and update the queries. PETR [27]
adopts a DETR architecture where queries encode the 3D
location of the initial reference points and are then used
to attend to 3D-aware input feature maps. The queries are
updated via transformer layers. Our approach differs from
PETR in two distinct ways: (1) our queries encode both the
3D location and local appearance features of the 3D refer-
ence points, (2) we adopt recurrent decoding with attention

to refine the 3D reference points. The refined location along
with its corresponding appearance features is encoded by
the queries for the next recurrent layer. ImVoxelNet [36]
fuses the input views into a voxel representation which is
then used to cast 3D predictions. Note that ImVoxelNet
predicts axis-aligned 3D bounding boxes on ScanNet. We
retrain DETR3D, PETR, and ImVoxelNet to take as input
the same views as our model and predict oriented 3D boxes.
We use the same 2D image backbone and detection head for
DETR3D and PETR and follow the official implementation
of Transformer architecture. The voxel grid in ImVoxelNet
is shaped 64 x 64 x 32 with a 0.08m voxel unit. Finally,
we compare to ODAM [22] a late fusion approach which
processes single-view detections from all frames of a snip-
pet by optimizing a multi-view objective. All methods are
evaluated identically following our evaluation protocol de-
scribed above. We select the confidence threshold s for each
method so as to maximize each model’s F1 score.

Table 1 compares performance on ScanNet with 3-frame
snippets. We report the F1 score for each object class
and Prec./Rec./F1 for the average performance. The com-
plete table is provided in the supplementary. We high-
light some interesting observations. Our method outper-
forms all baselines at the stricter IoU thresholds of 0.5
and 0.7, by +3.2% and +1.5% F1, respectively. Com-
pared to the DETR-style baselines [44, 27], we note that
our approach performs best on average for all IoU thresh-
olds proving that capturing long-range appearance and ge-
ometry cues via our geometry- and appearance-informed
queries is effective. Our method surpasses the volumetric
method ImVoxelNet [36] at the stricter IoU thresholds but
ImVoxelNet has a small advantage of +0.6% F1 at the 0.25

Prec./Rec./F1 @IoU>0.25 @IoU>0.5 @IoU>0.7
PARQ 54.2/48.2/51.1 31.8/28.3/30.0 6.5/5.8/6.1
w/o PA 52.3/48.2/50.2 28.6/25.8/27.1 5.4/4.9/5.1
w/o recurrence 54.3/47.9/50.9 27.9/27.2/27.6 6.0/5.1/5.5
w/o point PE 12.0/22.4/15.6 9.1/12.2/10.4 1.0/1.2/1.1
w/o ray PE 53.4/48.0/50.6 29.4/27.1/28.2 5.9/5.3/5.6

Table 3. PARQ ablations. We compare PARQ on ScanNet with
variants that remove pixel-aligned features from the queries (w/o
PA), perform no recurrent 3D refinement but updates query fea-
tures as in PETR (w/o recurrence), remove the positional encoding
of 3D points in queries (w/o point PE) and remove the ray posi-
tional encoding in image features (w/o ray PE).

IoU threshold. Since ImVoxelNet constructs a volume to
fuse multi-view features, performance is tied to the voxel
resolution. This leads to a competitive performance at the
loose ToU threshold (0.25) but worse results at stricter [oU
thresholds. Increasing the voxel resolution could increase
performance, but would result in a cubic increase in mem-
ory for the model. Table 2 reports the performance on the
ARKitScenes dataset. We report Prec./Rec./F1 for the av-
erage performance. Our approach outperforms all baselines
across all IoU thresholds in F1. We provide the complete
table in the supplementary.

4.2. Ablation Study

We conduct several ablation experiments on ScanNet to
validate the effectiveness of our model’s design choices,
shown in Table 3. We summarize key findings below.

Pixel-aligned queries perform better and train faster. To
show the impact of appearance-informed queries we com-
pare our model (1% row) to a variant without appearance
cues in the queries, w/o PA (2™ row). Appearance-informed
queries perform better across all IoU thresholds and show a
+2.9% boost in F1 at 0.5 ToU. Fig. 8 validates this obser-
vation by visualizing the attention maps. Fig. 8(d) qual-
itatively shows how queries without appearance informa-
tion focus only on the local area around the reference point
while our appearance-informed queries can capture long-
range contextual interactions in the input views as shown in
Fig. 8(a-c). Additionally, appearance-informed queries lead
to faster convergence as shown in Fig. 6. These results show
that appearance cues in queries are effective.

