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Abstract

We propose SeedAL, a method to seed active learning
for efficient annotation of 3D point clouds for semantic seg-
mentation. Active Learning (AL) iteratively selects rele-
vant data fractions to annotate within a given budget, but
requires a first fraction of the dataset (a ’seed’) to be al-
ready annotated to estimate the benefit of annotating other
data fractions. We first show that the choice of the seed
can significantly affect the performance of many AL meth-
ods. We then propose a method for automatically con-
structing a seed that will ensure good performance for AL.
Assuming that images of the point clouds are available,
which is common, our method relies on powerful unsuper-
vised image features to measure the diversity of the point
clouds. It selects the point clouds for the seed by optimiz-
ing the diversity under an annotation budget, which can be
done by solving a linear optimization problem. Our exper-
iments demonstrate the effectiveness of our approach com-
pared to random seeding and existing methods on both the
S3DIS and SemanticKitti datasets. Code is available at
https://github.com/nerminsamet/seedal.

1. Introduction

We are interested in the efficient annotation of sparse 3D
point clouds (as captured indoors by depth cameras or out-
doors by automotive lidars) for semantic segmentation.

Modern AI systems require training on large annotated
datasets to reach a high performance on such a task. As
annotating is costly (more than capturing the data itself),
several approaches have been proposed to achieve a more
frugal learning, such as semi-supervision [72], weak super-
vision [89], few-shot [52] and zero-shot learning [57], self-
supervision [37, 1] and, as studied here, active learning [58].

Active learning (AL) methods iteratively select relevant
fractions of a dataset to be annotated within a given budget
so that, after a few iterations, the model learned on the an-
notated fractions reaches a performance close to the perfor-
mance of the model learned on the fully-annotated dataset,
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Figure 1: Impact of active learning seed on performance.
We show the variability of results obtained with 20 different
random seeds (blue dashed lines), within an initial annota-
tion budget of 3% of the dataset, when using various active
learning methods for 3D semantic segmentation of S3DIS.
We compare it to the result obtained with our seed selection
strategy (solid red line), named SeedAL, which performs
better or on par with the best (lucky) random seeds among
20, and “protects” from very bad (unlucky) random seeds.

although at a much lower annotation cost. This AL selec-
tion typically targets the most uncertain [38] or most di-
verse [63] data, that are assumed to have the most positive
impact when annotated and used for training.

The criteria used in AL methods for selecting data to an-
notate generally require a preliminary fraction of the dataset
to be already annotated. Assuming this fraction is represen-
tative enough of the rest of the dataset, it can be used to esti-
mate the benefit of annotating other data fractions. But such
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a preliminary fraction is not available at the first AL itera-
tion, when confronted to a completely unannotated dataset.
There is thus a cold start problem, which is to determine a
first fraction of the dataset to annotate — the seed.

Initial set. Nevertheless, most AL publications pay little
attention to the choice of this seed before iterating their AL
method. They just pick a random fraction of the dataset. Al-
though results are sometimes presented averaged over a few
runs, it can be insufficient given the high variance level. As
shown in Figure 1, it is particularly true in our 3D semantic
segmentation context. Besides, nothing prevents in practice
from drawing an “unlucky” seed, leading to significant un-
derperformance or annotation overheads.

To address this issue, our method, named SeedAL, au-
tomatically selects extremely good AL seeds, and thus also
protects from drawing unlucky seeds, as illustrated on Fig-
ure 1. Only few approaches have recently been proposed
to construct such good seeds to get AL on track right away
[85, 55, 40, 29, 48, 82, 13, 50], and they mostly regard text
or image classification. To the best of our knowledge, no
such AL seeding approach exists for 3D point clouds.

Self-supervised features, for text or images [20, 31, 12],
are the key to most of these approaches. It thus seems nat-
ural to use self-supervised 3D features in our case. But
existing pre-trained 3D backbones are not as versatile as
their 2D counterpart, and provide lower quality features (see
Sect. 3.3). Our approach to seed AL for 3D point cloud is
to leverage high-quality pretrained features [12] for images
that are views of the scanned scenes.

As we rely on image features like [55, 40, 29, 82, 13],
it seems natural as well to reuse these AL seeding methods
for 3D scenes. But a direct transposition to 3D is not sensi-
ble because, in our case, the initial budget for the seed is not
given in terms of number of images but in the size of scenes
(number of 3D points): selecting a scene just because it con-
tains a single image of interest would be suboptimal.

Our approach integrates scenes and views to make a
better use of the initial annotation budget. While 2D ap-
proaches use feature clustering to guide seed selection, we
show it is suboptimal in our context (2D views of 3D
scenes) and propose a better formulation based on binary
linear programming. As our algorithm has a higher com-
plexity than clustering, we also develop heuristics to scale
to large datasets by first extracting a small-enough pool of
good candidates to select from.

Last, we observe that usual pretrained features, generally
created from object-centric datasets such as ImageNet, fail
to convey the diversity of complex multi-object scenes, by
giving too much importance to big or repeated objects. We
address this issue by analyzing images at patch level.

Contributions. To the best of our knowledge, we are the
first to address AL seeding for 3D point clouds:

• We study the sensitivity of AL seeding for the 3D se-

mantic segmentation of point clouds and the relevance
of 2D images features to select 3D scenes.

• Leveraging these studies, we propose a general ap-
proach to seed any AL method for point clouds origi-
nating from scenes with available image views.

• We present experimental evidence of the effectiveness
of our AL seeding method, which consistently im-
proves over random seeds and 2D-inspired baselines,
requiring less iterations (thus less annotations) and/or
reaching higher segmentation performance.

