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Abstract

We study the task of weakly-supervised point cloud se-
mantic segmentation with sparse annotations (e.g., less than
0.1% points are labeled), aiming to reduce the expensive
cost of dense annotations. Unfortunately, with extremely
sparse annotated points, it is very difficult to extract both
contextual and object information for scene understand-
ing such as semantic segmentation. Motivated by masked
modeling (e.g., MAE) in image and video representation
learning, we seek to endow the power of masked model-
ing to learn contextual information from sparsely-annotated
points. However, directly applying MAE to 3D point clouds
with sparse annotations may fail to work. First, it is non-
trivial to effectively mask out the informative visual con-
text from 3D point clouds. Second, how to fully exploit
the sparse annotations for context modeling remains an
open question. In this paper, we propose a simple yet ef-
fective Contextual Point Cloud Modeling (CPCM) method
that consists of two parts: a region-wise masking (Region-
Mask) strategy and a contextual masked training (CMT)
method. Specifically, RegionMask masks the point cloud
continuously in geometric space to construct a meaning-
ful masked prediction task for subsequent context learning.
CMT disentangles the learning of supervised segmentation
and unsupervised masked context prediction for effectively
learning the very limited labeled points and mass unlabeled
points, respectively. Extensive experiments on the widely-
tested ScanNet V2 and S3DIS benchmarks demonstrate the
superiority of CPCM over the state-of-the-art.

1. Introduction
With the growing demand for autonomous driving and

robotic navigation, point cloud semantic segmentation be-
comes an indispensable technique for accurate 3D environ-
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Figure 1: Effectiveness of the proposed CPCM on context
comprehension ability compared to the consistency-based
baseline [16, 53]. We conduct masked evaluations to in-
spect the model’s contextual understanding ability. The vi-
sual comparison of results from different methods (mask ra-
tio = 40%) and the performance w.r.t. different mask ratios
are shown in the top and bottom panels, respectively.

ment perception [18, 27, 51]. Recent years have witnessed
great progress in fully-supervised learning in point cloud
segmentation [2, 6, 10, 14, 31, 32, 39, 47, 56]. However,
densely-annotating point-wise labels are time-consuming,
labor-intensive as well as economic-inefficient to obtain
since the number of points in point cloud data can easily
reach tens of thousands of magnitude [42, 48]. It goes with-
out saying that diving into point cloud semantic segmenta-
tion from sparse labels is crucial to reduce the annotation
cost and expand the application boundary [9, 20, 22].

Very recently, to reduce the reliance on dense labels
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while still delivering satisfactory point cloud semantic seg-
mentation performance, most effort has been put into learn-
ing from the weakly-annotated labels [9, 16, 25, 42, 48,
49, 52, 53]. Among several types of weakly-annotated la-
bels, the partial point-wise labeling scheme offers the best
trade-off between annotation cost and segmentation perfor-
mance [9, 22]. In the partially annotated point cloud data,
the labeled part typically occupies a very small portion of
points (e.g., 0.1%) per scene [9]. In this case, directly ap-
plying supervised cross-entropy loss only on the limited la-
beled part is prone to overfitting [25, 33, 43]. As a result, the
primary challenge is learning from a significant proportion
of unlabeled points to improve model generalization perfor-
mance, rather than utilizing only the labeled points [16, 53].

Existing methods seek to tackle the challenge by ex-
ploiting different levels of feature consistency under vari-
ous data augmentations. To be specific, researchers resort
to enforcing feature consistency between differently aug-
mented or geometrically calibrated point clouds by discrim-
inating points from different scenes with contrastive learn-
ing [8, 11, 16, 45], exploring color & geometric smooth-
ness [48, 52], more advanced consistency loss such as JS-
divergence [53] and similarity weighted loss [43]. How-
ever, given limited annotations, exploring feature consis-
tency only would be insufficient to capture the complex
structures of point clouds, making it very difficult to extract
both contextual and object information for satisfactory seg-
mentation performance. To inspect the consistency-based
methods’ comprehension of scene context, we conduct a
pilot study by masked evaluation: evaluate the segmenta-
tion performance given a context-to-be-filled point cloud.
As shown in Figure 1, the performance of the consistency-
based method degenerates drastically, indicating a poor un-
derstanding of the scene context, even in this simple case.
Thus, comprehending the complex scene context from mass
unlabeled points remains an unresolved issue.

Motivated by masked modeling (e.g., MAE [7]) in im-
age and video that learns good representations by mask-
ing random patches of the input image and reconstructing
the missing information, we seek to endow the power of
masked modeling for weakly-supervised point cloud seg-
mentation. However, directly employing MAE to 3D point
clouds with sparse annotations may fail to work due to the
following reasons. First, since 3D point clouds are typi-
cally unordered and irregular, it is nontrivial to mask out
the informative visual context from the 3D point clouds for
subsequent context learning. Second, considering the lim-
ited but valuable labeled data in the weakly-annotated point
cloud, how to fully exploit the labeled points in masked
modeling remains an open question.

To address the above issues, we propose a simple yet ef-
fective Contextual Point Cloud Modeling (CPCM) that con-
sists of two parts: region-wise masking (RegionMask) strat-

egy and a contextual masked training (CMT) method. To
be specific, RegionMask evenly divides the geometric space
into a set of cuboids and masks all points within the cuboids
selected with a given mask ratio. Different from the trivial
point-wise masking solution [26] that performs point-wise
random masking, our RegionMask masks the point cloud
continuously in the geometric space to provide a meaning-
ful masked context prediction task. Beyond that, Region-
Mask is able to control the difficulty of the masked feature
prediction task by adjusting a hyper-parameter region size,
showing flexibility in handling different amounts of annota-
tion. Similar to MAE [7], we expect that with a very high
mask ratio (i.e., 0.75), the model is able to learn more visual
concepts [7], thereby mastering the contextual information.
However, as shown in our experiments, directly incorpo-
rating the masked modeling objective into the consistency-
based training framework impedes learning from the limited
but valuable labeled points, resulting in degenerated perfor-
mance. To resolve this problem, we propose a contextual
masked training (CMT) method that adds an extra masked
feature prediction branch into the consistency-based frame-
work, which not only paves the way for learning labeled
data but allows the model to effectively learn the complex
scene context. The proposed CPCM achieves state-of-the-
art performance on two widely-tested benchmarks ScanNet
V2 and S3DIS. For example, on ScanNet V2 [4], CPCM
outperforms SQN [9] by 5.6% mIoU on online test set.

Our contributions are summarized as follows:

• We propose contextual point cloud modeling that
incorporates masked modeling into the consistency-
based training framework to effectively learn contex-
tual information from sparsely-annotated data.

• We propose a region-wise masking strategy that masks
the point cloud continuously to construct the meaning-
ful masked prediction task and a contextual masked
training method that facilitates the learning from lim-
ited labeled data and masked context prediction.

• To the best of our knowledge, we are the first to
explore 3D masked modeling on weakly-supervised
point cloud segmentation. Extensive experiments on
widely-tested benchmarks demonstrate the superior
performance of the proposed CPCM.