Recurrent refinement improves performance. Compared
to a variant without recurrent refinement similar to PETR,
w/o recurrence (3™ row), our proposed recurrent update
strategy gives up to +2.0% boost in F1. Fig. 8(b) visual-
izes the attention maps after each iteration. During our up-
dates, the appearance-informed query attends to the target
object, even at iteration 0 where the target is furthest away,
and moves closer to the target with every update.

Note that PETR updates queries after every transformer
layer in the decoder. However, the new queries are the out-

Fl1 1view 2views 3views Sviews 7views 9 views
ImVoxelNet [36] 25.0 26.6 26.8 26.5 25.0 233
PETR [27] 21.3 21.7 25.6 24.5 244 21.0
PARQ (ours) 26.3 27.6 30.0 31.1 313 311

Table 4. Number of views. We test models on different number of
views. We train with 3 views and report F1 at @IoU > 0.5.

put of the previous attention layer and don’t encode the
newly predicted 3D locations. This is a stark difference
from our approach which updates queries with new appear-
ance and geometry information after each iteration.

Geometry-informed queries are critical. Embedding the
3D reference points in the queries is critical, as shown by
our ablation w/o point PE (4™ row). This is not a surprise as
our model is tasked to predict the target offset from the 3D
reference point, so knowledge of its 3D location is helpful.

3D-aware input features are helpful. We remove ray
positional encodings in the input feature maps, proposed
by [27], in w/o ray PE (5™ row). We notice that ray po-
sitional encodings slightly boost performance.

4.3. Deeper Dive into PARQ

Next, we investigate the properties of PARQ to better un-
derstand its characteristics and highlight its strengths. The
experiments are conducted on the ScanNet dataset.

Dynamic queries. The benefit of transformer architectures
is that they can generalize to varying set lengths and are not
tied to fixed-resolution inputs. For 3D tasks, this is impor-
tant as one might want to query models with varying num-
bers of 3D points depending on the resolution of the scene.
But how robust are methods to varying numbers of queries?
We compare PARQ to PETR [27] to demonstrate their ef-
ficacy when queried dynamically. We train both PETR and
our model with 256 queries and test the model with differ-
ent numbers of queries. Because performance is affected by
point distribution, especially in the case of fewer queries,
we run each setting 6 times and report the mean/max/min
performance in Fig. 4. When testing with 256 queries (same
as during training), we test once with the same distribution
of points as during training. We note that our model is sig-
nificantly more robust to dynamic queries. When the num-
ber of queries deviates from training, PETR’s performance
drops. This suggests that PETR is prone to overfitting the
training distribution. This connects to our findings from Ta-
ble 3 and Fig. 8. By encoding only geometric cues in the
queries, the model focuses on local regions and cannot de-
tect far-away objects which is the case when the queries are
few. This is qualitatively shown in Fig. 8(d).

Recurrent refinement. PARQ adopts a recurrent update
strategy during training performed by one PARQ layer. This
design allows us to perform an arbitrary number of refining
iterations during inference. We explore the effect of vary-

IN
o

=< Ours-Mean
+ ¥ Ours-Max

w
o

-4 Ours-Min
PETR-Mean 3 302312 302 296 300 295
30 PETR-Max]""28.1 ‘,;é—:_-.‘-*:“-‘...L:;%-_.L._.gé__,___;ab“n‘i
PETR-Min e R
n training queries 23 5 7 -
;25 £5:2 -
o 7 ¥
il P
320
®
o 15

-
0 1 2 4 8 16 32 64 128 256 512
Number of queries

Figure 4. Varying the number of queries at inference. We run
each setting 6 times and report the mean/max/min performance.

325
300 291 29.0

27.5 ’
\n
g 25.0 236/
3225

920.0
w

175 =& Ours
15.0 PETR

0 2 8 10

Numbgr of iterations?layers
Figure 5. Varying the number of query updates at inference.
Note PETR doesn’t share weights in each layer which means we
cannot show its performance for more layers than trained for (6).

ing the number of PARQ iterations in Fig. 5 and compare
to PETR [27]. The official implementation of PETR uses
6 layers and does not share weights across layers. We re-
port performance from layer 1 to 6. All models are trained
with 256 queries and PARQ is trained to perform 8 itera-
tions. While PARQ’s performance keeps increasing with
more layers, it reaches close to maximal performance in just
two layers. PETR also benefits from updates but lags in per-
formance.

