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Abstract

We introduce HOSNeRF, a novel 360° free-viewpoint
rendering method that reconstructs neural radiance fields
for dynamic human-object-scene from a single monocular
in-the-wild video. Our method enables pausing the video
at any frame and rendering all scene details (dynamic hu-
mans, objects, and backgrounds) from arbitrary viewpoints.
The first challenge in this task is the complex object mo-
tions in human-object interactions, which we tackle by in-
troducing the new object bones into the conventional human
skeleton hierarchy to effectively estimate large object defor-
mations in our dynamic human-object model. The second
challenge is that humans interact with different objects at
different times, for which we introduce two new learnable
object state embeddings that can be used as conditions for
learning our human-object representation and scene rep-
resentation, respectively. Extensive experiments show that
HOSNEeRF significantly outperforms SOTA approaches on
two challenging datasets by a large margin of 40% ~ 50%
in terms of LPIPS. The code, data, and compelling exam-
ples of 360° free-viewpoint renderings from single videos
will be released in https://showlab.github.io/
HOSNeREF.

1. Introduction

Video reconstruction and free-viewpoint rendering of-
fer innovative opportunities for creating immersive expe-
riences, encompassing virtual reality, telepresence, meta-
verse, and 3D animation production. While reconstructing
videos has the potential to enhance user engagement and
provide more realistic environments, it also poses signifi-
cant challenges in terms of monocular viewpoints and com-
plicated human-environment interactions.

“Work is partially done during internship at ARC Lab, Tencent PCG.
Corresponding Author.

In recent years, remarkable progress has been made in
novel view synthesis, particularly since the introduction of
Neural Radiance Fields (NeRF) [30]. While initially limited
to reconstructing static 3D scenes based on multi-view im-
ages, subsequent studies have proposed various approaches
to address the challenge of dynamic view synthesis. NeRF-
based techniques have evolved to either incorporate defor-
mation fields that map dynamic fields to canonical NeRF
spaces [38, 32, 33, 52], or model dynamic scenes as 4D
spatio-temporal radiance fields [22, 8]. While these ap-
proaches have shown promising results in dynamic view
synthesis, they are limited to simple deformations. Another
line of research is specifically designed for dynamic neural
human modeling that relies on estimated human poses as a
priori information [36, 55]. Recently, Neuman [14] com-
bines pose-driven dynamic human models with static scene
models for representing dynamic human-centric scenes.

However, none of the aforementioned techniques can
accurately reconstruct challenging monocular videos with
fast and complex human-object-scene motions and inter-
actions, as shown in Fig. 1(d). This is due to two par-
ticular challenges listed below. To tackle them, we intro-
duce a novel method called Human-Object-Scene Neural
Radiance Fields (HOSNeRF).

i) Complex object motions in human-object interac-
tions. In contrast to the simple motions that can be mod-
eled by general deformation modules [32, 33], the object
motion during human-object interaction is often drastic and
composed of various atomic motions (e.g., play tennis). To
tackle this challenge, we propose new object bones that
are attached to the human skeleton hierarchy to estimate
human-object deformations in a coarse-to-fine manner for
our dynamic human-object model. The object bones and
underlying object linear blend skinning (object LBS) al-
low for the accurate estimation of objects’ deformations
through the relative transformations in the kinematic tree
of the skeleton hierarchy.
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Figure 1: Our HOSNeRF (b) takes a single monocular in-the-wild video (a) as input, and creates high-fidelity 360° free-
viewpoint rendering of all scene details (dynamic human body, objects, and background) at any time (d). Our method
enables rendering views with novel object poses and novel human poses as shown in (c¢), and produces high-fidelity dynamic
novel view synthesis results at novel timesteps, with significant improvements over SOTA approaches as shown in (d).

ii) Humans interact with different objects at different 2. Related Work
times. The above human-object model is designed for hu-
mans interacting with the same object over time. But when 2.1. Dynamic Human Modeling
the person puts down the current object or picks a new ob-
ject, it is not clear how to dynamically remove/add such ob-
jects in the static background model and the human-object
model whose canonical space is static. To handle this chal-
lenge, we introduce two new learnable object state embed-
dings that can be used as conditions for learning our human-
object representation and scene representation, respectively.
Finally, we systematically explore and identify effec-
tive training objectives and strategies for our proposed

Dynamic human modeling has shown promising results
in utilizing various representations such as point clouds [,
56], meshes [10, 27], voxels [28, 43], and neural implicit
functions [12, 39], with models like SMPL [29, 37] being
commonly used for parameterizing the human body. Since
the introduction of NeRF [30], neural human representa-
tion [30, 40, 46, 59, 26] has achieved remarkable progress
on representing dynamic human bodies from sparse-view

> ; ; 8 . videos. Among them, Neural Actor [26] and Neural
HOSNEeRF, including deformation cycle consistency, opti- Body [36] pioneer in combining NeRF [30] with SMPL
cal flow supervisions, and foreground-background render-

ing. On two challenging datasets collected by ourselves
and NeuMan [ 1 4], our HOSNeRF achieves high-fidelity dy-
namic novel view synthesis results and enables pausing the
monocular video at any time and rendering all scene details
(dynamic humans, objects, and backgrounds) from arbitrary

deformable meshes to represent human bodies with com-
plex motions. Subsequent works have further improved on
the generalizability [18, 4, 9] and animatability [35, 20]
of human bodies. To support multi-person modeling, re-
cent works [60, 41] have proposed to segment each human
X 5 N into 3D bounding boxes and learn a separate layered dy-
viewpoints, as shown in Fig. 1(d). namic NeRF for each person. Other works [50, 47, 15, 48]

In summary, our main contributions are: are specifically designed to reconstruct the dynamic human
and object with RGB-D or multi-view videos as inputs.
They track the human and object pose, and separately re-
construct them with volumetric fusion [47], neural texture
blending [48], or neural rendering [15, 61].