2. Related Work
Fully-supervised point cloud segmentation. There are
mainly three kinds of fully-supervised methods proposed to
encode the 3D point cloud into effective representations for
semantic segmentation, including point-based [10, 13, 15,
31, 32, 41, 54], voxel-based [3, 6, 14, 17, 23, 24, 34, 35, 44]
and hybrid methods [2, 47]. Early attempts [37, 39, 56]
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Figure 2: Overall scheme of our CPCM method. Given a point cloud P, we first apply two random augmentations and our
region-wise masking to obtain the augmented point clouds P1,P2 and the masked point cloud Pm, respectively. Then, the
features Z1,Z2,Zm are extracted by a weight-sharing 3D UNet. The supervised cross-entropy loss Lseg is computed over
labeled features and a consistency loss Lconsis is computed on Z1,Z2. Last, our masked consistency loss Lmask enforces
the feature consistency between Z1,Zm and Z2,Zm to help the model focus on learning contextual information.

simply employ the 2D convolution on the projected point
cloud image, which is efficient but the projection pro-
cess causes the loss of 3D geometric detail. The point-
based methods are proposed to directly process the irregu-
lar and unordered points with order-agnostic architectures
such as PointNet [31] and PointNet++ [32] that can be
naturally applied to the point cloud but are less effective
than 2D convolution in encoding the contextual informa-
tion [10, 13, 15, 41, 54]. The voxel-based methods [3, 6, 14]
combine the neighboring points into regular grids and often
leverage sparse convolution [6, 17, 34, 35, 44] to handle
the sparse voxelized data. The latest works combine the
merits from both worlds and form hybrid methods, but also
bring more complex architecture design and extra training
costs [2, 47]. Overall, the fully-supervised point cloud seg-
mentation methods have a strong dependence on densely-
annotated labels, limiting their application scenarios.

Weakly-supervised point cloud segmentation. Learn-
ing from weakly annotated point cloud data has become
a hot research topic [9, 25, 42, 43, 48, 52, 53], which not
only reduces the annotation cost but also turns out to be
a more general solution for real-life segmentation scenar-
ios [22, 42]. For the partially labeled point cloud, the su-
pervised cross-entropy loss is suitable to learn from the la-
beled points, which, however, is prone to learn an over-
fit segmentation model due to the very limited annota-
tions [25, 33, 43]. Thus, existing approaches focus on learn-
ing the major unlabeled part and can be grouped into two
paradigms: pseudo labeling [9, 25, 42] and consistency-
based regularization [16, 48, 49, 52, 53]. The pseudo-
labeling methods predict pseudo-labels of the unlabeled

points to explore them. MPRM [42] trains a segmentation
model on the sub-cloud labels and uses the class activation
map [55] to pseudo-label the whole sub-cloud to train the
final model. OTOC [25] improves the quality of the pseudo
labels with multi rounds self-training. SQN [9] leverages
the geometric prior to better use limited labels. Since the
pseudo label is destined to be inaccurate, consistency-based
approaches learn the feature consistency across augmenta-
tions [16, 43, 48, 49, 52, 53] or calibrated views [43] to use
mass unlabeled data. MIL [49] enforce scene-level feature
consistency for model optimization. Moreover, point-wise
consistency is also leveraged by considering the color or
geometric smoothness [48, 52], feature similarity [43, 53]
or using pseudo-labeling as guidance [16]. However, fea-
ture consistency across augmentations may not fully com-
prehend the complex structures of weakly-annotated point
clouds. Instead, we propose to learn masked feature consis-
tency to better explore the contextual information.

Masked modeling for vision. Masked modeling has been
a long endeavor to learn effective representation from vi-
sion data. Early attempts reconstruct RGB features from
masked images [30], which are improved by masking a very
high ratio of image content to learn meaningful visual rep-
resentation [7, 21, 46, 50]. Moreover, masked supervised
learning improves the perception of contextual information
in fully-supervised image semantic segmentation [57]. Re-
cently, researchers apply the masked modeling approach to
learn unlabeled point cloud data [19, 26, 28]. Unlike the
above settings, weakly-supervised point cloud segmenta-
tion provides both labeled and unlabeled data. Moreover,
applying masked modeling tailored for unsupervised / fully-



supervised learning to both labeled and unlabeled data si-
multaneously is rarely explored. In this paper, we propose
a contextual masked training method to learn from the lim-
ited supervision and the masked feature prediction task for
weakly-supervised point cloud semantic segmentation.

3. Contextual Point Cloud Modeling
Notations. Formally, a point cloud data is a collection of
N points P = {p1, p2, . . . , pN}, where each point pn of-
ten comprises the geometric location and RGB informa-
tion, i.e., pn = P[n] = (xn, yn, zn, rn, gn, bn). We use
[·] as the index operation that retrieves the corresponding
element (can be a vector or a scalar) from a set or a ma-
trix. To accomplish the point cloud semantic segmentation
task, given a point cloud P and a segmentation network
fθ(·) parameterized by θ, we expect the model to produce
point-wise classification features1 Z = Softmax

(
fθ(P)

)
,

where Z[n] ∈ (0, 1), argmax
(
Z[n]

)
∈ C and C =

{0, 1, 2, . . . , C − 1} is a predefined category set with C
classes. Unlike the fully-supervised point cloud semantic
segmentation that provides the label of every point in P,
only sparse annotations are available in weakly-supervised
point cloud semantic segmentation. The weakly-labeled
point cloud data comprises two parts, the labeled part and
the unlabeled part, i.e., (P,Y) = {(ps, ys) | s ∈ S} ∪
{(pu,⊘) | u ∈ U}, where S,U denote the index sets of the
labeled and unlabeled points respectively and ⊘ is a spe-
cial token denoting the label is unavailable. During model
training, a dataset D = {(P,Y)} includes hundreds of or
thousands of point cloud & weak-label pair is provided.

3.1. Problem Definition

With the limited labeled data and a mass of unla-
beled data, weakly-supervised point cloud semantic seg-
mentation focuses on learning useful representations from
a large amount of unlabeled data to improve model gen-
eralization. Existing approaches often achieve this by en-
forcing point-wise feature consistency across augmenta-
tions [16, 48, 49, 53]. Given a weakly-labeled point cloud
data (P,Y), two random augmentations2 are applied P1 =
Aug1(P) and P2 = Aug2(P). Based on this, point-wise
classification for two point clouds is calculated by Z1 =
Softmax

(
fθ(P1)

)
,Z2 = Softmax

(
fθ(P2)

)
. The general

form for the consistency-based method is as follows:

LCB = Lseg + αLconsis, (1)

where Lseg and Lconsis denote supervised cross-entropy
loss and the consistency loss introduced below and α is a
hyper-parameter that controls optimization strength on the
consistency loss. The supervised loss Lseg is computed

1We use the term features and logits interchangeably for convenience.
2Details on the data augmentation are put in the supplementary.

Algorithm 1 Training method for CPCM

Require: The training dataset D = {(P,Y)}, the point cloud
segmentation network fθ(·), the region size G, the mask ratio
R, the weighting factor α, β, the learning rate η.