2. Related Work
We discuss in this section different approaches to reduce

the annotation work on point clouds, then focus on Active
Learning methods, and finally existing works on seed con-
struction for active learning–even though none of them con-
sider point cloud annotations.

Towards less supervision for 3D point clouds. The
best approaches for 3D semantic segmentation of dense in-
door point clouds [56, 17, 88, 71] or sparse outdoor point
clouds [80, 32, 90, 69] are trained under full supervision,
i.e., they require manual annotations of all points in all
scenes, which is a notoriously costly task [5, 26]. Several
approaches are currently explored to mitigate these costs.
For example, one can leverage self-supervision [77, 87, 35,
42, 51, 62] to pre-train a neural network using many un-
labeled data with an annotation-free pretext task and then
fine-tune this network using few annotations for the task
of interest. One can also rely on domain adaptation tech-
niques [84, 60, 61, 78, 81] to exploit existing annotated
datasets on a source domain and avoid annotating a new
dataset for a target domain. Weak supervision avoids the
burden of complete point cloud annotation by, e.g., annotat-
ing a few points [45, 79, 16, 86], annotating few regions in a
scene [44, 75], or using scene level labels [59, 75]. Alterna-
tively, active learning techniques, which we describe next,
allow for a smart selection of the data to be annotated.

Active Learning for 3D point clouds. To minimize an-
notation costs, active learning strategies [9, 25, 63] aim to
select the most relevant data to annotate for the considered
model and task. Most selection strategies rely on diver-
sity criteria [25, 63, 3] or on a measure of the uncertainty
of the model [9, 73]. In computer vision, active learning
has been mostly developed for classification tasks of 2D
images [64]. It has been adapted to the semantic segmen-
tation of 3D point clouds combined with markov random
fields [46] and more recently deep learning for object de-
tection [21, 47] and semantic segmentation [43, 76, 34].
Diversity of selected scenes has been ensured by select-
ing core sets [63, 76] in the feature space–in that space
each scene is represented by aggregating the features of
its corresponding points. The model uncertainty can be



measured over each point class-scores [73, 43]–e.g., using
the entropy or the margin between the two highest scores–
and averaged per scene in order to select the most con-
fusing to the model. In [43], the authors improve results
by computing the uncertainty scores at the level of pre-
computed segments. Requiring several forward passes, en-
sembling techniques [6, 22, 23] have been used to evalu-
ate the model’s confidence for 3D scenes [21, 76]. Moving
away from scene-based AL, [66, 76, 34] propose region-
based strategies–which mix difficulty and diversity–that al-
low them to further reduce cost by selecting only local set of
points to be annotated. In this work, instead of proposing a
new AL strategy, we show that a smart selection of the first
set of data with SeedAL–usually over-looked and randomly
selected–can boost all methods drastically.

Cold start problem. The need for an initially annotated
fraction of the data to bootstrap an AL method is similar to
what has been identified as a cold start problem in collab-
orative filtering and recommendation systems, where new
users start off with an empty profile [49].

In active learning, the term “cold start problem” has in
fact been used with two close but different meanings. On
the one hand [33, 39, 83], it refers to the strong bias induced
on the first AL iterations by a too small initial annotated
set [19]. In particular, uncertainty-based methods are not
effective when trained with too little data [30]. Note that,
in this setting, a seed has nevertheless to be given as input,
although if it is possible to set its size automatically to limit
this bias, by deciding when to stop annotating the first data
fraction constituting the seed [24]. On the other hand [85,
13], the cold start problem also refers to the lack of a priori
information to select a relevant seed in the first place, which
is what we are addressing here.

Seeding active learning. Despite the high variance of per-
formance with random seed selection, it appears it is diffi-
cult for AL approaches to create good seeds [13]. In fact,
only few recent approaches propose to automatically con-
struct AL seeds [85, 55, 40, 29, 48, 82, 13, 50]. To the
best of our knowledge, none applies to 3D point clouds, and
there is only one concerning semantic segmentation [50].

All approaches, except [50], only address text or im-
age classification, which is a much coarser-grained task
than semantic segmentation. The general idea of most ap-
proaches for image classification [55, 40, 29, 82, 13] is to
use a self-supervised pretrained network, clustering the im-
age features to estimate diversity groups and picking images
close to cluster centers to get representatives, possibly fo-
cusing on hard-to-contrast and diverse data [13] by exploit-
ing contrastive self-supervised features [14]. Alternatively,
[48] creates seeds using a core-set approach based on the
Wasserstein distance between feature distributions of can-
didate data for the seed and the unannotated dataset. While

this form of feature clustering or distance minimization be-
tween distributions also makes sense for 3D data, seman-
tic segmentation requires extracting much more detailed in-
formation from each single datum to account for complex
scenes (whether indoors or outdoors) that capture sets of
objects, as opposed to object-centered pictures targeted by
image classification in other approaches.

The only AL seeding approach we know for 3D, and
in fact for semantic segmentation too, applies to dense 3D
medical images (CT-scans) [50], which significantly differ
from sparse 3D point clouds captured by depth cameras or
lidar scanners. The seeding strategy in [50] is based on a
heuristic pseudo-labeling defined by a hand-parameterized,
rule-based segmentation. It consists in thresholding CT data
within a typical window of values for abdominal soft tis-
sues, then extracting largest connected components and se-
lecting major organs of the abdomen as foreground. This
pseudo-labeling is specific to that peculiar kind of medical
images and cannot be directly transposed to point clouds,
although heuristic hand-designed pre-segments have also
been used on 3D point clouds for label-efficient semantic
segmentation [44].