Number of views. Our experiments use 3 view video snip-
pets during training and testing. However, our model can
input any number of views during inference. We show per-
formance for {1, 2, 3, 5, 7, 9} views during testing in Ta-
ble 4. We also compare to PETR [27] and ImVoxelNet [36]
under the same setting. All models are trained with 3 views
and tested with the number of views indicated. We observe
that PETR and ImVoxelNet perform equally or worse when
the number of test views is increased. PARQ sees a +1.3%
performance boost in F1 by increasing the number of views.

Efficiency. We report running stats in Table 5. All exper-
iments are conducted on an NVIDIA A5000. Our model
is the most lightweight compared to other baselines. Our
model has an adaptable computation budget at inference
which can be controlled with the number of iterations and
queries. Based on Fig. 4 and Fig. 5 we select 32 queries and
2 layers. At these settings, PARQ runs faster (105ms) and
detects objects better (F1 28.2) than related work.

w
=]

o
—r—
-
-

=0.5

N N

o G
\
X
\

F1@loU
o
o

-
o

== Ours
PETR
DETR3D
Ours w/o PA

v

0 100 200 300 400 500 600 700
Traning iterations (K)

Figure 6. Convergence speed for PARQ and competing methods.

Method Time Test Mem. Train Mem. Param. F11
(ms)] (GB). (GB)| M), @IoU>0.5
ImVoxelNet [36] 127 3.08 6.84 112.0 26.8
DETR3D [44] 220 2.63 3.93 57.1 11.4
PETR [27] 248 3.74 8.39 1315 25.6
PARQ (ours) 2901(()lfelow) 2.82 5.83 44.7 zgfz
PARQ (ours) Time (ms) of ours with different settings
Num. Iter. 1 2 4 6 8
Ours with 256 quer. 180 194 213 252 290
Num. Quer. 16 32 64 128 256
Ours with 8 iter. 156 167 171 227 290

Table 5. Efficiency. The reported inference time, memory con-
sumption, parameter counts and F1 scores show that PARQ is
fastest and achieves the highest performance. *PARQ achieves
an inference time of 105ms with 32 queries and 2 layers.

5. Limitations

We observe that our approach can fail when detecting
large objects, objects with a similar color to the background
(e.g., black object in the dark), and objects with heavy oc-
clusion. We provide failure cases in the supplementary.

6. Conclusion

We introduce PARQ for multi-view 3D object detection.
PARQ’s key idea is to leverage the pixel-aligned queries ini-
tialized from reference points in 3D space and to update
their 3D locations layer-by-layer to the 3D object center
with recurrent cross-attention operations. Our design en-
ables PARQ to encode the 3D-to-2D correspondences and
capture global contextual information of the input images,
as we demonstrate with our qualitative analysis. Exper-
iments show that PARQ outperforms prior best methods,
learns and detects faster, is more robust to distribution shifts
in reference points, can leverage additional input views,
while inference compute can be adapted by changing the
number of recurrent iterations.

Feature Map Prediction Feature Map Feature Map Predictions
s = T e . 2] w

Figure 7. Qualitative results on ScanNet (top) and user-captured videos (bottom). Zoom in for details. We compress the image feature
maps using Linear PCA [13]. Note that the learned feature maps are multi-view consistent. We also test our model’s generalization ability
by deploying it on user-captured videos without any fine-tuning. More results in the supplementary.

0 1 2

(a) Different scenes (b) One query in different iterations

® ® ® e ® ® e ® ® ® ® e eEoeeeooeoeoee

(c) Different queries in one scene (d) W/o pixel-aligned feature

3

Figure 8. Attention maps. Zoom in for details. We visualize the attention map between queries and multi-view images. The red marker
represents the projected 3D point. (a) Attention for different scenes after PARQ layer 0. (b) During the recurrent updates, the 3D point
approaches the region with high attention weights. (c) Queries for a scene tend to attend to objects closest to them. (d) Without pixel-
aligned features, as in PETR, queries focus only on the local area around them; in stark contrast to PARQ in (a-c) which attends globally.

