
Online Prototype Learning for Online Continual Learning

Yujie Wei1 Jiaxin Ye1 Zhizhong Huang2 Junping Zhang2 Hongming Shan1,3,4*

1 Institute of Science and Technology for Brain-inspired Intelligence, Fudan University
2 School of Computer Science, Fudan University

3 MOE Frontiers Center for Brain Science, Fudan University
4 Shanghai Center for Brain Science and Brain-inspired Technology

{yjwei22, jxye22}@m.fudan.edu.cn, {zzhuang19, jpzhang, hmshan}@fudan.edu.cn

Abstract

Online continual learning (CL) studies the problem of
learning continuously from a single-pass data stream while
adapting to new data and mitigating catastrophic forget-
ting. Recently, by storing a small subset of old data, replay-
based methods have shown promising performance. Unlike
previous methods that focus on sample storage or knowl-
edge distillation against catastrophic forgetting, this paper
aims to understand why the online learning models fail to
generalize well from a new perspective of shortcut learn-
ing. We identify shortcut learning as the key limiting fac-
tor for online CL, where the learned features may be bi-
ased, not generalizable to new tasks, and may have an ad-
verse impact on knowledge distillation. To tackle this issue,
we present the online prototype learning (OnPro) frame-
work for online CL. First, we propose online prototype
equilibrium to learn representative features against short-
cut learning and discriminative features to avoid class con-
fusion, ultimately achieving an equilibrium status that sep-
arates all seen classes well while learning new classes. Sec-
ond, with the feedback of online prototypes, we devise a
novel adaptive prototypical feedback mechanism to sense
the classes that are easily misclassified and then enhance
their boundaries. Extensive experimental results on widely-
used benchmark datasets demonstrate the superior perfor-
mance of OnPro over the state-of-the-art baseline meth-
ods. Source code is available at https://github.
com/weilllllls/OnPro.

1. Introduction
Current artificial intelligence systems [30, 37, 53, 16]

have shown excellent performance on the tasks at hand;
however, they are prone to forget previously learned knowl-
edge while learning new tasks, known as catastrophic for-
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Figure 1. The visual explanations by GradCAM++ on the training
set of CIFAR-10 (image size 32× 32). Although all methods pre-
dict the correct class, shortcut learning still exists in ER and DVC.

getting [20, 23, 9]. Continual learning (CL) [47, 45, 14,
19] aims to learn continuously from a non-stationary data
stream while adapting to new data and mitigating catas-
trophic forgetting, offering a promising path to human-like
artificial general intelligence. Early CL works consider the
task-incremental learning (TIL) setting, where the model
selects the task-specific component for classification with
task identifiers [1, 42, 51, 14]. However, this setting lacks
flexibility in real-world scenarios. In this paper, we focus on
a more general and realistic setting—the class-incremental
learning (CIL) in the online CL mode [43, 13, 27, 52]—
where the model learns incrementally classes in a sequence
of tasks from a single-pass data stream and cannot access
task identifiers at inference.

Various online CL methods have been proposed to mit-
igate catastrophic forgetting [52, 44, 25, 28, 11, 5, 13].
Among them, replay-based methods [11, 44, 26, 2, 25] have
shown promising performance by storing a subset of data
from old classes as exemplars for experience replay. Unlike
previous methods that focus on sample storage [52, 3], we
are interested in how generalizable the learned features are
to new classes, and aim to understand why the online learn-
ing models fail to generalize well from a new perspective of
shortcut learning.

Intuitively, the neural network tends to “take short-
cuts” [22] and focuses on simplistic features. This behavior
of shortcut learning is especially serious in online CL, since
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the model may learn biased and inadequate features from
the single-pass data stream. Specifically, the model may be
more inclined to learn trivial solutions unrelated to objects,
which are hard to generalize and easily forgotten. Take
Fig. 1 as an example, when classifying two classes, saying
airplanes in the sky and cat on the grass, the model may eas-
ily identify the shortcut clue between two classes—blue sky
vs. green grass—unfortunately, the learned features are del-
icate and unrelated to the classes of interest. When new bird
and deer classes come, which may also have sky or grass,
the model has to be updated due to inapplicable previous
knowledge, leading to poor generalization and catastrophic
forgetting. Thus, learning representative features that best
characterize the class is crucial to resist shortcut learning
and catastrophic forgetting, especially in online CL.

In addition, the intuitive manifestation of catastrophic
forgetting is the confusion between classes. To alleviate
class confusion, many works [26, 42, 49, 4, 7, 56] em-
ploy self-distillation [17, 32] to preserve previous knowl-
edge. However, the premise for knowledge distillation to
succeed is that the model has learned sufficient discrimina-
tive features in old classes, and these features still remain
discriminative when learning new classes. As mentioned
above, the model may learn oversimplified features due to
shortcut learning, significantly compromising the general-
ization to new classes. Thus, distilling these biased features
may have an adverse impact on new classes. In contrast, we
consider a more general paradigm to maintain discrimina-
tion among all seen classes, which can tackle the limitations
of knowledge distillation.