* We present a novel framework of HOSNeRF, the
first work to achieve 360° free-viewpoint high-fidelity
novel view synthesis for dynamic scenes with human-

environment interactions from a single video. . I ..
Despite achieving promising results, these approaches

require multi-view videos or RGB-D as input, limiting their

* We propose the object bones and state-conditional rep- real-world applications. To solve this problem, Human-
resentations to handle the non-rigid motions and inter- NeRF [55] is proposed to represent moving humans from
actions of humans, objects, and the environment. a monocular video by the human pose-driven deformation

module and canonical space. NeuMan [14] is the first suc-

» Extensive experiments show that HOSNeRF signifi- cessful attempt at reconstructing both the dynamic human
cantly outperforms SOTA approaches on two challeng- and static background from a single video. However, Neu-

ing datasets by 40% ~ 50% in terms of LPIPS. man [14] does not support human-environment interactions



and performs poorly at large camera motions.

2.2. Dynamic View Synthesis for General Scenes

Most prior approaches on dynamic scene modeling re-
quire synchronized multi-view videos [63, 21, 45, 5, 60, 53]
or depth [64, 13, 31] as input. Recent studies have built
upon NeRF [30] to reconstruct dynamic neural radiance
fields from monocular videos by either learning a defor-
mation field that maps dynamic observation to canonical
field [38, 32, 33, 52] or building 4D spatio-temporal radi-
ance fields [58, 22, 8]. Among them, Nerfies [32] asso-
ciates latent codes with the deformation field and HyperN-
eRF [33] represents motion in a high-dimensional space.
D2NeRF [57] builds upon HyperNeRF [33] and further
decouples the dynamic components from the static back-
ground, and represents them separately with a HyperN-
eRF [33] and NeRF [30]. DynIBaR [23] proposes a motion-
adjusted multi-view feature aggregation module to synthe-
size new viewpoints by aggregating features from nearby
views. Other studies have introduced voxel grids [6, 25, 44]
or planar representations [7, 3] for fast dynamic radi-
ance fields reconstruction. While these approaches have
achieved high-fidelity dynamic view synthesis results, they
are restricted to simple scene deformations. In contrast, our
HOSNEeRF is capable of representing significant human-
object motions and interactions in complex environments.

3. Method
3.1. Preliminaries

HumanNeRF [55] has been recently introduced to repre-
sent a moving person with a NeRF [30]-based canonical
space W, that maps 3D points to color ¢ and density d, and
a human pose-guided deformation field ¥4 that transforms
deformed points x?; from the deformed space to canonical
points x’. in the canonical space (i omitted for simplicity).

e (/Y (XC)) — (C, U)v Uy (Xda J, R) — (Xc) , (D

where 7 (x) is the standard positional encoding function,
and J = {J;} and R = {w;} represent the 3D human
joints and the local joint axis-angle rotations.

The deformation field ¥4 is decomposed into the coarse
human skeleton-driven deformation ¥5°*™°, and the fine
non-rigid deformation conditioned on human poses Wfine:

X, = VP (xa, T, R), Xe = X+ 4™ (x¢, R) . (2)

Mip-NeRF 360 [2] is designed to synthesize realistic views
for highly intricate, unbounded real-world static scenes. To
render pixel colors, the casted rays are split into a set of
intervals T; = [t;,t;11). The mean and covariance of the
conical frustum corresponding to every interval are com-
puted as (p,X) = r(7;). To parameterize the Gaussian

parameters for unbounded scenes, Mip-NeRF 360 [2] fur-
ther proposes a contraction function f (x) that distributes
distant points proportionally to disparity,

x|l <1

0 e ) () o
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Then, f (x) is applied to (u, 3) as follows:

(ﬂ’ 2) - (f (), Iy () B¢ (u)T) . @

where J¢(p) is the Jacobian of f at p. The contracted

Gaussian parameters (fi,3) are further encoded through
the integrated positional encoding (IPE) [2]:

. sin(2°f1) exp (-2 diag (£)) | |
5. %) = . et e 6
cos(2°f1) exp ( —2 diag E)) —o
and the color and density of intervals can be obtained as

v (7 (%)) — (e ). ©
where W, is the scene NeRF MLP [2].
3.2. Dynamic Human-Object Model

Motivation. With estimated 3D human poses a priori,
HumanNeRF [55] is effective at modeling moving people,
but can only encode body parts, lacking the capability to
model additional structures (e.g., objects held by the person)
and hence not suitable for challenging scenarios containing
complex human-object interactions.