Ensure: Optimized point cloud segmentation network fθ .
1: Randomly initializes the model parameters θ.
2: while not converge do
3: Obtain a weakly-labeled point cloud data (P,Y) from D.
4: Obtain the labeled indexes S from Y.
5: // perform two random augmentations
6: P1 ← Aug1(P),P2 ← Aug2(P).
7: Compute region-wise masking flag M by Eqn. (4).
8: Compute region-wise masked point cloud Pm by Eqn. (7).
9: // perform segmentation for augmented point clouds

10: Z1 ← Softmax
(
fθ(P1)

)
,Z2 ← Softmax

(
fθ(P2)

)
.

11: // perform segmentation for the masked point cloud
12: Zm ← Softmax

(
fθ(Pm)

)
.

13: Compute the cross-entropy loss Lseg by Eqn. (2).
14: Compute the consistency loss Lconsis by Eqn. (3).
15: Compute the masked consistency loss Lmask by Eqn. (9).
16: Compute the overall training objective LCPCM by Eqn. (8).
17: // update network parameters via gradient descent
18: θ ← θ − η∇θLCPCM.
19: end while

over limited labeled points:

Lseg =
1

|S|
∑

s∈S
CE

(
Z1[s],Y[s]

)
+CE

(
Z2[s],Y[s]

)
, (2)

where CE(·, ·) is the cross-entropy loss. In the mean-
while, the consistency loss Lconsis enforces point-wise fea-
ture consistency as follows:

Lconsis =
1

N

∑
n
JS

(
Z1[n],Z2[n]

)
, (3)

where JS(·, ·) minimizes the Jensen-Shannon divergence
of different features. Feature consistency from different
augmentations can exploit the unlabeled data but may not be
informative enough to comprehend the complex structure of
the point cloud data, failing to effectively explore the con-
textual information such as space, color and semantic conti-
nuity that is crucial for satisfactory segmentation. Attracted
by the strong context modeling ability of masked modeling
in image and video representation learning, we seek to en-
dow the power of masked modeling to weakly-supervised
point cloud segmentation. However, designing an effective
masking strategy for 3D point cloud data and developing a
compatible training scheme to fully exploit the limited la-
beled data for masked modeling remain open questions.
Overview. To answer the above questions, we propose
Contextual Point Cloud Modeling (CPCM) to model the
contextual information effectively with two steps: First, we
propose a region-wise masking strategy that masks the point
cloud in the continuous geometric space, providing mean-
ingful missing context to be filled. Second, we propose a



(a) Original (b) Point-wise (c) Region-wise (Ours)

Figure 3: Comparisons of different masking strategies. The
proposed region-wise masking removes meaningful context
to be filled. We set the mask ratio = 25% for visualization.

contextual masked training that facilitates the learning of
limited labeled points and masked feature prediction tasks
by adding an extra stream for masked feature extraction.
Then, we enforce the feature consistency between masked
and unmasked features to learn effective contextual repre-
sentations. The overall framework and algorithm of CPCM
are shown in Figure 2 and Algorithm 1, respectively.

3.2. Region-wise Point Cloud Masking

In this section, we introduce our region-wise mask-
ing scheme that provides an effective supervision signal
for the model to learn contextual information. To formu-
late the masking strategy, we first define M ∈ RN as a
zero-one vector to indicate whether a point in point cloud3

P ∈ RN×6 is masked or not and denote the mask ratio as
R (0 ≤ R ≤ 1), i.e., the number of the masked points is
R ∗N . Then, the masked point cloud Pm is computed in a
point-wise setting the color information to zero4:

Pm[n] =
[
xn, yn, zn,M[n] · rn,M[n] · gn,M[n] · bn

]
. (4)

To obtain a masked point cloud, a straightforward solu-
tion, termed PointMask, is to randomly sample each point
(or voxel) with the given mask ratio R

M[n] = 1{q ≤ R}, q ∼ U [0, 1], (5)

where 1{·} is the indicator function and q is a random vari-
able drawn from the uniform distribution U [0, 1]. As shown
in Table 4, PointMask delivers unsatisfactory improvement
compared to the baseline, especially with a very high mask
ratio (i.e., 0.75). We attribute this failure to the following
reasons: The PointMask strategy tends to decrease the res-
olution of the point cloud (see Figure 3b), which does not
effectively mask meaningful visual words [7] to predict.

To reasonably remove some contextual information
from a point cloud, we introduce Region-wise Masking
(RegionMask) that evenly splits the scene into cuboids

3For convenience, we refer to the point cloud data as a matrix.
4The coordinate x, y, z is left untouched since the sparse convolution

operation in 3D UNet requires it for the convolution kernel construction.

and masks the points within the randomly selected
cuboids. We first define the region size G to de-
note the number of cuboids. Note that a cuboid that
parallels the axes in a 3D coordinate system is repre-
sented by

[
(xmin, ymin, zmin), (xmax, ymax, zmax)

]
. Assum-

ing that the minimal cuboid covering a point cloud is[
(0, 0, 0), (l, w, h)

]
. We evenly partition the scene into a

set of cuboid regions H i.e., (|H| = G3) as follows:

H =
{[

(xi, yj , zk), (xi+1, yj+1, zk+1)
]}

,

xi = i · l

G
, yj = j · w

G
, zk = k · h

G
,

i, j, k ∈ {0, 1, . . . , G− 1},

(6)

where xi, yj , zk are the evenly split points along the x, y, z
axes and

(
l
G , w

G , h
G

)
are the length, width, height of a re-

gion, respectively. Then, we randomly select R ·G3 regions
Hm and compute the mask flag M as follows:

M[n] = 1
{
(xn, yn, zn) ∈ Hm}

, (7)

where ∈ denotes a point that lies within a cuboid or not.
Then, the masked point cloud is computed by Eqn. (4). As
shown in Figure 3c, RegionMask masks the unordered and
irregular point cloud continuously, providing meaningful
context-to-be-filled patterns such as partial inner-instance
mask and cross-instance mask. Moreover, as shown in Sec-
tion 4.3, RegionMask is able to flexibly cope with different
amounts of annotation by adjusting the region size.