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

(16]

Augmented Reality with ARKit- Apple Developer. 1, 5
Armen Avetisyan, Manuel Dahnert, Angela Dai, Manolis
Savva, Angel X. Chang, and Matthias Niessner. Scan2cad:
Learning cad model alignment in rgb-d scans. In CVPR,
2019. 5

Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Tal Dimry,
Yuri Feigin, Peter Fu, Thomas Gebauer, Brandon Joffe,
Daniel Kurz, Arik Schwartz, and Elad Shulman. Arkitscenes
- adiverse real-world dataset for 3d indoor scene understand-
ing using mobile rgb-d data. In NeurIPS, 2021. 5

Garrick Brazil, Gerard Pons-Moll, Xiaoming Liu, and Bernt
Schiele. Kinematic 3d object detection in monocular video.
In ECCV, 2020. 2

Carlos Campos, Richard Elvira, Juan J. Gémez Rodriguez,
José M. M. Montiel, and Juan D. Tardés. ORB-SLAM3:
An Accurate Open-Source Library for Visual, Visual-Inertial
and Multi-Map SLAM. ArXiv, 2020. 1

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV, 2020. 1,
3,4,6

Xiaozhi Chen, Kaustav Kundu, Ziyu Zhang, Huimin Ma,
Sanja Fidler, and Raquel Urtasun. Monocular 3d object de-
tection for autonomous driving. In CVPR, 2016. 2

Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Niefner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
CVPR, 2017. 5

Angela Dai, Matthias Niener, Michael Zollhofer, Shahram
Izadi, and Christian Theobalt. Bundlefusion: Real-time
globally consistent 3d reconstruction using on-the-fly surface
reintegration. 7oG, 2017. 5

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In /CLR, 2020. 3
Tobias Fischer, Yung-Hsu Yang, Suryansh Kumar, Min Sun,
and Fisher Yu. Cc-3dt: Panoramic 3d object tracking via
cross-camera fusion. In CoRL, 2022. 2

Priya Goyal, Piotr Dolldr, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
sgd: Training imagenet in 1 hour. ArXiv, 2017. 5

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp.
Finding structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions. SIAM
review, 2011. 9

Richard Hartley and Andrew Zisserman. Multiple view ge-
ometry in computer vision. Cambridge university press,
2003. 1

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017. 2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 3,5

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

Benran Hu, Junkai Huang, Yichen Liu, Yu-Wing Tai, and
Chi-Keung Tang. Nerf-rpn: A general framework for object
detection in nerfs. In CVPR, 2023. 2

Hou-Ning Hu, Qi-Zhi Cai, Dequan Wang, Ji Lin, Min Sun,
Philipp Krihenbiihl, Trevor Darrell, and Fisher Yu. Joint
monocular 3d vehicle detection and tracking. In /ICCV, 2019.
2

Junjie Huang and Guan Huang. BEVDet4D: Exploit Tempo-
ral Cues in Multi-camera 3D Object Detection. ArXiv, 2022.
2

Junjie Huang, Guan Huang, Zheng Zhu, Yun Ye, and Dalong
Du. BEVDet: High-performance Multi-camera 3D Object
Detection in Bird-Eye-View. ArXiv, 2022. 2, 3

Harold W Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 1955. 4,5
Kejie Li, Daniel DeTone, Steven Chen, Minh Vo, Ian
Reid, Hamid Rezatofighi, Chris Sweeney, Julian Straub, and
Richard Newcombe. ODAM: Object Detection, Association,
and Mapping using Posed RGB Video. In ICCV, 2021. 1, 2,
5,6

Kejie Li, Hamid Rezatofighi, and Ian Reid. Moltr: Multiple
object localization, tracking and reconstruction from monoc-
ular rgb videos. RA-L, 2021. 1,2

Kejie Li, Martin Riinz, Meng Tang, Lingni Ma, Chen Kong,
Tanner Schmidt, Ian Reid, Lourdes Agapito, Julian Straub,
Steven Lovegrove, and Richard Newcombe. FroDO: From
Detections to 3D Objects. In CVPR, 2020. 1, 2

Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chong-
hao Sima, Tong Lu, Qiao Yu, and Jifeng Dai. BEV-
Former: Learning Bird’s-Eye-View Representation from
Multi-Camera Images via Spatiotemporal Transformers. In
ECCV,2022. 2,3