A naive approach would be attaching the objects directly
to the interacting body parts (e.g., hands) so that the object
transformations can be queried via the skeletal motion of
the corresponding human joints. However, this approach
cannot represent the relative transformations between the
object and its interacting body part, making it difficult to
model large objects, such as the suitcase shown in Fig. 5.
Object Bones. To address this limitation, based on the con-
ventional human skeleton hierarchy, we introduce a new
“object bone” for each hand, where the starting point of
the object bone is connected to the corresponding hand
joint. As shown in Fig. 2 (a), two new object bones (green
color) are connected to the hand joints, which represent the
relative rotation and translation with respect to their par-
ent hand joints. In potential, the number, bone size, and
attaching joints of object bones can also be flexibly cus-
tomized based on different human-object interaction sce-
narios. Therefore, our 3D human-object pose consists of
3D joints J = {Jhuman, Jobject } and their axis-angle rota-
tions R = {whumany wobject}-

Object LBS. To drive the articulated motions of the ob-
jects and human body, we learn a linear blend skinning
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Figure 2: Overview of our method. (1) Orange flowchart: The deformation from deformed points to canonical points are
effectively estimated by the human-object backward LBS (a) and non-rigid deformation module, and their properties (i.e.,
density, color) can be obtained by querying the state-conditional canonical space. (2) Green flowchart: The background
intervals sampled from a deformed frame are concatenated with object state embeddings for querying properties through the
state-conditional scene model. (3) Novel views can be accordingly synthesized by volume rendering for re-ordered properties.

(LBS) weights field during training, as shown in Fig. 2 (a),
which encodes the influence regions of object bones and
human bones. Following HumanNeRF [55], we pack the
human and object bone blend weights and additional back-
ground weight into a single volume with K + 1 channels,
i.e., Weosa (x¢) = {w!_,4 (xc)}, and generate the volume
from a learnable latent code using a CNN.

For instance, in Fig. 2, the subject holds a backpack in
the right hand, so the learned LBS weight field only encodes
the influence region of the right object bone with a similar
shape to the backpack, while the left object bone has no in-
fluence on skeleton motion. Therefore, this learnable LBS
weights field enables our object bones to be generalizable to
various human-object interaction scenarios with left, right,
or both hands. In addition, our human-object skeleton hi-
erarchy enables HOSNeRF to support rendering with novel
object pose and novel human pose, as illustrated in Fig. 1(c).

Forward-Backward Deformation Framework. To im-
prove the smoothness and consistency of human-object de-
formations, we propose to leverage the cycle consistency
between forward and backward human-object deforma-
tions. The backward deformation first transforms sampled
deformed points x4 to their corresponding canonical points
X, which are further mapped back to the deformed space
X4 through the forward deformation module.

As illustrated in Fig. 2(a), with the proposed human-
object skeleton definition and LBS weight fields, the coarse

backward skeleton deformation W24 is defined similar to

HumanNeRF [55],

K
5 (xa, T, R) = D whoye (Xa) (Rh,oxa +tic)

i=1

)
where K is the number of human-object bones, wy_, . is the
blend weight for the ¢-th bone at the deformed space, and
RY .. and t%_,  are the backward rotation and translation
that are explicitly derived from the human-object pose.

To model the non-rigid motion that can not be rep-
resented by skeleton motion, we additionally define the
backward fine non-rigid motion ¥fi"¢ conditioned on the
human-object poses [55]:

Axase = Ui (7 (T3S (xa, T, R)), R) . (8)
Therefore, x4 can be mapped to the canonical space by
xe = Vg (xa, T, R) + AXase - 9)

Accordingly, the forward coarse skeleton motion driven by
the human-object pose can be defined as

K
SE (Xes Ty R) = D wisya (xe) (RiLaXe + tia)
i=1

(10)
where w__ , is the canonical blend weight for the i-th bone,
R!_,  and t!_, ; are the forward rotation and translation ob-
tained from the human-object pose. In addition, the forward

. . . fine :
fine non-rigid motion ¥ "¢, is

Axeoya = U5 (7 (PE5G° (xe, T, R)), R) . (11)
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Figure 3: State-conditional representation for the scene
model (a) and human-object canonical space (b).

Therefore, the canonical points x. can be transformed back
to the deformed scene by

Ra = VAT (%X, T R) + AXesa - (12)

3.3. State-Conditional Representation

Motivation. In complex dynamic scenes, humans can in-
teract with different objects at different timesteps. As the
example in Fig. 3 shows, the human picks up the bag at
T = 6 and puts it down at T' = 24, resulting in 3 object
states: the bag in the background during T' € [0, 6], the
bag held by the human during T' € [6, 24], the bag at a
new position in the background when T" > 24 . Such object
state changes prohibit us from directly using the static back-
ground model (i.e., Mip-NeRF 360 [2]) and the dynamic
human-object model proposed in Sec. 3.2.

A naive solution is to train a separate network for each
object state. However, this solution is limited because each
network is trained only on a short segment (e.g., T’ € [0, 6])
instead of the whole video. As a result, some regions often
are difficult to reconstruct because they are not observed in
the short segment. But these regions could have already
been captured by video segments of other object states.