3. Preliminary Study
In this section, after introducing our notations and for-

mally describing the problem, we highlight the sensitivity
of various AL methods to the seed and then motivate the use
of DINO [12] features for the selection of the seed. We use
the results of this preliminary study to construct our method,
SeedAL, which is fully described in the next section.

3.1. Problem setup and notations

Our method works in the following generic setting. We
assume that a scene i is captured by a depth sensor, pro-
viding a point cloud P i, and by one or multiple cameras,
providing several views V i

1 , . . . , V
i
Ni

of the scene. For ex-
ample, RGB-D cameras capture conveniently both the depth
and the views simultaneously. Such a multi-modal setting
is common, whether indoors [2, 18] or outdoors [5, 10].

Our dataset is made of a set of point clouds, with their
respective views, and our goal is to select a good seed S,
i.e., the initial set of the point clouds which will be fully an-
notated for the first active learning cycle. As mentioned ear-
lier, our approach for selecting S is based on a pre-trained
self-supervised image backbone. We denote this backbone
ϕ(·) and use it to extract D-dimensional ℓ2-normalized fea-
tures from each view: ϕ(V s

n ) ∈ RD.

3.2. The high variance induced by random seeds

Most AL publications use as AL seeds random fraction
of the dataset — which is one of the many issues for re-
producibility [40, 36]. A seed is typically picked within a
maximum size, given as an initial annotation budget. For
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Figure 2: Influence of the choice of the seed. We visualize
results obtained with several AL methods (introduced later
in section 5) when using 4 different random seed. With the
exception of ReDAL, which is consistently better, the rank-
ing of the methods varies with the seed.

AL method evaluation, because of a high variance level due
to the random AL seed, a common practice is to average re-
sults over few runs, randomizing the AL seed and the train-
ing iterations [24, 41, 11, 40, 55, 67, 36]. Even so, it can be
not enough given the variance level. As shown in Figure 1,
it is particularly true in our problem. Besides, nothing pre-
vents from drawing an “unlucky” seed, leading to signifi-
cant underperformance or annotation overheads.

We first consider the common case of random seeds,
i.e., picking random scenes until the annotation budget is
reached. In Figure 1, we illustrate the effect of drawing 20
such random seeds: it shows significant variations of perfor-
mance, both at initial stage and after some iterations. Fur-
thermore, as shown in Figure 2, the performance hierarchy
of scene-based AL methods differs depending on the seed.

A natural way to deal with both intra-method and inter-
method variations is to consider the average and variance
of the method performance over a large-enough number of
random seeds. It allows evaluating the sensitivity of an
AL method to the seed and it allows a better comparison
of different AL methods, although still with a high vari-
ance. However, it does not provide any practical hint how
to choose and cold-start these methods. Besides, it is sub-
optimal as it does not make the most of best seeds.

3.3. Image features to characterize 3D scenes

At first glance, it seems more natural and appropriate
to directly use 3D features, as opposed to rely on extra
2D images. However, 3D backbones are not as versatile
as 2D ones because of the huge domain gaps in 3D data,
compared to picture data. 3D data require specific archi-
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Figure 3: Correlation between results of AL methods when
using a random set and the closest in the DINO feature
space [12]. Each point corresponds to a cycle of an AL
method. Pearson correlation coefficient is 0.78. Results are
produced on the S3DIS dataset [2].

tectures and tuning due to the extreme variations of 3D
point distribution, depending on the type of scenes (indoors
vs outdoors, static vs dynamic) and on the kind of sen-
sor used (photogrammetry, variants of depth cameras, li-
dars with widely differing acquisition patterns and resolu-
tions). Besides, current self-supervised 3D features have
a lower quality than their 2D counterpart in the sense that
self-supervised 3D features can be improved by distilling,
in 3D, high-quality 2D image features of views of the same
scenes [62]. In fact, the quality of self-trained 2D image
features [28, 27, 12, 4], is now such that, even if self-trained
on different datasets, it can be used for object discovery in
new data [68, 74, 54]. The best results have actually been
achieved with DINO [12]; [82] also exploit DINO in their
AL method. There is no such result with pretrained 3D fea-
tures yet. Last, 2D backbones are pretrained efficiently and
on very large datasets, which boosts quality and favors gen-
eralizability, compared to the computation burden and prac-
tical size of pretraining data in 3D.

Here, rather than relying on a distillation from 2D to 3D
as in [62], it is simpler and more efficient to directly use 2D
image features to select corresponding 3D fractions of the
dataset. Moreover, it makes our approach agnostic to the 3D
backbone, which avoids having to handle the domain gaps
of 3D data. Last, we can leverage very large image datasets,
such as ImageNet, as it has been shown to transfer well to
tasks on other image datasets [12]; pretraining specifically
on the images of the target dataset is not needed, and could
even be detrimental if the dataset is not large enough.

3.4. Relevance of DINO features

To evaluate the effectiveness of DINO features, we first
select a subset of the random seeds generated previously.
Next, we create the most similar seed (in terms of DINO
features) to each selected random seed, and run active learn-
ing methods with all of the seeds. Finally, we calculate the
correlation between the random seeds and their newly gen-
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Figure 4: Overall processing pipeline of SeedAL.

erated most similar correspondences. More specifically, for
each selected seed, denoted as S, we replace all scenes in
each seed by identifying alternative scenes with the mini-
mum distance in DINO space, and create a new seed de-
noted as Ŝ. Formally, for each scene i, we compute the
average feature Φi =

∑Ni

n=1 ϕ(V
i
Ni

)/Ni of all views. Then,
we create Ŝ by selecting, for each scene i ∈ S, the scene
argminj /∈S ∥Φj − Φi∥2. Then, we apply several active
learning (AL) methods to the newly created initial sets, and
compare the results obtained from S and Ŝ. Our analysis
reveals a strong positive correlation between the two sets of
results with a Pearson correlation coefficient of 0.78. The
results indicate the applicability of leveraging DINO fea-
tures for selecting the initial seed.