3.3. Contextual Masked Training Method
In this section, we introduce our contextual masked

training method for learning the contextual information be-
tween the masked and unmasked data. We first consider the
mask operation as a “strong augmentation” and incorporate
it directly into the consistency-based training framework.
However, as shown in Figure 4, the training cross-entropy
error significantly increases and the performance drops con-
siderably. These results indicate that the input distribution is
significantly altered by the mask operation, which impedes
learning from limited but valuable labeled points.
Training objective. Taking both the learning from lim-
ited labeled data and the learning of contextual informa-
tion into account, we propose to add an extra branch to per-
form the masked features prediction task while leaving the
two weakly-supervised branches untouched. To be specific,
given a weakly-labeled point cloud data (P,Y), we ob-
tain two point clouds P1,P2 by two random augmentations
and the masked version Pm by the proposed RegionMask.
Then, we extract their corresponding features Z1,Z2,Zm

with the segmentation model Softmax
(
fθ(·)

)
. Last, the

overall training objective for our contextual masked train-
ing is as follows

LCPCM = Lseg + αLconsis + βLmask, (8)



Method Setting mIoU (%) ceiling floor wall beam column window door chair table bookcase sofa board clutter

MinkNet∗ [3]

Fully

68.2 91.7 98.7 83.8 0.0 24.7 56.8 72.1 91.5 83.5 73.3 70.8 81.3 58.4
PointNet [31] 41.1 88.8 97.3 69.8 0.1 4.0 46.3 10.8 58.9 52.6 5.9 40.3 26.4 33.2
KPConv [40] 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9

RandLA-Net [10] 62.4 91.2 95.7 80.1 0.0 25.2 62.3 47.4 75.8 83.2 60.8 70.8 65.2 54.0
RFCR [5] 68.7 94.2 98.3 84.3 0.0 28.5 62.4 71.2 92.0 82.6 76.1 71.1 71.6 61.3

Π Model [12]
10%

46.3 91.8 97.1 73.8 0.0 5.1 42.0 19.6 66.7 67.2 19.1 47.9 30.6 41.3
MT [38] 47.9 92.2 96.8 74.1 0.0 10.4 46.2 17.7 67.0 70.7 24.4 50.2 30.7 42.2

10×Fewer [48] 48.0 90.9 97.3 74.8 0.0 8.4 49.3 27.3 69.0 71.7 16.5 53.2 23.3 42.8
SPT [52]

1%
61.8 91.5 96.9 80.6 0.0 18.2 58.1 47.2 75.8 85.7 65.3 68.9 65.0 50.2

PSD [53] 63.5 92.3 97.7 80.7 0.0 27.8 56.2 62.5 78.7 84.1 63.1 70.4 58.9 53.2
HybridCR [16] 65.3 92.5 93.9 82.6 0.0 24.2 64.4 63.2 78.3 81.7 69.0 74.4 68.2 56.5
Π Model [12]

0.2%
44.3 89.1 97.0 71.5 0.0 3.6 43.2 27.4 62.1 63.1 14.7 43.7 24.0 36.7

MT [38] 44.4 88.9 96.8 70.1 0.1 3.0 44.3 28.8 63.6 63.7 15.5 43.7 23.0 35.8
10×Fewer [48] 44.5 90.1 97.1 71.9 0.0 1.9 47.2 29.3 62.9 64.0 15.9 42.2 18.9 37.5

SQN [9]
0.1%

61.4 91.7 95.6 78.7 0.0 24.2 55.9 63.1 62.9 70.5 67.8 60.7 56.1 50.6
CPCM (Ours) 66.3 (+4.9) 91.4 95.5 82.0 0.0 30.8 54.1 70.1 87.6 79.4 70.0 67.0 77.8 56.6

PSD [53]
0.03%

48.2 87.9 96.0 62.1 0.0 20.6 49.3 40.9 55.1 61.9 43.9 50.7 27.3 31.1
HybridCR [16] 51.5 85.4 91.9 65.9 0.0 18.0 51.4 34.2 63.8 78.3 52.4 59.6 29.9 39.0

MIL [49]
0.02%

51.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
MIL∗ [49] 52.1 89.2 95.5 74.8 0.2 19.2 41.1 23.1 76.3 64.7 62.6 27.8 57.8 44.8

CPCM (Ours) 62.3 (+10.2) 92.6 95.6 79.4 0.0 17.8 49.3 59.4 85.7 75.6 69.1 60.7 68.2 55.8

Table 1: Comparisons with state-of-the-art methods on S3DIS area5 test set. ∗ denotes results based on our reimplementation.

where β is a hyper-parameter to control the optimization
strength of contextual masked learning and Lmask is our
masked consistency loss introduced below.
Masked consistency loss. We seek to learn contextual in-
formation through masked and unmasked features. To this
end, we propose to minimize the distribution gap between
masked and unmasked features. In this way, the model
shall learn to leverage the unmasked part in the masked
point cloud i.e., the surrounding context, thereby improving
segmentation performance. Specifically, with the features
Z1,Z2,Zm respectively extracted from the two randomly
augmented and the masked point clouds, we introduce our
masked consistency loss as follows:

Lmask =
1

N

∑

n

JS
(
Z1[n],Zm[n]

)
+JS

(
Z2[n],Zm[n]

)
, (9)

where the unmasked features Z1,Z2 are considered as the
“ground truth” and we detach the gradients of Z1,Z2 during
masked consistency loss calculation.

4. Experiments
Datasets. We consider two benchmark datasets ScanNet
V2 [4] and S3DIS [1]. ScanNet V2 has 20 semantic classes
and the number of training / validation / testing scans is
1,201 / 312 / 100 respectively. We evaluate our model on
both val and online test set following [9, 16, 49]. S3DIS,
a large-scale point cloud dataset, contains 6 areas with 271
rooms and 13 semantic categories. We adopt the widely-
used area5 test set [48, 53] for evaluation, where the number
of training and testing scans is 204 and 68, respectively.
Implementation details. We implement our method using
MinkowskiEngine [3], a sparse convolution library based
on PyTorch [29], as done in previous works [9, 49]. As
for the model architecture, we adopt the 34-layer Sparse
Residual U-Net [36] following previous works [8, 45].

For evaluation, we use the class-wise Intersection over
Union (IoU) and mean IoU (mIoU) metrics. For opti-
mization, we employ the SGD optimizer with lr = 1e−2,
weight decay = 1e−3, the polynomial learning rate sched-
uler with decay rate = 0.9 and set the batch size to 2
and 4 for ScanNet V2 and S3DIS, respectively. During
training, the voxel size is set to 2cm and 5cm for Scan-
Net V2 and S3DIS, respectively. All models are trained
for 180 epochs. We choose JS-divergence as our consis-
tency loss [53]. We refer to the annotation ratio < 0.1%
(including 20 points on ScanNet V2) as the extreme-limited
annotations and ≥ 0.1% as the limited annotations. As
for the region size G and mask ratio R in RegionMask,
we set the mask ratio R = 0.75 and set G = 8 and
= 4 for the extreme-limited and limited annotations, respec-
tively. As for (α, β) in LCPCM, we set (α, β) = (5, 10) and
= (1, 5) for the extreme-limited and limited annotations,
respectively.5 All experiments are conducted on 2 and 1
TITAN 3090 GPU(s) for ScanNet V2 and S3DIS, respec-
tively. Our source code is publicly available at https:
//github.com/lizhaoliu-Lec/CPCM.