To make full use of all segments to jointly train one
model shared for different states, we introduce learnable
state embeddings to represent different object states. As
depicted in Fig. 3, we have two state embeddings respec-
tively for our scene model and human-object model, which
are explained in detail as follows.

State-Conditional Scene Model. As shown in Fig. 3(a),
we develop a state-conditional Mip-NeRF 360 [2] to repre-
sent the static scene with temporal object transitions. In a
dynamic scene with N object states, we define [V learnable
state embeddings Oy = {O}} (i =1,2,---, N) to repre-
sent states information. Therefore, at state ¢, we concate-
nate the IPE features 4(z, f]) (Eq. (5)) of ray intervals with

the state embedding O! as input to the scene MLP ¥ for
querying the scene color and density.

W (Concat (& ([L, f]) , O;)) — (c, o) . (13)

This representation enables a shared scene model across the
video with multiple object state transitions.
State-Conditional Dynamic Human-Object Model. In
Sec. 3.2, we introduce the human-object pose-driven de-
formation module and the human-object canonical space
for modeling dynamic human-objects. However, the recon-
structed canonical space is insufficient in representing the
temporal changes in object geometry and appearance when
the subject interacts with new objects. To address this limi-
tation, we condition the canonical space on the object states,
as shown in Fig. 3(b). In particular, we employ an ob-
ject state-conditional canonical space and optimize a shared
blend weights field across all states.

In a dynamic scene with [V object states, we define NV
learnable state embeddings O, = {O%} (i=1,2,--- ,N)
to represent object states in the canonical space. Therefore,
at object state ¢, we concatenate the positionally encoded
canonical points in Eq. (1) with the state embedding O? as
input to the canonical MLP for querying the human-object
color and density.

U, (concat (v (xc), OL)) — (c, o) . (14)
3.4. Training

Rendering. To render the pixel color, we shoot two rays
(rs, rho) and sample intervals (i.e., ray points) to query the
scene model (using rg) and dynamic human-object model
(with ry,) respectively in their coordinate systems. After
aligning the coordinates (see supplementary materials), we
transform the sampled 3D points and their queried prop-
erties from the dynamic human-object space to the scene
space, and re-order all sampled properties based on their
distance from the camera center, as shown in Fig. 2. There-
fore, the color of a pixel can be calculated through vol-
ume rendering, i.e., by integrating the re-ordered properties
along the ray [30]:

N -
C)= T (1—e %) ¢;, T = e~ Zim1 9% . (15)
=1

Directly fusing ry and ry,, may yield minor artifacts on
overlapped ground regions due to intersections of human-
object points and scene points on short-length ground rays.
To solve this issue, we estimate the foreground mask during
training to separate the background rays from foreground
ones. This allows us to focus on combining rs and r,, at the
overlapped foreground regions, thereby reducing artifacts.
Training Objectives. The training of HOSNeRF consists
of three stages. In the first stage, we mask out the dy-
namic human-object regions and train the state-conditional



Scene No. of objects  No. of states

BACKPACK 1 3
TENNIS 2 3
SUITCASE 1 4
PLAYGROUND 3 5
DANCE 3 7
LOUNGE 3 5

Table 1: Details of our collected dataset.

scene model. Then, we train the state-conditional dynamic
human-object model on the dynamic human-object regions.
In the third stage, we combine these two models and further
finetune the complete HOSNeRF for all image pixels.

Given the single video with calibrated poses, the first
stage of HOSNeRF is optimized by minimizing the pho-
tometric MSE loss and the regularization losses proposed
by Mip-NeRF 360 [2] to avoid background collapse. In the
second and third stages of HOSNeRF, we utilize the pho-
tometric MSE loss, patched-based perceptual LPIPS [62]
loss, forward-backward deformation cycle consistency, and
indirect optical flow supervisions.

The deformation cycle consistency is enforced by mini-
mizing the distance between estimated deformed points of
Eq. (12) and sampled deformed points x4,

TN
['Cycle = ﬁ Z HXE - XdHE . (16)
=1

We also incorporate 2D optical flow as indirect supervi-
sion by minimizing the error between the induced flow and
the estimated flow (details in the supplementary material).
Therefore, the overall training objective of HOSNeRF is:

L = wumsk - Lyvsk + wrpipsLLpips
+  weycle * Laycle + Wrlow * LFlow,  (17)

where wyMsE, WLPIPS, WCycles WFlow are loss weights.

4. Experiments
4.1. Dataset

To benchmark the reconstruction of monocular videos
with dynamic human-object-scenes, we collect a new
dataset with 6 scenes'. The collected dataset features vari-
ous types of human-object-scene interactions in indoor and
outdoor scenarios, with up to 3 interacted objects and 7
states for a single video, as reported in Tab. 1. The duration
of collected videos varies from 60s to 120s, and we extract
[300, 400] frames for each video, where 16 frames at equal
intervals are selected as novel views at novel timesteps as
the test set and the remaining frames are the train set.

'Our data collection process has been approved by the institutional re-
view board and participants have given consents for public data release.

We extensively evaluate the HOSNeRF on our collected
dataset and NeuMan dataset [ 14] that consists of 6 short hu-
man walking sequences. Since NeuMan dataset does not in-
volve human-object interactions, HOSNeRF can be flexibly
customized to HSNeRF by removing object bones and set-
ting the object state to 1 when evaluated on NeuMan dataset.