4. SeedAL: Method

Our approach to seed selection posits that a good set
should have two key characteristics: Firstly, each scene
within the set should exhibit a sufficient level of internal
diversity. Secondly, there should be a notable degree of
diversity between the scenes themselves. To identify the
scenes that should be in the seed, we represent the unlabeled
dataset as a fully connected graph G, in which each node
represents a scene. The edge weights, denoted by eij , be-
tween two scenes i and j, encapsulate both intra and inter-
scene diversity measures. These measures are formally in-
troduced below. By looking for a sub-graph that optimizes
the sum of edge values while satisfying a budget constraint,
we can find a seed with good diversity. We propose a linear
optimization framework for the selection of this sub-graph
and explain its details in the following paragraphs. We il-
lustrate our method in Figure 4.

4.1. Diversity measures

Intra-scene diversity measure. Given that a scene may
contain near-duplicate views, e.g., captured from very sim-
ilar viewpoints, it is important to eliminate redundancy to
obtain representative features that accurately capture the

characteristics of the scene. To this end, for each scene i,
we cluster the set of view-features ϕ(V i

1 ), . . . , ϕ(V
i
Ni

) in
K clusters using k-means. The resulting set of represen-
tative features, denoted by Φi

1, . . . ,Φ
i
K , contains K dis-

tinctive features of the scene. To calculate the diversity
within a scene i, we calculate the pairwise dissimilarities
between the cluster centers Φi

1, . . . ,Φ
i
K : (1 − Φi

k · Φi
k′)

for all k > k′ ∈ {1, . . . ,K}, where “·” denotes the scalar
product in RD. Finally, we average all these pairwise dis-
similarities to obtain the internal diversity di of scene i:

di =
2

K(K − 1)

K∑
k=1

K∑
k′=k+1

(1− Φi
k · Φi

k′) . (1)

Inter-scene diversity measure. Given two different scenes
i and j, we compute their inter-scene diversity dij by re-
lying on their respective cluster centers: Φi

1, . . . ,Φ
i
K and

Φj
1, . . . ,Φ

j
K . Specifically, we average the pairwise dissimi-

larities between all pairs of cluster centers:

dij =
1

K2

K∑
k=1

K∑
k′=1

(1− Φi
k · Φj

k′) . (2)

Combined intra and inter-scene diversity measure. To
combine the intra and inter-scene diversities, we simply
compute eij = dij di dj . Hence, scenes i and j in the graph
G are highly connected if they are both highly diverse inter-
nally and mutually diverse.

4.2. Linear optimization for seed selection

We cast our seed selection as the identification of a fully
connected subgraph of G such that the sum of edge weights
is maximized under the constraint of a budget b for the ini-
tial annotations. Here, we define this budget in terms of the
number of points to be annotated. The connected subgraph
of G could be identified by solving the following problem:

argmax
{xi}i

M∑
i=1

M∑
j=i+1

eijxixj s. t.
M∑
i=1

cixi ≤ b , (3)



where the xi are boolean variables, indicating whether
scene i is selected or not. ci the annotation cost for scene i,
which in practice we take as the number of points in scene i.
The objective term

∑M
i=1

∑M
j=i+1 eijxixj , where M is the

number of scenes, permits us to select scenes with the high-
est diversity possible while the constraint

∑M
i=1 cixi ≤ b

ensures that we do not exceed our annotation budget b.
However, this is a quadratic problem and M is large in

practice. We can turn this problem into the linear problem

argmax
{yij}i,j>i

{xi}i

M∑
i=1

M∑
j=i+1

eijyij s. t.


∑M

i=1 cixi ≤ b

yij ≤ xi

yij ≤ xj

(4)

by introducing the boolean variables yij . Because it is
an optimization problem and thanks to the additional con-
straints, yij = 1 ⇔ xi = xj = 1. The advantage of this
formulation is that it is much more efficient to solve when
the number of scenes M is large.

In practice, we observed that it can still be computation-
ally challenging for very large M . To address this issue, we
first extract the top L edges in G with the highest weights
eij and collect all scenes on both ends on these edges. Then,
we rebuild a smaller graph using only these scenes and ap-
ply the optimization to this reduced graph. We use the
solver from SCIP [7] to find the optimal solution.

5. Experiments
We present in this section the experimental protocol that

we use to evaluate our method SeedAL and discuss results.
We also provide an ablation study.

5.1. Experimental setup

Active learning strategies. We test our method with
diverse active learning strategies that exploit either the
model uncertainty or enforce diversity, that are either
scene-based or region-based. In particular, we compare
to a random selection of scenes (rand), the diversity-
based method CoreSet [63] (CoreSet) and the uncertainty-
based methods Softmax Confidence [73] (S-conf), Soft-
max Margin [73] (S-margin), Softmax Entropy [73] (S-
ent), MC-Dropout [23] (MC-Drop) and Segment En-
tropy [43] (SegEnt). We also consider the region-based
method ReDAL [76] (ReDAL).