4.1. Comparison with State-of-the-arts
Quantitative results on S3DIS. We provide the quantita-
tive results on S3DIS in Table 1. For fair comparisons,
our approach is evaluated under the same settings used by
prior works i.e., the annotation ratio being 0.2%, 0.1%, and
0.02%. The proposed CPCM consistently outperforms the
previous state-of-the-art across different annotation ratios,
often by a large margin. To be specific, CPCM outperforms
SQN by 4.9% under the 0.1% setting and beats MIL by
10.2% under the extreme-limited annotation setting 0.02%.
Notably, our CPCM trained by 0.1% label is able to sur-

5Analysis on hyper-parameters α, β are put in the supplementary.

https://github.com/lizhaoliu-Lec/CPCM
https://github.com/lizhaoliu-Lec/CPCM


Method Setting Val Test

PointNet++ [32]
Fully

N/A 33.9
KPConv [40] N/A 68.4
MinkNet [3] 72.9 73.6

MPRM [42]
Scene

21.9 N/A
WYPR [33] 29.6 24.0

MIL [49] 26.2 N/A
MPRM [42]

Subcloud
43.2 41.1

MIL [49] 47.4 45.8
SPT [52]

1%
N/A 51.1

PSD [53] N/A 54.7
HybridCR [16] 56.9 56.8

SQN [9]
0.1%

58.4 56.9
CPCM (Ours) 63.8 (+5.4) 62.5 (+5.6)

WYPR [33]

20 pts

51.5 N/A
OTOC† [25] 55.1 N/A

MIL [49] 57.8 54.4
CPCM (Ours) 62.7 (+4.9) 62.8 (+8.4)

Table 2: Comparisons with state-of-the-art methods on
ScanNet V2. † indicates results reproduced by MIL [49].

pass the HybridCR trained by 1% label. By diving into
per-class mIoU, we observe that our CPCM performs well
in relatively small instance categories in a scene such as
“chair”, “table”, and “sofa” that tend to be misclassified,
which cannot be accomplished without effectively under-
standing the scene context. Moreover, with 0.1% annota-
tions only, CPCM achieves competitive performance to the
fully supervised MinkNet (66.3 vs. 68.2), closing the gap
between fully and weakly supervised methods.
Quantitative results on ScanNet V2. We evaluate our ap-
proach under 0.1% and 20 points (pts) settings on ScanNet
V2 and the quantitative results are shown in Table 2. Al-
though the amount of annotation is very limited, the pro-
posed CPCM provides substantial improvements over prior
SoTAs. Specifically, on the validation set, CPCM leads
SQN by 5.4% under the 0.1% setting and MIL by 4.9%
under the 20 pts setting. Moreover, on the private test set,
CPCM still leads SQN and MIL by 5.6% and 8.4% respec-
tively, showing the strong generalization ability of CPCM.

4.2. Ablation Analysis on CPCM
Comparisons to baselines. Since our implementation is
based on the fully-supervised MinkNet and the weakly-
supervised consis-based method, we directly compare them
to investigate the effectiveness of CPCM. The results are
shown in Table 3. MinkNet performs decently with 0.1%
annotation ratio but suffers from extreme-limited annota-
tion 0.01%. The consis-based method delivers noticeable
improvements on both datasets for all settings, showing that
it is a strong baseline. Unsurprisingly, the proposed CPCM
completely beats the MinkNet and the consis-based base-
line, often by a large margin. Notably, when it comes to
the extreme-limited 0.01% setting, CPCM boosts the per-
formance of MinkNet by 14.6% and 11.6% on ScanNet V2
and S3DIS, respectively. These results demonstrate the ad-
vantage of CPCM that effectively comprehends the scene

Method Lconsis Lmask
ScanNet V2 S3DIS

0.01% 0.1% 0.01% 0.1%

MinkNet ✘ ✘ 37.6 60.3 47.7 62.9
Consis-based ✔ ✘ 44.2 (+6.6) 61.8 (+1.5) 52.9 (+5.2) 64.9 (+2.0)

CPCM (Ours) ✔ ✔ 52.2 (+14.6) 63.8 (+3.5) 59.3 (+11.6) 66.3 (+3.4)

Table 3: Comparisons with two strong baselines: fully-
supervised method MinkNet trained on weakly-annotated
labels and the weakly-supervised consis-based method.

context over the strong consis-based baseline.

Masking Strategy
ScanNet V2 (0.01%) S3DIS (0.01%)
0.15 0.75 0.15 0.75

Consis-based 44.2 52.9
PointMask 42.3 (-1.9) 48.2 (+4.0) 52.3 (-0.6) 55.1 (+2.2)

RegionMask (Ours) 46.5 (+2.3) 52.2 (+8.0) 55.8 (+2.9) 59.3 (+6.4)

Table 4: Ablation studies on different masking strategies.
The contextual masked training modeling scheme is em-
ployed. Otherwise, all masking strategies show degenerated
performance compared to the consis-based baseline.

Region masking. Since random point masking is a com-
mon solution in masked vision modeling and has recently
been applied to unsupervised point cloud data learning [26].
We investigate the behavior of PointMask under both low
and high mask ratios and the results are put in Table 4. On
one hand, when the mask ratio is low (0.15), PointMask
performs even slightly worse than the consis-based baseline
while the proposed RegionMask boosts the performance by
2.3% and 2.9% on the ScanNet V2 and S3DIS, respectively.
On the other hand, when the mask ratio is high (0.75),
RegionMask considerably improves the performance while
PointMask brings only a relatively marginal boost. We con-
clude that RegionMask is able to mask more meaningful vi-
sual words than PointMask under both low and high mask
ratios, paving the path of promising masked vision model-
ing for weakly-supervised point cloud segmentation.
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Figure 4: Evolution of training cross-entropy (CE) error and
test mIoU w.r.t. training epochs on S3DIS (0.01%).

Contextual masked training. We investigate the effective-
ness of the proposed contextual masked training (CMT) by
removing the masking stream, resulting in a consistency-
based framework with a “masking augmentation”. As
shown in Figure 4, the training cross-entropy error dras-
tically increases without CMT, which indicates simply in-



corporating “masking augmentation” hampers the learning
of limited but valuable labeled data. With CMT, the seg-
mentation model shows low training cross-entropy error as
well as high test mIoU. Moreover, we also put the quan-
titative results in Table 5 and observe a noticeable per-
formance drop when discarding CMT. Then, with CMT,
CPCM achieves substantial improvements over the consis-
based baseline. These results verify that CPCM facilitates
the learning of valuable annotation but also rich context in-
formation, achieving substantial improvements.

RM CMT
ScanNet V2 S3DIS

0.01% 0.1% 0.01% 0.1%

✘ ✘ 44.2 61.8 52.9 64.9
✔ ✘ 41.6 (-2.6) 58.6 (-3.2) 51.1 (-1.8) 63.6 (-1.3)

✔ ✔ 52.2 (+6.7) 63.8 (+2.0) 59.3 (+6.4) 66.3 (+1.4)

Table 5: Ablation studies on our contextual masked training
scheme. RM and CMT are short for RegionMask strategy
and contextual masked training, respectively.
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Figure 5: Further analysis on the proposed CPCM. (a) We
investigate the effect of region size on S3DIS under 0.01%
and 0.1% settings. (b) We investigate the effect of mask
ratio on S3DIS and ScanNet V2 under the 0.01% setting.