4.2. Implementation Details

Human interacts with various objects using hands in our
dataset, we therefore introduce 2 new object bones to the
left and right hand joints of the 3D human skeleton for all
scenes. As a result, there are in total X = 26 bones in our
human-object skeleton. In order to obtain the human-object
pose prior, we first utilize a pretrained ROMP [49] model
to estimate the 3D human pose, and use Mask-RCNN [11]
to estimate human and objects masks. However, since it
is non-trivial to estimate the object pose for in-the-wild
videos, we initialize the left and right object bones as the
standard extended bones with no relative rotations with re-
spect to human hands, and initialize their length by refer-
encing the length of the object relative to the arm. During
training, we further refine the human-object poses (J, R)
with a MLP-based pose correction module (¥ 7, ¥ ) [55].
The overall three-stage training of HOSNeRF takes about
5 days on 4 Tesla V100 GPUs. Please see the supplemen-
tary material for the comparison of training time with other
approaches and discussions about estimating object masks.

4.3. Experimental Results

Baselines and Evaluation Metrics. To demonstrate the
performance of HOSNeRF, we make comparisons with
various types of SOTA approaches, including (1) Neu-
Man [I4], a human pose-based method; (2) HyperN-
eRF [33] and (3) Nerfies [32], dynamic radiance fields for
general scenes; (4) D2NeRF [57], a static-dynamic decom-
position method; (5) K-Planes [7], an explicit radiance field
method. For quantitative comparison, peak signal-to-noise
ratio (PSNR), structural similarity index (SSIM) [54], and
Learned Perceptual Image Patch Similarity (LPIPS) [62] are
employed as evaluation metrics.

Evaluation on HOSNeRF Dataset. We report the quantita-
tive comparisons (PSNR, SSIM, and LPIPS with VGG [42]
backbone) of 6 scenes for all approaches in Tab. 2. For all
SOTA approaches, we utilize their highest configurations
for a fair comparison. As shown in Tab. 2, our HOSNeRF
achieves the best performance in terms of all metrics, ex-
cept the PSNR for the Lounge scene (a metric known to fa-
vor smooth/blurry results [62]). The improvement of HOS-
NeRF is particularly significant in terms of the LPIPS, with
an average of nearly 40% gain over SOTA approaches.
Fig. 4 visualizes the qualitative comparison of HOSNeRF
over SOTA approaches on novel views at novel timesteps,
where HOSNeRF achieves substantially better visual qual-
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Figure 4: Qualitative comparisons of HOSNeRF and SOTA approaches on HOSNeRF dataset.

ity than other approaches for all scenes. HOSNeRF is able
to produce high-fidelity details close to ground truths for
all scene contents, i.e., dynamic human bodies, objects,
and backgrounds. In contrast, existing approaches tend to
synthesize much blurrier images with missing components.
Please see the supplementary video for more results on 360°
free-viewpoint bullet-time videos rendered by HOSNeRF.

Evaluation on NeuMan Dataset [14]. We report quanti-
tative metrics (PSNR, SSIM, and LPIPS with AlexNet [17]
backbone) over 6 scenes of the NeuMan dataset in Tab. 3,
where the metrics for NSFF [22], HyperNeRF [33], and
NeuMan [14] are borrowed from NeuMan [14]. As shown

in Tab. 3, our HOSNeRF achieves the best performance in
terms of all metrics except the PSNR for the Citron scene,
and significantly improves SOTA approaches by a large
margin of 50% in terms of LPIPS. This further demonstrates
the effectiveness and flexibility of HOSNeRF to model var-
ious types of dynamic human-(objects)-scenes. Please see
the supplementary material for qualitative comparison.

4.4. Ablation Study

We conduct ablation studies on our collected dataset to
evaluate the effectiveness of each proposed component in
HOSNeRF. We progressively ablate each component from