Seeding baselines. We compare SeedAL to two clustering-
based baselines inspired from [85]. For this purpose, for
each scene i, we first compute the average feature Φi =∑Ni

n=1 ϕ(V
i
Ni

)/Ni of all views. The first simple base-
line, KMcentroid, starts with a clustering of the features
Φ1, . . . ,ΦM into K clusters using k-means. Then, for each
cluster, we search the scene i whose feature Φi is the closest
to the cluster centroid, we select these K scenes, and repeat

this search process until we reach the annotation budget.
The most costly samples are then removed iteratively until
the annotation budget is satisfied. We also consider a variant
of KMcentroid, called KMfurthest, inspired by the core-set
[63] selection. It starts as in KMcentroid with a selection
of the K scenes closest to each cluster centroid. Then, we
continue spending the annotation budget by selecting, iter-
atively, the scene j whose feature Φj is the farthest away
from all cluster centroids, to favor a selection of diverse
scenes. We also compare to the natural baseline random.

Datasets. Following [76], we focus on the semantic seg-
mentation task and evaluate SeedAL on two datasets repre-
sentative of indoor and outdoor scenes, namely S3DIS [2]
and SemanticKITTI [5]. S3DIS is composed of 271 scenes
extracted from 6 major indoor areas; for each scene is pro-
vided a dense point cloud with color. As common practice,
we provide AL results on the Area 5 validation set, and use
the rest for training. We also evaluate on SemanticKITTI,
a large-scale autonomous driving dataset composed of 22
driving sequences, totaling 43,552 point clouds, each ac-
companied with images. Following the official protocol, we
evaluate on the validation split (seq 08) and train the models
on the entire official training split (seq 00-07 and 09-10).

Network architecture and evaluation metric. Follow-
ing previous works [76], we consider SPVCNN [70], that is
based on point-voxel CNN and achieves good results both
on indoor and outdoor scenes. We evaluate the semantic
segmentation task in all experiments with the mIoU metric.

Technical details. In all our experiments, we set K as the
number of the classes for each dataset: 13 for S3DIS, 19 for
SemanticKITTI., L is set as 100 for S3DIS and 1000 for Se-
manticKITTI. On S3DIS, the RGB images depicting each
scene constitute our views. We use the class token extracted
at the last layer of the DINO-pretrained ViT-B/8 as our view
features. On SemanticKITTI, each scene is depicted by a
single image frame. To account for multi-object images in
outdoor scenes, we consider that each 8× 8 patches of a
frame constitute one view and we take the corresponding
patch feature at the last layer of the ViT-B/8 as the view
feature. Also, as there is a significant number of redun-
dant and highly similar scenes in SemanticKITTI, we use a
greedy algorithm to sparsify the sequences. The details of
this sparsification are in the supplementary material.

5.2. Indoor evaluation

We evaluate here our method on S3DIS. We present in
Figure 5 the results obtained with our AL seeding strat-
egy, SeedAL, and with the considered baselines. First, we
observe that using SeedAL boosts significantly all 8 AL
methods evaluated over randomly selected seeds (dashed
blue curves). SeedAL is consistently at the top of the
graphs while random seeds yields, overall, unstable results.



random KMcentroid KMfurthest SeedAL

3 5 7 9
25

30

35

40

45

m
Io

U
(%

)

rand

3 5 7 9
25

30

35

40

45
S-conf

3 5 7 9
25

30

35

40

45

m
Io

U
(%

)

S-margin

3 5 7 9
25

30

35

40

45

m
Io

U
(%

)

S-ent

3 5 7 9
25

30

35

40

45

% of labeled points

m
Io

U
(%

)

CoreSet [63]

3 5 7 9
25

30

35

40

45

% of labeled points

MC-Drop [23]

3 5 7 9
25

30

35

40

45

% of labeled points

SegEnt [43]

3 5 7 9

30

40

50

% of labeled points

ReDAL [76]

Figure 5: AL results on S3DIS. Comparison of active learning results when using SeedAL vs several baselines.
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Figure 6: AL results on SemanticKiTTI. Comparison of active learning results when using SeedAL vs several baselines.

Regarding our baselines, KMfurthest achieves consistently
better performances than KMcentroid over all AL strate-
gies. We explain this result by the fact that KMfurthest con-
tains more diverse scenes than KMcentroid. We observe
that for certain methods, KMfurthest achieves similar lev-
els of performance as SeedAL. However, it is important to
note that SeedAL is more robust and it consistently obtains
strong performance in both early and late active learning
iterations.

Making a good first impression. We highlight here the

boost obtained with SeedAL at the very first cycle (when no
AL has been applied yet). We observe that with SeedAL,
results are +1.9 pt over the best random seed, +7.8 pt v.s.
the average of random seeds and +18.8 pt when comparing
to the most unlucky seed. We surpass also our two base-
lines KMcentroid and KMfurthest by 4.9 pt and 2.4 pt, re-
spectively. With only 3% of data well-selected thanks to
SeedAL, we obtain better results than with 4 out of 5 ran-
dom seeds with 5%, or even 7% (when employing S-conf,
S-margin, S-ent, CoreSet and MC-Drop), of the data. These



results prove that our seeding selection is a much better
strategy than betting on the quality of the random seed.

We also compare our method with SSDR-AL [65]. Dif-
ferently than other AL methods, SSDR-AL’s initialization
picks superpoints to label, rather than full scenes. As our
current formulation selects scenes rather than regions, it
cannot directly be applied in this case. The only way we
can compare quantitatively with [65] is on S3DIS regard-
ing the proportion of points to label in order to reach the
same level as 90% of full supervision: we boost ReDAL
to outperform SSDR-AL, only requiring 9% labeled points
instead of 11.7%, as shown in Table 1.