4.3. Further Analysis on CPCM

Region size. As the region size increases, the task of con-
textual information comprehension becomes easier since
the masked region to predict becomes smaller. Therefore,
we are able to control the difficulty of the context compre-
hension task by varying the region size. With less annota-
tion, we may set the masked features prediction task easier.
In Figure 5a, the optimal region size becomes smaller when
the annotation ratio goes up i.e., 8 for 0.01% and 4 for 0.1%,
which verifies the flexibility of the proposed RegionMask
strategy for handling different annotation ratios.
Mask ratio. More meaningful visual context will be cov-
ered as the mask ratio grows. As shown in Figure 5b, the
segmentation performance is constantly boosted by a larger
mask ratio up to 0.75, showing the strong potential of our
CPCM to effectively explore the scene context. The optimal
mask ratio is 0.75 and exceeds which the masked context
prediction task becomes too hard to achieve the best result.

6More qualitative results can be found in the supplementary.
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Figure 6: Qualitative comparison between the consis-based
method and our CPCM on the ScanNet V2 and S3DIS.6

Qualitative results. To intuitively understand our CPCM’s
ability to effectively comprehend contextual information,
we provide visual comparison results in Figure 6. We first
observe that CPCM shows advantages in understanding se-
mantic categories with diverse appearances (sofa, row 1)
and covering geometrically large objects (curtain and bed,
row 2). Moreover, we recognize that CPCM does an ex-
cellent job at distinguishing both geometric and appearance
similar categories (door and wall, row 3) and objects with
complex structures (window, row 4).

5. Conclusion
In this work, we study the learning of contextual infor-

mation in the weakly-supervised point-cloud segmentation
task which is not well-explored by existing methods. To
this end, we proposed CPCM to model the contextual re-
lationship among mass unlabeled points by enforcing the
masked feature consistency. We first introduce a region-
wise masking strategy to effectively and flexibly mask the
point cloud to produce context-to-be-filled data for subse-
quent learning. Then, we proposed a contextual masked
training method to help the model capture contextual infor-
mation from both limited labeled data and the masked fea-
tures prediction task. Extensive experiments on the weakly-
supervised point cloud segmentation benchmarks show the
superior performance of our method. In the future, we will
further explore the masked modeling scheme in the weakly-
supervised point cloud detection and instance segmentation.
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We organize our supplementary materials as follows:

• In Section A, we provide more experiment details and results on pilot studies that inspect the contextual comprehension
ability learned by the consis-based baseline and the proposed Contextual Point Cloud Modeling (CPCM) method.

• In Section B, we introduce the details of three losses, namely, the supervised cross-entropy loss Lseg , the consistency
loss Lconsis and the proposed masked consistency loss Lmask, in the objective of CPCM.

• In Section C, we present the technical details of data augmentation for the point cloud data.

• In Section D, we study the effect of hyper-parameters α and β that control the optimization strength on the consistency
loss and the mask consistency loss, respectively.

• In Section E, we conduct ablation studies on the masked consistency loss Lmask.

• In Section F, we supply experiments on the outdoor dataset SemanticKITTI [2].

• In Section G, we conduct further experiments on the transformer architecture PTv2 [6].

• In Section H, we compare the performance of the proposed CPCM with unsupervised pre-training methods.

• In Section I, we give more implementation details on producing a strong consistency-based baseline.

• In Section J, we provide more visualization results on ScanNet V2 and S3DIS.

• In Section K, we analyze the failure case of the proposed CPCM.



A. More Results on Pilot Studies
In this section, we inspect the context comprehension ability learned by the consis-based baseline and the proposed CPCM

by a series of pilot studies. To this end, we conduct experiments with the model trained by the proposed CPCM and the consis-
based training methods [5, 9]. To be specific, we train the model on two datasets: ScanNet V2 [3] with 0.01% annotations
and S3DIS [1] with 0.01% annotations. Then, we design a masked evaluation protocol introduced below to quantitatively
and qualitatively analyze each model’s context comprehension ability.
Masked evaluation. We require the model to perform segmentation given a masked point cloud as input. In this sense, the
masked part serves as context-to-be-filled and the model shall understand the masked parts’ surroundings, aka contextual
information, for accurate segmentation. The masked point cloud is obtained by three masking strategies detailed below.
Masking strategies. We introduce three masking strategies: partial-instance masking and complete instance masking, which
evaluate the context comprehension within the instance and region-wise masking, which evaluates the context understanding
across instances. To be specific, 1) Partial-instance masking randomly masks some RGB features within each instance.
2) Region-wise masking divides the point cloud into a set of regions and masks all RGB features of the randomly selected
regions. 3) Complete-instance masking completely erases the RGB features of the randomly selected instances. Note that
we use the instance annotation on ScanNet V2 and S3DIS for masked evaluation only and no instance annotation is used for
model training. During the evaluation, for three kinds of masking strategies, we gradually increase the mask ratio to increase
the difficulty of the context comprehension task.
Results. The mIoU results w.r.t. different mask ratios are shown in Figures I and III for ScanNet V2 and S3DIS, respectively.
As the mask ratio increases, we observe that our CPCM slightly decreases 0.08% ∼ 0.21% on ScanNet V2 and 4.11% ∼
5.15% on S3DIS, while the consis-based baseline considerably drops 3.44% ∼ 4.14% on ScanNet V2 and 10.37% ∼ 12.26%
on S3DIS. We also present the visual comparison results in Figures II and IV for ScanNet V2 and S3DIS, respectively. Note
that we select the visual results under mask ratio 40% for better visualization. We can see that our CPCM performs well under
both standard and masked evaluations while the consis-based baseline fails to fill the masked part. These results demonstrate
that the proposed CPCM has much stronger context comprehension ability over the consis-based baseline and achieves better
and more robust point cloud semantic segmentation.
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(a) Partial-instance masked evaluation results.
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(b) Region-wise masked evaluation results.
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(c) Complete-instance masked evaluation results.

Figure I: Masked evaluation results on ScanNet V2 [3] to inspect the contextual perception ability.
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Figure II: Visual comparison of results from different methods on ScanNet V2 (mask ratio is 40%).
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(a) Partial-instance masked evaluation results.
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(b) Region-wise masked evaluation results.
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(c) Complete-instance masked evaluation results.

Figure III: Masked evaluation results on S3DIS [1] to inspect the contextual perception ability.
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Figure IV: Visual comparison of results from different methods on S3DIS (mask ratio is 40%).
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Figure V: Overall scheme of our CPCM method. Given a point cloud P, we first apply two random augmentations and our
region-wise masking to obtain the augmented point clouds P1,P2 and the masked point cloud Pm, respectively. Then, the
features Z1,Z2,Zm are extracted by a weight-sharing 3D UNet. The supervised cross-entropy loss Lseg is computed over
labeled features and a consistency loss Lconsis is computed on Z1,Z2. Last, our masked consistency loss Lmask enforces
the feature consistency between Z1,Zm and Z2,Zm to help the model focus on learning contextual information.