BACKPACK TENNIS SUITCASE PLAYGROUND DANCE LOUNGE

PSNR{ SSIM{ LPIPS||PSNR1 SSIMt LPIPS| ||PSNR{ SSIMt LPIPS| ||PSNR{ SSIM{ LPIPS|||PSNRT SSIM{ LPIPS|||PSNRT SSIM{ LPIPS|
K-Planes [7] 19.05 0.345 0.557(/19.31 0.690 0.536 || 18.64 0.575 0.602({17.92 0.446 0.635 |/ 18.17 0.328 0.623||24.21 0.824 0.453
D?NeRF [57] 20.52 0.384 0.608 |123.97 0.737 0.540 {/20.99 0.592 0.645 |/21.23 0.510 0.616 || 19.92 0.407 0.647 ||27.13 0.858 0.509
Nerfies [32] 19.56 0.515 0.55922.12 0.818 0.443({19.01 0.643 0.555|21.14 0.726 0.533(/19.37 0.674 0.524(/25.90 0.914 0.342
HyperNeRF [33] 19.62 0.359 0.587(121.26 0.742 0.510{19.41 0.604 0.607||21.67 0.558 0.578/19.30 0.412 0.601||27.25 0.925 0.332
NeuMan [14] 21.21 0.479 0.478(/23.17 0.768 0.442(/20.84 0.611 0.551 ||21.46 0.546 0.551 ||21.19 0.529 0.490 ||28.40 0.917 0.341
Ours (base) 21.51 0.764 0.271(/24.02 0.910 0.326 ||21.10 0.829 0.395|/22.20 0.787 0.348|/21.84 0.785 0.266 ||26.54 0.962 0.243
Ours w/ state 22.38 0.786 0.252((23.98 0.910 0.323(/21.43 0.834 0.390 (|22.52 0.796 0.341|22.43 0.796 0.258 |[27.51 0.965 0.245
Ours w/ object 21.56 0.767 0.269 |{23.98 0.909 0.327(/21.08 0.830 0.396 ||22.14 0.787 0.347(|21.88 0.785 0.269 || 26.80 0.962 0.246
Ours w/ state, object 22.33 0.785 0.253|(24.08 0.909 0.320 ||21.51 0.833 0.386 (|22.55 0.796 0.33822.38 0.796 0.259 ||27.52 0.965 0.245
Ours w/ state, object, mask| 22.48 0.790 0.245 ||24.19 0.911 0.321 [|21.60 0.834 0.382 (|22.77 0.799 0.335 ||22.48 0.802 0.251 ||27.73 0.968 0.227
Ours (full) 22.56 0.792 0.243 ||24.15 0.911 0.320(/21.74 0.836 0.382(/22.67 0.801 0.336 |/22.63 0.804 0.248| 27.74 0.968 0.227

Table 2: Per-scene quantitative evaluation on the HOSNeRF dataset against baselines and ablations of our method. We color
code each cell as 'best and second best .

SEATTLE

PSNR? SSIM{ LPIPS)

PARKING
PSNR?T SSIM{ LPIPS)

BIKE

JOGGING

LAB

PSNR? SSIM{ LPIPS)

PSNR? SSIM{ LPIPS)

PSNR?T SSIM{ LPIPS)

CITRON
PSNRT SSIM{T LPIPS|

NSFF [22] 21.84 0.69 0.37 |/21.98 0.69 0.46 ||21.16 0.71 0.36
HyperNeRF [33]|[16.43 0.43 0.40 ||16.04 0.38 0.62 ||17.64 0.42 0.43
NeuMan [14] 23.98 0.77 0.26 ||25.43 0.79 0.31 |[25.52 0.82 0.23
Ours 26.68 0.91 0.14 ||27.20 0.93 0.12 ||26.09 0.93 0.10

20.63 0.53 0.49
18.52 0.39 0.52
22.68 0.67 0.32
25.04 0.89 0.16

20.52 0.75 0.39
16.75 0.51 0.23
24.93 0.85 0.21
24.93 0.94 0.10

12.33 0.49 0.65
16.81 0.41 0.56
24.71 0.80 0.26

24.44 0.90 0.18

Table 3: Per-scene quantitative evaluation on the NeuMan dataset against baselines. We color code each cell as |best .

(d) With State Embedding
& Object Bones

Figure 5: Ablation of HOSNeREF for large objects.

(c) With State Embedding

(d) Full Model

(c) With State Embeddlrlrg\k
Figure 6: Ablation of HOSNeRF for small objects.

state embeddings, object bones, foreground masks, opti-

cal flow, and cycle consistency supervision. As shown in
Tab. 2, the performance of HOSNeRF progressively drops
with the disabling of each component, with the full model
nearly achieving the best performances, which demon-
strates the effectiveness of our designs.

We visualize representative scenes with large (Fig. 5)
and small (Fig. 6) objects to further evaluate our proposed
designs. As shown in Fig. 5(b) and 6(b), the base models
are unable to represent the interacted objects for the human
and the scene. In contrast, the proposed state embedding
is capable of representing the state transitions of small ob-
jects (Fig. 6(c)), but it fails to represent the deformations of
large objects (Fig. 5(c)). Together with our proposed object
bones, the deformation of large objects can be effectively
estimated through the human-object skeleton hierarchy, en-
abling large objects modeling in Fig. 5(d). In addition, the
full model can further improve the synthesis quality of fine
details such as correcting the wrong right arm by comparing
Fig. 6(c) and (d). These comparisons further demonstrate
the importance and effectiveness of the proposed designs.

5. Conclusion

We introduced a novel framework of HOSNeRF, the
first work to achieve 360° free-viewpoint high-fidelity
novel view synthesis for dynamic scenes with human-
environment interactions from a single video. To tackle the
challenges of such a task, we first introduced the new object
bones to the human skeleton hierarchy to effectively esti-
mate the fast human-object motion in our dynamic human-
object model. Then, we proposed the state-conditional
human-object and scene representations for handling sig-



nificant object state changes. With our designed training
strategies, HOSNeRF produced significant improvements
over SOTA approaches, and enabled 360° free-viewpoint
rendering of any frame from a single video and supported
rendering views with novel human and object poses.
Limitations and Future Work. Our HOSNeRF focuses
on dynamic human-objects modeling and lacks the capabil-
ity to represent dynamic backgrounds. It remains challeng-
ing but is worthwhile researching models for reconstructing
high-fidelity dynamic unbounded backgrounds.
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Appendix

The supplementary material is structured as follows:

» Sec. A provides further implementation details of the
proposed HOSNeRF.