Method SSDR ReDAL ReDAL ReDAL
(init.) (rand) (rand) (ours-DINO) (ours-MoCo)
% labeled pts (↓) 11.7 % 13% 11% 9%

Table 1: Comparing SSDR’s initialization with SeedAL in
terms of % of pts to label to get to 90% of full supervision.

5.3. Outdoor evaluation

We now focus on the challenging SemanticKitti dataset,
which depicts highly redundant urban images. We present
results in Figure 6. We also show results with the baseline
rand, which is known to surpass all AL methods except the
region-based ReDAL.

Boosting active learning. First, we observe that SeedAL
significantly surpasses all seeding baselines, either random
or diversity-based. Second, it achieves better results com-
pared to any randomly sampled seed with all AL methods
and at all cycles but one (with ReDAL). SeedAL yields an
improvements of 3.3 pt and 9.7 pt in the first cycle over the
best and worst random seed, respectively. We also observe
that the results obtained with KMcentroid and KMfurthest
are rather disappointing: the AL results are falling below the
worst random seed at the first and second cycles. Surpris-
ingly, ReDAL reaches better results with KMfurthest when
using 3% of the dataset. However, our seeding strategy ap-
pears to be agnostic to the AL method and boost all of them
consistently. Overall, the best results are again obtained
with our seeding strategy and ReDAL.

SeedAL is especially effective for large-scale datasets,
enabling scene-based AL methods to achieve almost 90%
of the fully supervised performance using just 4% labeled
points. This is comparable to the region-based method
ReDAL which achieves 93% of the fully supervised per-
formance. SeedAL bridges the gap between complex and
costly methods and simpler AL methods on the large-scale
SemanticKITTI dataset.

Improving random selection. rand is known to be a hard-
to-beat baseline on this dataset [76]. We observe that thanks
to SeedAL, the performance of rand goes as high as 58.0%,
v.s. 58.9% for the best considered method (ReDAL). The

baseline rand is not itself an active learning strategy —
given that scenes are randomly sampled —but these results
show that a good seeding strategy impacts greatly all results,
even those of the random baseline.

We also compare our method with LiDAL [34] on Se-
manticKITTI. LiDAL is an AL method specifically devel-
oped for 3D LiDAR semantic segmentation. As it is shown
in Table 2, LiDAL benefits more from SeedAL than random
selection. It gets 90% of full supervision’s mIoU (58.0%)
with 2.1% labels, vs 2.6% with a random seed.

Seeding method Init (1%) 2% 3% 4% 5%
rand [34] 48.8 57.1 58.7 59.3 59.5
SeedAL (ours) 52.6 57.8 59.3 60.3 60.6

Table 2: LiDAL [34] with random or SeedAL’s seeds.

5.4. Ablation experiments

We study the relevance of the different components used
to construct SeedAL. We conduct experiments on S3DIS
with all the active learning methods described in Sec. 5.1.
Due to space constraint, we report CoreSet and ReDAL re-
sults and include the others in the supplementary material.

Intra-scene diversity. We highlight the relevance of se-
lecting scenes with high intra-scene diversity instead of high
intra-scene similarity. We compute a diversity and a similar-
ity score per scene. Then we select the top scenes according
to each metric until exhausting our annotation budget. The
diversity and similarity scores are respectively computed by
averaging (1−ϕ(V i

Ni
) ·ϕ(V i

Nj
)) and (ϕ(V i

Ni
) ·ϕ(V i

Nj
)) be-

tween all views of a scene. Results in Figure 7 (a) show that
using the intra-scene diversity yields the best results.

Clustering views. We show that computing the dissimilar-
ity score from the cluster centroids as in (1) is a better strat-
egy than computing it as in the previous paragraph. Perfor-
mances obtained with both strategies are presented in Fig-
ure 7 (b). Clustering removes redundant features and yields
a better estimate of the scene diversity, hence selection of a
significantly better seed as demonstrated by the results for
3% of labeled points.

Inter-scene diversity. We justify why we select scenes
with large inter-scene diversity rather than scenes with large
inter-scene similarity. In a first experiment, we replace the
edge weight eij in problem (4) by dij , the inter-scene dis-
similarity of (2), and, in a second experiment, by the inter-
scene similarity, obtained by averaging (Φi

k · Φj
k′ ) over all

pairs (k, k′). Figure 7 (c) shows that selecting scenes with
high inter-scene dissimilarity yields the best seeds.

Combined intra and inter-scene diversity. Finally, we
show the interest of combining the intra and inter-scene di-
versity, i.e., using SeedAL, in Figure 7 (d). In this figure,
we compare the performance of seeds selected by solving
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Figure 8: SeedAL results on S3DIS (first row) and Se-
manticKITTI (second row) using features from DepthCon-
trast, SegContrast, ALSO, MoCo-v3, DINO. ‘random’ is an
average over the random seeds.

equation (4) with eij = didjdij (SeedAL), or eij = dij
(inter-div). We also show the performance of seeds made of
scenes with top di (intra-div) intra-diversity.

Next we show the effect of different 2D and 3D self-
supervised features to construct SeedAL. Due to space con-
straint, we report results from two different methods for
each dataset and include the rest in supplementary material.

SeedAL with different 2D features. We experimented with
self-supervised 2D features from MoCo-v3 [15] as an alter-
native to DINO. The results are reported in Figure 8. On
SemanticKITTI, SeedAL with MoCo-v3 performs on par or

slightly better than SeedAL with DINO, but is slightly infe-
rior to SeedAL with DINO on S3DIS, except for ReDAL.
DINO and MoCo-v3 are pretrained on ImageNet, which is
very different from S3DIS and SemanticKITTI; it shows the
foremost generalizability of these features.