Tsung-Yi Lin, Piotr Dolldr, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature Pyramid
Networks for Object Detection. In CVPR, 2017. 3,5
Yingfei Liu, Tiancai Wang, Xiangyu Zhang, and Jian Sun.
PETR: Position Embedding Transformation for Multi-View
3D Object Detection. In ECCV, 2022. 2, 3,4,5,6,7,8
Yingfei Liu, Junjie Yan, Fan Jia, Shuailin Li, Aqi Gao, Tian-
cai Wang, Xiangyu Zhang, and Jian Sun. PETRv2: A Uni-
fied Framework for 3D Perception from Multi-Camera Im-
ages. ICCV, 2023. 2

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. In /CLR, 2017. 5

Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In /CLR, 2019. 5

Kevis-Kokitsi Maninis, Stefan Popov, Matthias NieBner, and
Vittorio Ferrari. Vid2cad: Cad model alignment using multi-
view constraints from videos. TPAMI, 2022. 1, 2

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 2

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 4

https://developer.apple.com/augmented-reality/

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
Imperative Style, High-Performance Deep Learning Library.
In NeurIPS, 2019. 5

Tong Qin, Jie Pan, Shaozu Cao, and Shaojie Shen. A General
Optimization-based Framework for Local Odometry Estima-
tion with Multiple Sensors. ArXiv, 2019. 1

Danila Rukhovich, Anna Vorontsova, and Anton Konushin.
Imvoxelnet: Image to voxels projection for monocular and
multi-view general-purpose 3d object detection. In WACYV,
2022.2,6,7,8

Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. In ICCV, 2019. 4

Jiaming Sun, Yiming Xie, Linghao Chen, Xiaowei Zhou, and
Hujun Bao. Neuralrecon: Real-time coherent 3d reconstruc-
tion from monocular video. In CVPR, 2021. 5

Richard Szeliski. Computer vision: algorithms and applica-
tions. Springer Nature, 2022. 1

Shubham Tulsiani, Tinghui Zhou, Alexei A. Efros, and Ji-
tendra Malik. Multi-view supervision for single-view recon-
struction via differentiable ray consistency. In CVPR, 2017.
1

Michat J. Tyszkiewicz, Kevis-Kokitsi Maninis, Stefan
Popov, and Vittorio Ferrari. RayTran: 3D pose estimation
and shape reconstruction of multiple objects from videos
with ray-traced transformers. In ECCV, 2022. 1,2, 5
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, F.ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 1,
3,4

Tai Wang, Jiangmiao Pang, and Dahua Lin. Monocular 3D
Object Detection with Depth from Motion. In ECCV, 2022.
2

Yue Wang, Vitor Guizilini, Tianyuan Zhang, Yilun Wang,
Hang Zhao, , and Justin M. Solomon. Detr3d: 3d object
detection from multi-view images via 3d-to-2d queries. In
CoRL, 2021. 2,3,5,6,8

Charles Wheatstone. Contributions to the physiology of vi-
sion.—part the first. on some remarkable and hitherto un-
observed phenomena of binocular vision. In Abstracts of
the Papers Printed in the Philosophical Transactions of the
Royal Society of London, 1843. 1

Yiming Xie, Matheus Gadelha, Fengting Yang, Xiaowei
Zhou, and Huaizu Jiang. PlanarRecon: Real-time 3D plane
detection and reconstruction from posed monocular videos.
In CVPR, 2022. 5

Chenfeng Xu, Bichen Wu, Ji Hou, Sam Tsai, Ruilong Li,
Jialiang Wang, Wei Zhan, Zijian He, Peter Vajda, Kurt
Keutzer, and Masayoshi Tomizuka. Nerf-det: Learning
geometry-aware volumetric representation for multi-view 3d
object detection. In ICCV, 2023. 2

[48] Wang Yifan, Carl Doersch, Relja Arandjelovié, Joao Car-

reira, and Andrew Zisserman. Input-level inductive biases
for 3d reconstruction. In CVPR, 2022. 2

[49] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-

based 3d object detection and tracking. In CVPR, 2021. 2

[50] Yi Zhou, Connelly Barnes, Lu Jingwan, Yang Jimei, and Li

Hao. On the continuity of rotation representations in neural
networks. In CVPR, 2019. 4