* Sec. B presents additional details on the network de-
signs of our HOSNeRF.

e Sec. C summarizes additional comparisons of
our HOSNeRF against state-of-the-art (SOTA)
approaches.

Furthermore, we also provide a supplementary video
showcasing per-scene 360° free-viewpoint renderings from
our HOSNeRF on all six scenes of our HOSNeRF dataset.

A. Implementation Details

We conducted all our experiments on 4 Tesla V100
GPUs, using the PyTorch [34] deep learning framework.
Optical Flow Supervision. We first map the deformed
points x4 from the deformed space at timestep ¢ to canoni-
cal points x. in the canonical space. Then we compute their
corresponding deformed points at timestep ¢ — 1, denoted
as Xq,_, , through forward deformation:

idtfl = g(ftriste,l (X07 I, R) + AXC‘)dt—l' (18)

We project XAdt L= {)“c(’j } onto the reference camera

at timestep ¢ — 1 to obtain their corresponding pixel loca-
tions Pq, , = {PZ . }. We then compute the optical flow
induced by these pomts with respect to the pixel locations
Pa, = {P},} from which the rays of Xq = {x/} are cast.
Finally, we minimize the error between the induced flow
and the estimated flow:

ACFIOW = ‘R| Z Zw

recR i=1

ri\ )
( dt 1 _Pdt> fPS";

)

19
where w™? = T; (1 — exp (—0;6;)) is the ray termination
weights from the volume rendering equation, and fPr i 1s

the estimated 2D backward optical flow using RAFT [ ]
at Py .

Coordinate System Alignment. To integrate the state-
conditional scene model and dynamic human-object model,
we initially synchronize their coordinate systems during
preprocessing, as they are originally processed and defined
in separate coordinate systems. To achieve this, we utilize
the SMPL [29] parameters acquired from the pre-trained
human pose estimation model ROMP [49] and adopt the
scene-SMPL alignment approach from NeuMan [14]. This
technique requires that the human subject always stands on

O 5. 5) @ o) M— O 5 (x) © O —-
IPE Feature State Embedding Embed points State Embedding
1024 [ 256 |
v 7
1024 [ 256 |
7 7
1024 [ 256 |
T 7
1024 [ 256 |
v 7
1024 — [ 256 J—
7 7
1024 [ 256 |
T 7
1024 [ 256 |
v 7
1024 —Densityo | 256 |
) ¥ .
256 - Viewdirs RGB Color Density o
v
128
V
RGB Color

Figure 7: State-conditional network designs for the scene
base model (a) and the canonical space model (b).

the ground. Subsequently, we align the two coordinate sys-
tems through the Perspective-n-Point (PnP) [19] method
and resolve any scale ambiguities by restricting the feet
meshes of the SMPL model to touch the ground plane [14].
In this context, the near and far parameters for the scene
model are set to 0.1 and 10°, respectively, while those
for the dynamic human-object model are determined by
the coarse bounding box calculated from the human-object
poses.

Human and Object Masks. To estimate human and ob-
ject masks, we utilize the pre-trained Mask-RCNN [11]
model. Consequently, the majority of object classes in our
dataset come from the COCO [24] dataset. During prepro-
cessing, we successfully segment all humans and most ob-
jects in our dataset. However, for objects that are not de-
tected due to occlusions or out-of-domain classes, we man-
ually segment them. To ensure complete separation of the
foreground from the background, we then dilate the human
and object masks by 5%. The proposed three-stage training
pipeline of our HOSNeRF method is beneficial, especially
the third stage, which involves fine-tuning for foreground-
background merging. This enables training with coarse hu-
man and object masks. In contrast, HumanNeRF [55] de-
pends on manual intervention to correct coarse segmenta-
tion errors.

Optimization Parameters. We optimize our HOSNeRF
using Adam optimizer [16]. We set the base learning rates
for our training process as follows: 0.002 for the first stage
to train the background, 0.0006 for the second stage to train
the dynamic human-object model, and 0.00006 for the third
stage to fine-tune the complete HOSNeRF model. For most
of the scenes, we balance the loss terms using the following
weighting factors: wyvse = 0.2, wrprps = 1.0, woyce =
0.01, wriow = 0.01. The three stages are trained for 500k,
400k, and 200k iterations, respectively.



B. Network Details

Object State Embeddings. To address the issue of hu-
mans interacting with different objects at different times, we
introduce two new learnable object state embeddings that
serve as conditions for learning our human-object represen-
tation and scene representation, respectively. In a dynamic
scene with IV object states, we define NV learnable state em-
beddings Og = {O%} (i =1,2, -+, N) torepresent object
states in the scene model, and [V learnable state embeddings
O, = {O%} (i=1,2,---,N) to represent object states
in the canonical space. The feature dimension of Oy and
O, are both set to 64 in our model. To obtain the number
of object states, we manually label the transition timesteps
for each video when the human picks up or puts down ob-
jects. Alternatively, we could use pretrained affordance de-
tection methods to detect these transition timesteps. In our
newly collected dataset, we provide the ground-truth transi-
tion timesteps for all the scenes.