SeedAL with pure 3D features. We also experimented
with self-supervised 3D features: DepthContrast [87] pre-
trained on ScanNet for indoor RGBD (no model is available
for outdoors), as well as SegContrast [51] and ALSO [8]
pretrained on SemanticKITTI. To adapt SeedAL to work
with 3D features, we simply replace the set of 2D image
features of a scene with 3D point features obtained from the
point cloud of the same scene, which we thus average to
obtain whole-scene features. Results are illustrated in Fig-
ure 8: DepthContrast is only slightly below 2D features,
SegContrast is not as good but still better than rand, while
ALSO underperforms, likely because it is not contrastive.
Note that there is no pretrained 3D network that works both
for indoors and outdoors, contrary to 2D-based models.

6. Conclusion
In this work, we have shown the influence of seeds on

the performance of AL methods for point clouds, and pro-
posed a method for efficiently selecting a seed that yields to
good performance. Our approach works out of the box: it
is agnostic to the AL method and to the 3D backbone used
for the downstream task, and it does not require training on
the dataset. We hope it will help scaling up point cloud se-
mantic segmentation for practical applications.
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Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi
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Supplementary material – Overview
This supplementary material is organized as follows.
• We explain our sparsification algorithm, which is used

to eliminate redundant scenes in SemanticKITTI [5]
(Section A);

• We provide further details regarding model training for
comparing active learning (AL) methods (Section B);

• We present all the quantative results in a table obtained
from all AL methods on S3DIS and SemanticKITTI
(Section C);

• Finally, we report the remaining results of our ablation
experiments; (i) component analyses results obtained
from AL methods rand, MC-Drop, S-conf, S-margin,
S-ent and SegEnt, (ii) results obtained from additional
2D (MoCo-v3) and 3D (DepthContrast, SegContrast,
ALSO) features for all AL methods (Section D);

A. Sparsification of SemanticKITTI
SemanticKITTI consists of sequences of frames sampled

at 10 Hz. Consequently, there is a high similarity between
successive frames, which are thus somehow redundant. To
address this issue and improve scalability, we use a greedy
algorithm to sparsify the SemanticKITTI dataset.

For each sequence, we begin with the first frame, use
it as reference, and calculate its similarity with subsequent
frames. We then eliminate any subsequent frame whose
similarity with the first frame is above a threshold. The first
subsequent frame falling below the threshold is then itself
used as a new reference, and the process continues for all
frames in the sequence. With this simple sparsification, we
increase the scalability of the dataset and reduce computa-
tional requirements for downstream processing.

The similarities are computed again using global DINO
features for each frame. We set a threshold of 0.75 on the
cosine similarity. Our algorithm reduces the size of Se-
manticKITTI by 95%.

B. Implementation and experiment details
Our AL seeding method (SeedAL) is implemented us-

ing PyTorch. We run S3DIS [2] experiments on a single
V100 GPU with a batch size of 4. We perform the training
of segmentation networks for CoreSet, S-conf, S-margin,
S-ent, MC-drop and SegEnt on SemanticKITTI using 2
A100 GPUs with a batch size of 32. The training of net-
works when using ReDAL, a region-based method, is about
5 times longer than when using scene-based methods be-
cause more point clouds need to be processed.
Running time includes: using a pretrained model to create
the features (90 ms/image on a V100 GPU), clustering and
sorting candidates (negligible time), and extracting the best
ones within the budget by linear optimization (< 1 min for
S3DIS, < 5 min for SemanticKITTI).

C. Quantitative Results
To make it easier to compare performance quantitatively

across papers, we report in Table 3 the detailed quantita-
tive results obtained from all AL methods on S3DIS and
SemanticKITTI datasets. We compare our method SeedAL
to the proposed baselines, random sets and also the random
seed used in ReDAL’s paper [76] to produce results, noted
ReDAL’s seed in the table.

D. Ablation experiments
Figure 9 shows the remaining results of our ablation ex-

periments obtained from AL methods rand, MC-Drop, S-
conf, S-margin, S-ent and SegEnt. These results corrobo-
rate what is presented in Figure 7 and Section 5.4 of the
paper, namely that: (a) intra-scene diversity is particularly
relevant, compared intra-scene similarity; (b) clustering fea-
tures leads to better AL seeds than just exploiting intra-
scene diversity; (c) inter-scene diversity leads to better AL
seeds than inter-scene similarity; (d) the proposed combina-
tion of intra- and inter-scene diversity (i.e., SeedAL) gener-
ally performs on par or better than both intra- or inter-scene
diversity, independently.

As a complement to Figure 8 in the paper, Figure 10 and
Figure 11 present the results for all active learning methods
with different 2D and 3D self-supervised features on S3DIS
and SemanticKITTI, respectively. We do not provide results
with ReDAL on SemanticKITTI due to its massive training
cost.