B. Detailed Formulations of the Loss Functions
For convenience, we show the overall scheme of the proposed CPCM in Figure V. Recall that in Section 3.3 of the

main paper, we have introduced the objective of CPCM. Specifically, we propose to learn the masked feature consistency to
improve the context comprehension ability of the model. Following the consis-based methods [5, 9], we use the supervised
cross-entropy loss on the labeled points and the JS-divergence consistency loss on features from different augmentations.
Therefore, the overall objective of the proposed CPCM is defined as

LCPCM = Lseg + αLconsis + βLmask, (I)

where Lseg,Lconsis,Lmask indicate the cross-entropy loss, consistency loss and masked consistency loss, respectively. Here,
α and β are hyper-parameters that control the optimization strength to learn feature consistency across augmentations and
contextual information, respectively.

In this section, we provide detailed formulations of the used loss functions. Given differently augmented point clouds
P1,P2 from P, the sparse label Y, and the labeled index set S, we first obtain the point-wise classification logits by
Z1 = Softmax

(
fθ(P1)

)
and Z2 = Softmax

(
fθ(P2)

)
.

Cross-entropy loss. The supervised cross-entropy loss Lseg is computed as follows:

Lseg =
1

|S|
∑

s∈S
CE

(
Z1[s],Y[s]

)
+ CE

(
Z2[s],Y[s]

)
= − 1

|S|
∑

s∈S
log

(
Z1

[
s
][
Y[s]

])
+ log

(
Z2

[
s
][
Y[s]

])
. (II)

Consistency loss. The consistency loss Lconsis is calculated over the unlabeled (or all) points as follows:

Lconsis =
1

N

∑

n

JS
(
Z1[n],Z2[n]

)
= − 1

N

∑

n

Z1[n] log
(Z′

[n]

Z1[n]

)
+ Z2[n] log

(Z′
[n]

Z2[n]

)
, (III)

Z
′
= (Z1 + Z2)/2. (IV)

Masked consistency loss. Last, given the masked point cloud Pm, we compute its features computed by Zm = Softmax
(
fθ(Pm)

)

and derive our masked consistency loss Lmask as follows:

Lmask =
1

N

∑

n

JS
(
Z

′
1[n],Zm[n]

)
+ JS

(
Z

′
2[n],Zm[n]

)
, (V)

where we stop the gradient flow for the “ground truth” unmasked features Z1,Z2 by the Detach operation in PyTorch,
i.e., Z

′
1 = Detach(Z1),Z

′
2 = Detach(Z2).



C. Technical details on the data augmentation
In this section, we detail the data augmentation used on the point cloud data. We apply the same data augmentation

method to get P1 and P2. Following previous methods [4, 7], we use data augmentations including: RandomDropOut,
RandomHorizontalFilp, ColorAutoContrast, ColorTranslation and ColorJitter. The data augmen-
tation is called two times to create differently augmented point clouds to learn feature consistency. Since the augmentation
method is the same for P1 and P2, using any one of them to get Pm is feasible.

D. Effect of hyper-parameters α and β

In this section, we investigate the effect of hyper-parameters α and β that control the optimization strength on consistency
loss and mask consistency loss, respectively. We use S3DIS for fast evaluation considering that the number of the training
sample is relatively small on S3DIS (204 on S3DIS vs. 1201 on ScanNet V2). Moreover, the optimal hyper-parameters for
different annotation ratios may vary. Thus, we conduct experiments on S3DIS with annotation ratios 0.01% and 0.1%. We
present the experiment results in Table I and our analysis is as follows.
Effect of hyper-parameter α. The role of α is to control the learning from unlabeled data. As shown in Table I, the optimal
value of α is 5 and 1 for the extreme-limited and the limited annotation settings, respectively. Moreover, we observe that the
performance does not improve when α > 1 under the 0.1% setting. The results indicate that the consistency loss is useful for
learning representation as the annotation ratio decreases.
Effect of hyper-parameter β. The hyper-parameter β is to control the learning of the masked features prediction task
based on unmasked surroundings, which helps the model harness the contextual information in a scene. To better explore
the effect of the masked consistency loss, we simply set α = 0, which does not apply the consistency loss to learn the
weakly-supervised segmentation model. As shown in Table I, the optimal value is 10 and 5 for the extreme-limited and
limited annotation setting, which is larger than the optimal value of α i.e., (β, α) = (10, 5) when the 0.01% setting and
(β, α) = (5, 1) for the 0.1% setting. The larger optimal value of β indicates that learning contextual information is more
effective than learning feature consistency across augmentations. Last, without the consistency loss, the optimal performance
of CPCM beat the consis-based method considerably, showing the advantage of considering point contextual relation over
point-wise consistency across augmentations only.

Based on the above results, for both S3DIS and ScanNet V2, we simply set (α, β) to (5, 10) and (1, 5) for annotation
ratio < 0.1% and ≥ 0.1%, respectively. We admit there may be more optimal hyper-parameters by tuning under the specific
dataset and annotation settings as well as tuning (α, β) simultaneously. For the sake of simplicity, we decide to apply the
above coarse settings throughout our experiments.

S3DIS 0.01% S3DIS 0.1%
α 1 2 5 10 1 2 5 10

CPCM (β = 0) 48.6 50.7 52.9 51.8 65.0 64.9 64.7 64.3
β 1 2 5 10 1 2 5 10

CPCM (α = 0) 51.8 53.5 56.9 59.2 65.2 65.6 66.3 64.0

Table I: Ablation studies on hyper-parameters α for the Consis-based method and β for the proposed CPCM.



E. Ablation studies on the masked consistency loss Lmask

In this section, we provide ablation studies on masked consistency loss. To compute Lmask for Z1 and Zm, we align
them before the loss calculation. For more details, refer to Section I. As mentioned in Section C, both P1 and P2 are the
“unmasked” version of Pm. Thus, minimizing the distribution gap between both Z1,Zm and Z2,Zm is helpful to learn
contextual information. We conduct experiments on the S3DIS dataset with 0.01% annotation. As shown in Table II, using
both JS(Z1,Zm) and JS(Z2,Zm) achieves the best result.

Lmask mIoU (%)
JS

(
Z1,Zm

)
JS

(
Z2,Zm

)

✘ ✘ 47.7
✔ ✘ 56.5 (+8.8)

✘ ✔ 57.2 (+9.5)

✔ ✔ 59.3 (+11.6)

Table II: Ablation studies of Lmask on S3DIS.

F. Further experiments on the outdoor dataset
To further demonstrate the performance of our CPCM, we provide the quantitative results on the outdoor dataset, Se-

manticKITTI [2]. Since we followed previous works [4, 7, 8] to use MinkowskiEngine to implement our CPCM, we conduct
experiments on the front view part of the SemanticKITTI that provides both XYZ and RGB features for convenience. As
shown in Table III, our CPCM consistently provides improvement over the MinkNet and the consis-based baseline. More-
over, thanks to the strong contextual modeling ability, CPCM surpasses the baselines with more annotation, e.g., CPCM
(44.0, 0.1%) > consis-based (43.7, 1%) > MinkNet (37.0, 1%). These results demonstrate that our CPCM is able to perform
well not only in indoor but also in outdoor scenarios.