State-Conditional Scene Network. As shown in Fig. 7(a),
we employ a 10-layer multilayer perceptron (MLP) as our
state-conditional scene base network, following the ap-
proach outlined in Mip-NeRF 360 [2]. Specifically, at state
i, we utilize a concatenation of the IPE features 4(j1, 32) of
ray intervals with the scene state embedding O? as input to
the scene MLP. To achieve this, we employ a skip connec-
tion that concatenates the input to the fifth layer. For the ac-
tivation functions, we use ReLU after each fully connected
layer, except for predicting density, for which we use Soft-
plus, and for predicting color, for which we use Sigmoid.
State-Conditional Canonical Space Network. As illus-
trated in Fig. 7(b), we follow NeRF [30] to use an 8-layer
MLP as our state-conditional canonical space model. At ob-
ject state 7, we concatenate the positionally encoded canoni-
cal points y (x.) with the human-object state embedding O
and pass them to the canonical space MLP. In this canonical
MLP, we adopt a skip connection that concatenates the in-
put to the fifth layer. We use the ReLU activation after each
fully connected layer, with the exception of the prediction
of color, for which we employ the Sigmoid activation func-
tion.

C. Additional Results

Qualitative Comparisons on NeuMan Dataset [14]. Neu-
Man dataset [14] consists of 6 short human walking se-
quences varying from 10s to 20s. Since the NeuMan
dataset does not involve human-object interactions, HOS-
NeRF can be flexibly customized to HSNeRF by removing
object bones and setting the object state to 1 when evalu-
ated on the NeuMan dataset. Fig. 8 visualizes the qualita-
tive comparisons between HOSNeRF and NeuMan [ 14] for
novel view synthesis at novel timesteps, where HOSNeRF
achieves better visual quality over NeuMan [14] for the ren-

dered human bodies and backgrounds in all scenes due to
the superiority of our human model and background model.
Our HOSNeREF also achieves better foreground-background
merging results, such as the feet regions of the Seattle scene
and the Lab scene. This further demonstrates the effective-
ness and flexibility of HOSNeRF to model various types of
dynamic human-(objects)-scenes.
Training Time Comparison on the HOSNeRF Dataset.
Tab. 4 presents the training time of all methods on our
HOSNeRF dataset. To ensure a fair comparison with the
state-of-the-art (SOTA) approaches, we employ their high-
est configurations. Our three-stage training of HOSNeRF
requires a total of five days, whereas NeuMan’s [14] two-
stage training demands over seven days. Due to the absence
of distributed training support and the need for CPU com-
puting, NeuMan’s [ 1 4] second stage training takes 95 hours.
In contrast, although the training time for D?NeRF [57] and
K-Planes [7] is less than 6 hours, their performances are sig-
nificantly inferior on our challenging dataset, as evidenced
by Tab. 2 and Fig. 4 of the main paper.
Per-scene 360° Free-Viewpoint Renderings from Our
HOSNeRF. We have also included a supplementary video
to showcase the per-scene 360° free-viewpoint renderings
from our HOSNeRF on all six scenes of our HOSNeRF
dataset. The video highlights that our HOSNeRF is capa-
ble of generating high-fidelity details that accurately resem-
ble all scene components, including dynamic human bod-
ies, objects, and backgrounds. Notably, our HOSNeRF fa-
cilitates pausing the monocular video at any given point
and rendering all scene details with high-fidelity from 360°
viewpoints. To the best of our knowledge, our HOSNeRF
represents the first work to achieve 360° free-viewpoint
high-fidelity novel view synthesis for dynamic scenes fea-
turing human-environment interactions from a single video.
It should be emphasized that to enable 360° free-
viewpoint rendering of the scene, the input single videos
must contain 360° scene information (an example capture
process is shown in the supplementary video); otherwise,
artifacts will appear in unobserved areas that were not even
seen in the input videos. However, our HOSNeRF is not
restricted by such capturing requirements, as demonstrated
on the NeuMan dataset [14], which features small cam-
era motions. It is worth noting that although the NeuMan
dataset [14] does not allow for 360° rendering since most
scene regions are not captured, our HOSNeREF still remains
applicable.
Optimized State-Conditional Canonical Spaces from
Our HOSNeRF. Fig. 9 illustrates the state-conditional
canonical spaces learned by our HOSNeRF on the HOS-
NeRF dataset. As shown in the figure, our proposed state-
conditional dynamic human-object model can effectively
represent different human-object states, and can reconstruct
both the human bodies and objects with photorealistic de-
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Figure 8: Qualitative comparisons of HOSNeRF and NeuMan [ 4] on the NeuMan dataset.

Ours NeuMan [14] 5 5 .
Method Ist stage 2nd stage 3rdstage | Iststage 2nd stage HyperNeRF [33] | Nerfies [32] | D*NeRF [57] | K-Planes [7]
No. of GPUs 4 4 4 3 1 2 4 1 1
Training time (hours) 32 34 52 80 95 39 35 5.7 53

Table 4: Training time comparison on the HOSNeRF dataset against baselines.

tails, enabling both 360° dynamic novel view synthesis and
novel object / human pose manipulations. In addition, our
complete HOSNeREF is able to render clean human-object
canonical spaces based on coarse human-object masks.
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conditional canonical spaces of HOSNeRF on our HOSNeRF dataset.

Figure 9: Optimized state