S3DIS SemanticKITTI
AL AL seeding (% of labeled points) (% of labeled points)
method method 3 5 7 9 1 2 3 4

rand

random 30.1 35.3 38.5 40.4 46.1 50.8 53.9 55.9
std dev 5.5 3.7 2.9 2.9 3.5 1.0 1.5 1.4

KMcentroid 33.5 36.9 39.8 40.9 41.0 48.9 53.6 54.7
KMfurthest 36.2 36.8 40.9 42.8 39.8 51.9 53.8 56.7
ReDAL’s seed 26.1 30.0 35.9 39.8 48.0 51.9 54.6 56.6
SeedAL 38.0 38.7 41.2 42.1 51.3 55.0 56.6 58.0

S-conf [73]

random 30.3 33.1 35.6 37.9 46.1 48.2 49.9 52.6
std dev 5.8 3.5 3.0 3.7 3.7 4.2 3.8 3.2

KMcentroid 33.4 33.5 36.7 38.2 41.4 48.6 50.1 53.4
KMfurthest 36.5 36.6 39.2 41.1 39.9 46.9 50.4 52.5
ReDAL’s seed 26.1 26.6 29.3 34.6 47.9 50.2 51.7 54.2
SeedAL 37.5 38.5 40.6 41.1 51.7 53.7 54.4 56.6

S-margin [73]

random 30.1 33.1 34.9 36.9 45.6 48.3 50.1 51.6
std dev 5.6 4.1 4.0 3.7 3.3 2.6 2.4 2.4

KMcentroid 33.6 36.1 36.5 39.1 40.5 46.6 49.1 50.4
KMfurthest 36.8 38.7 38.5 41.2 40.5 45.5 48.5 50.3
ReDAL’s seed 26.1 28.3 35.5 39.9 46.2 50.0 50.3 50.9
SeedAL 38.6 39.4 40.1 41.3 52.2 51.8 54.7 56.2

S-ent [73]

random 29.6 32.3 34.9 37.2 45.7 47.9 49.8 52.1
std dev 5.6 5.2 4.0 3.1 3.2 4.2 3.7 3.3

KMcentroid 33.2 34.1 36.5 41.3 41.8 46.6 50.1 53.1
KMfurthest 35.8 35.7 38.0 41.1 39.8 47.6 49.5 51.2
ReDAL’s seed 27.4 29.9 32.9 38.3 47.4 50.0 50.1 51.8
SeedAL 37.8 39.0 40.7 41.9 52.4 53.0 55.2 56.8

CoreSet [63]

random 30.1 33.6 36.2 37.5 45.3 49.5 53.5 55.1
std dev 5.5 4.2 3.4 2 3.7 2.6 1.4 1.0

KMcentroid 33.5 37.2 36.6 39.2 40.6 46.6 52.5 54.5
KMfurthest 36.4 39.3 41.1 39.7 40.1 46.4 50.2 54.7
ReDAL’s seed 26.3 30.2 32.3 34.9 46.4 49.5 52.1 54.1
SeedAL 37.7 40.1 40.9 41.9 52.1 53.8 55.2 56.9

MC-Drop [23]

random 30.4 32.9 35.3 37.3 46.4 48.2 50.3 52.1
std dev 5.5 4.3 3.0 3.3 3.3 5.2 4.5 4.4

KMcentroid 33.5 33.6 37.5 39.7 40.9 48.3 50.7 52.3
KMfurthest 37.1 37.4 38.9 42.4 39.4 43.5 49.0 51.7
ReDAL’s seed 26.9 28.9 31.5 32.1 48.6 50.6 52.4 54.2
SeedAL 38.1 39.0 40.3 41.4 50.4 53.4 53.6 55.6

SegEnt [43]

random 30.2 33.6 38.2 39.8 45.4 50.6 52.4 54.2
std dev 5.5 2.5 1.9 2.1 3.8 1.5 0.4 0.8

KMcentroid 33.7 34.3 35.9 38.0 41.2 50.4 52.1 53.9
KMfurthest 35.9 38.2 38.8 40.5 40.1 49.8 51.3 54.0
SeedAL 37.6 39.8 42.1 43.2 51.1 52.4 55.0 55.5

ReDAL [76]

random 30.7 38.6 44.3 49.4 44.9 51.8 55.8 57.9
std dev 5.2 1.0 0.5 0.7 3.2 1.8 0.8 0.6

KMcentroid 32.6 37.6 45.3 48.3 38.5 53.9 55.7 57.2
KMfurthest 35.1 41.5 47.5 51.7 38.3 48.6 57.0 58.6
ReDAL’s seed 24.9 37.5 43.8 45.5 46.1 53.8 56.7 58.4
SeedAL 37.5 42.8 48.6 51.7 50.5 53.9 55.8 58.9

Table 3: Performance (% mIoU) of the AL seeding methods on several AL methods for S3DIS and SemanticKITTI. Noted
‘random’ is the average over three and six random seeds for S3DIS and SemanticKITTI respectively (we also report the
standard deviation “std dev”). “ReDAL’s seed” is the random seed used in the experiments reported in ReDAL’s paper [76].
We report the results for the ReDAL method obtained after our re-training.
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Figure 9: Ablation study. [Complement to Figure 7 in the paper] We evaluate here results obtained with different seeding
strategies. (a) Seeds made of scenes with high intra-diversity (intra-div.) or high intra-similarity (intra-sim.). (b) Seeds
selected with two different intra-diversity metrics: view features (feats.) or computed after clustering the view features (cls.
feat.). (c) Seeds made of scenes with high inter-diversity (inter-div.) or high inter-similarity (inter-sim.). (d) Seeds selected
with SeedAL, considering only inter-diversity (inter-div.) or intra-diversity (intra-div.).
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Figure 10: SeedAL results on S3DIS using features from MoCo-v3 and DINO. Rand is an average over the random seeds.
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Figure 11: SeedAL results on SemanticKITTI using features from DepthContrast, SegContrast, ALSO, MoCo-v3, DINO.
Rand is an average over the random seeds.