Method
Setting

1% 0.1% 0.01%

MinkNet 37.0 30.8 23.7
Consis-based baseline 43.7 (+6.7) 38.8 (+8.0) 30.0 (+6.3)

CPCM (Ours) 47.8 (+10.8) 44.0 (+13.2) 34.7 (+11.0)

Table III: Results of mIoU (%) on SemanticKITTI. For reference, the mIoU for fully-supervised MinkNet is 56.4%.

G. Further experiments on the transformer
To investigate the effectiveness of our CPCM on transformer architecture, we apply CPCM on PTv2 [6], a transformer-

based architecture trained in a fully-supervised manner. Since the transformer is generally more data-hungry, we conduct
experiments on less weakly-supervised settings (10% or fully supervised) and compare to PTv2. To be specific, we substitute
the backbone of CPCM, i.e., MinkNet to PTv2 and the results are shown in Table IV. We observe that our CPCM improves the
performance of PTv2 by 5.7% and 1.6% with 10% and 100% annotations, respectively. These results verify the effectiveness
of CPCM in transformer architecture.

Settings PTv2 PTv2† PTv2 + CPCM (Ours)
Fully 71.6 69.1 70.7 (+1.6)

10% - 54.6 60.3 (+5.7)

Table IV: Comparisons with PTv2 on S3DIS, where † denotes the results of our implementation.



H. Comparison with Unsupervised Pre-training Methods
Unsupervised point cloud pre-training methods can learn useful representations from mass unlabeled data. Thus, existing

unsupervised pre-training methods [4, 7] use the pretrained model as initialization and finetune the model on the downstream
weakly-supervised point cloud segmentation task. In this section, we investigate the potential of the proposed CPCM by
challenging the strong and universal unsupervised pre-training methods: Point Contrast (PC) [7] and Contrastive Scene
Context (CSC) [4]. They both leverage point-wise contrastive learning to pre-train the segmentation network. We admit
that there are many works on unsupervised point cloud pre-training topics. Since PC and CSC have been evaluated under
the weakly-supervised setting, we choose them as our baselines. The results are shown in Table V. The proposed CPCM
outperforms PC and CSC under various annotation settings, often by a large margin. Specifically, our CPCM outperforms
CSC by 8.87% under the extreme-limited annotation setting 20pts. Moreover, our CPCM train by 50 pts and 100 pts are able
to surpass the CSC trained by 100 pts and 200 pts, respectively. Note that our CPCM does not require the pre-training phases
and is more suitable for downstream scenarios without large pre-training datasets and computation power.

Method 20 pts 50 pts 100 pts 200 pts
PC [7] N/A N/A N/A 67.80
CSC [4] 53.60 60.70 65.70 68.20
CSC∗ [4] 53.80 62.90 66.90 69.00
CPCM (Ours) 62.67 (+8.87) 67.89 (+4.99) 69.67 (+2.77) 70.32 (+1.32)

Table V: Comparisons with unsupervised pre-training methods on the ScanNet V2 limited annotated points (pts) per-scene
benchmark. ∗ indicates using the active scheme to label representative points.
I. More Implementation Details

In this section, to facilitate further research, we provide two important implementation details that affect the performance
considerably: the point alignment operation and tuning the hyper-parameter weight decay.
Point alignment. Note that for both the consistency loss and the masked consistency loss, the alignment operation is required
to align two scenes’ points before the loss calculation. This is because different augmentations such as random point dropout,
geometric clipping and point voxelization would drop some points, which leads to points’ misalignment for the two stream
data flow. We can resolve this issue by two means: 1) Input level alignment: all points are aligned before feeding into
the segmentation network, which leads to the more sparse point cloud data and the loss of some valuable annotations. 2)
Feature level alignment: all points are aligned after the feature extraction stage, which causes some feature inconsistency
but resolves all issues incurred by the input level alignment solution. We implement both solutions to find out which is better
and the results are shown in Table VI. We observe that the feature level alignment strategy performs better w.r.t. different
annotation settings and datasets. We attribute the success of feature-level alignment to 1) training and testing under the same
input distribution and 2) retraining valuable annotations. Therefore, we choose the feature level alignment as our default
point alignment strategy throughout experiments.

Alignment Strategy
ScanNet V2 S3DIS

0.01% 0.1% 0.01% 0.1%

Input Level 39.9 59.1 46.9 59.6
Feature Level 44.2 61.8 52.9 64.9

Table VI: Effect of the point alignment position input level vs. feature level on the consis-based method.
Weight decay. Due to the limited annotation nature in weakly-supervised point cloud segmentation, overfitting is an issue
we should consider properly. Thus, we carry out a simple but straightforward way to alleviate the overfitting issue: tuning the
weight decay to control the regularization intensity. The results are shown in Table VII. As weight decay increases from 1e−4

to 1e−3, both MinkNet and consis-based method achieves better results, which indicates that higher weight decay is able to
alleviate the overfitting issue. However, a large weight decay, i.e., 1e−2 causes the underfitting issue, especially on ScanNet
V2 that with thousands of scene point cloud data to be fitted. Thus, we set weight decay to 1e−3 as our default choice.

Weight Decay ScanNet V2 0.01% S3DIS 0.01%
MinkNet Consis-based MinkNet Consis-based

1e−4 36.7 41.3 45.9 50.9
1e−3 37.6 44.2 47.7 52.9
1e−2 15.5 14.0 45.1 50.5

Table VII: Effect of weight decay on the two baselines: MinkNet and consis-based method.



J. More Qualitative Results
In this section, we demonstrate the advantage of CPCM with more visualization results in Figure VI. We summed up

CPCM’s advantage as follows:
Better at distinguishing adjacent objects. CPCM is able to disguise geometrically close and appearance similar objects, as
shown in row 1 of ScanNet V2 (curtain and wall) and row 4 of S3DIS (door and wall).
Better at covering the whole object. CPCM does well in covering large objects as shown in rows 2,4 of ScanNet V2 (bed
and table) and rows 1,3 of S3IDS (board and ceiling), indicating CPCM’s long-range context comprehension ability.
Better at recognizing the object with complex structures. CPCM performs reasonably well at recognizing objects with
complex geometric structures and appearance as shown in row 3 of ScanNet V2 (curtain) and row 2 of S3DIS (bookcase).

S3DIS (0.01%)

Input CPCM (Ours)Consis-based GT

ScanNet V2 (0.01%)

Input CPCM (Ours)Consis-based GT

Figure VI: More qualitative comparison between the consis-based method and our CPCM on the ScanNet V2 and S3DIS.
We highlight the prediction difference between consis-based method and our CPCM with a red box.

K. Failure case analysis of CPCM
Our CPCM may fail to effectively distinguish similar classes in the point cloud with a large part of the missing region.

Since CPCM heavily relies on the complete context to perform accurate segmentation, point clouds with lots of missing
regions may not provide sufficient context to make correct predictions. For example, in Figure VII, CPCM, unfortunately,
hallucinates the door as the window.

Input CPCM (Ours)Consis-basedGT

Figure VII: Failure cases of our CPCM on the ScanNet V2.
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