In this paper, we aim to learn representative features of
each class and discriminative features between classes, both
crucial to mitigate catastrophic forgetting. Toward this end,
we present the Online Prototype learning (OnPro) frame-
work for online continual learning. The online prototype
introduced is defined as “a representative embedding for a
group of instances in a mini-batch.” There are two reasons
for this design: (1) for new classes, the data arrives sequen-
tially from a single-pass stream, and we cannot access all
samples of one class at any time step (iteration); and (2)
for old classes, computing the prototypes of all samples in
the memory bank at each time step is computationally ex-
pensive, especially for the online scenario with limited re-
sources. Thus, our online prototypes only utilize the data
available at the current time step (i.e., data within a mini-
batch), which is more suitable for online CL.

To resist shortcut learning in online CL and maintain
discrimination among seen classes, we first propose On-
line Prototype Equilibrium (OPE) to learn representative
and discriminative features for achieving an equilibrium sta-
tus that separates all seen classes well while learning new
classes. Second, instead of employing knowledge distil-
lation that may distill unfaithful knowledge from previous

models, we devise a novel Adaptive Prototypical Feedback
(APF) that can leverage the feedback of online prototypes
to first sense the classes—that are easily misclassified—and
then adaptively enhance their decision boundaries.

The contributions are summarized as follows.
1) We identify shortcut learning as the key limiting factor

for online CL, where the learned features may be bi-
ased, not generalizable to new tasks, and may have an
adverse impact on knowledge distillation. To the best of
our knowledge, this is the first time to identify the short-
cut learning issues in online CL, offering new insights
into why online learning models fail to generalize well.

2) We present the online prototype learning framework for
online CL, in which the proposed online prototype equi-
librium encourages learning representative and discrim-
inative features while adaptive prototypical feedback
leverages the feedback of online prototypes to sense eas-
ily misclassified classes and enhance their boundaries.

3) Extensive experimental results on widely-used bench-
mark datasets demonstrate the superior performance of
our method over the state-of-the-art baseline methods.

2. Related Work
Continual learning. Continual learning methods can be
roughly summarized into three categories: regularization-
based, parameter-isolation-based, and replay-based meth-
ods. Regularization-based methods [9, 1, 40, 31] add ex-
tra regularization constraints on network parameters to miti-
gate forgetting. Parameter-isolation-based methods [50, 51,
39, 18] avoid forgetting by dynamically allocating parame-
ters or modifying the architecture of the network. Replay-
based methods [11, 2, 3, 10, 4, 48] maintain and update a
memory bank (buffer) that stores exemplars of past tasks.
Among them, replay-based methods are the most popular
for their simplicity yet efficiency. Experience Replay [11]
randomly samples from the buffer. MIR [2] retrieves buffer
samples by comparing the interference of losses. Further-
more, in the online setting, ASER [52] introduces a buffer
management theory based on the Shapley value. SCR [44]
utilizes supervised contrastive loss [35] for training and the
nearest-class-mean classifier for testing. OCM [26] pre-
vents forgetting through mutual information maximization.

Unlike these methods that focus on selecting which sam-
ples to store or learning features only by instances, our
work rethinks the catastrophic forgetting from a new short-
cut learning perspective, and proposes to learn representa-
tive and discriminative features through online prototypes.
Knowledge distillation in continual learning. Another
solution to catastrophic forgetting is to preserve previ-
ous knowledge by self-distillation [49, 4, 42, 7, 56, 26].
iCaRL [49] constrains changes of learned knowledge by
distillation and employs class prototypes for nearest neigh-
bor prediction. Co2L [7] proposes a self-distillation loss to
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Figure 2. Illustration of the proposed OnPro framework. At time step (iteration) i, the incoming data X and replay data Xb are augmented
and fed to the model to learn features with OPE. Then, the proposed APF senses easily misclassified classes from all seen classes and
enhances their decision boundaries. Concretely, APF adaptively selects more data for mixup according to the probability distribution P .

preserve learned features. PASS [56] maintains the decision
boundaries of old classes by distilling old prototypes. How-
ever, it is hard to distill useful knowledge when previous
models are not learned well. In contrast, we propose a gen-
eral feedback mechanism to enhance the discrimination of
classes that are prone to misclassification, which overcomes
the limitations on knowledge distillation.
Prototypes in continual learning. Some previous meth-
ods [49, 44, 56] attempt to utilize prototypes to mitigate
catastrophic forgetting. As mentioned above, iCaRL and
SCR employ class prototypes as classifiers, and PASS dis-
tills old prototypes to retain learned knowledge. Neverthe-
less, computing prototypes with all samples is extremely
expensive for training. There are also some works consider-
ing the use of prototypes in the online scenario. CoPE [15]
designs the prototypes with a high momentum-based up-
date for each observed batch. A recent work [28] estimates
class prototypes on all seen data using mean update criteria.
However, regardless of momentum update or mean update,
accumulating previous features as prototypes may be detri-
mental to future learning, since the features learned in old
classes may not be discriminative when encountering new
classes due to shortcut learning. In contrast, the proposed
online prototypes only utilize the data visible at the current
time step, which significantly decreases the computational
cost and is more suitable for online CL.
Contrastive learning. Inspired by breakthroughs in self-
supervised learning [46, 29, 12, 24, 6, 34], many stud-
ies [44, 5, 26, 7, 28] in CL use contrastive learning to
learn generalized features. An early work [21] analyzes
and reveals the impact of contrastive learning on online CL.
Among them, the work most related to ours is PCL [41],
which calculates infoNCE loss [46] between instance and
prototype. The most significant difference is that the loss

in OPE only considers online prototypes, and there is no
involvement of instances. Please refer to Appendix A for
detailed comparisons between our OPE and PCL.

3. Method

Fig. 2 presents the illustration of the proposed OnPro. In
this section, we start by providing the problem definition of
online CIL. Then, we describe the definition of the online
prototype, the proposed online prototype equilibrium, and
the proposed adaptive prototypical feedback. Finally, we
propose an online prototype learning framework.

3.1. Problem Definition

Formally, online CIL considers a continuous sequence of
tasks from a single-pass data stream D = {D1, . . . ,DT },
whereDt = {xi, yi}Nt

i=1 is the dataset of task t, and T is the
total number of tasks. Dataset Dt contains Nt labeled sam-
ples, yi is the class label of sample xi and yi ∈ Ct, where Ct
is the class set of task t and the class sets of different tasks
are disjoint. For replay-based methods, a memory bank is
used to store a small subset of seen data, and we also main-
tain a memory bank M in our method. At each time step
of task t, the model receives a mini-batch data X ∪Xb for
training, where X and Xb are drawn from the i.i.d distri-
bution Dt and the memory bank M, respectively. More-
over, we adopt the single-head evaluation setup [9], where
a unified classifier must choose labels from all seen classes
at inference due to unavailable task identifiers. The goal of
online CIL is to train a unified model on data seen only once
while predicting well on both new and old classes.
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3.2. Online Prototype Definition

Prior to introducing the online prototypes, we first
present the network architecture of our OnPro. Suppose
that the model consists of three components: an encoder
network f , a projection head g, and a classifier φ. Each
sample x in incoming data X (a mini-batch data from new
classes) is mapped to a projected vectorial embedding (rep-
resentation) z by encoder f and projector g:

z = g(f(aug(x); θf ); θg), (1)

where aug represents the data augmentation operation, θf
and θg represent the parameters of f and g, respectively,
and z is ℓ2-normalized. Similar to Eq. (1), we use zb to
denote the representation of replay data Xb (a mini-batch
data from seen classes in the memory bank).

At each time step of task t, the online prototype of each
class is defined as the mean representation in a mini-batch:

pi =
1

ni

∑
j
zj · 1{yj = i}, (2)

where ni is the number of samples for class i in a mini-
batch, and 1 is the indicator function. We can get a set
of K online prototypes in X , P = {pi}Ki=1, and a set of

Kb online prototypes in Xb, Pb =
{
pb
i

}Kb

i=1
. Note that

K = |P| ≤ |Ct| and Kb = |Pb| ≤ ∑t
i=1 |Ci|, where | · |

denotes the cardinal number.

3.3. Online Prototype Equilibrium

The introduced online prototypes can provide represen-
tative features and avoid class-unrelated information. These
characteristics are exactly the key to counteracting shortcut
learning in online CL. Besides, maintaining the discrimina-
tion among seen classes is also essential to mitigate catas-
trophic forgetting. Based on these, we attempt to learn rep-
resentative features of each class by pulling online proto-
types P and their augmented views P̂ closer in the em-
bedding space, and learn discriminative features between
classes by pushing online prototypes of different classes
away, formally defined as a contrastive loss:

ℓ(P, P̂)= −1|P|

|P|∑
i=1

log
exp

(pT
i p̂i

τ

)
∑
j

exp
(pT

i p̂j

τ

)
+
∑
j ̸=i

exp
(pT

i pj

τ

) , (3)

where τ is the temperature hyper-parameter, P and P̂ are
ℓ2-normalized. To compute the contrastive loss across all
positive pairs in both (P, P̂) and (P̂,P), we define Lpro as
the final contrastive loss over online prototypes:

Lpro(P, P̂) =
1

2

[
ℓ(P, P̂) + ℓ(P̂,P)

]
. (4)

Considering the learning of new classes and the consol-
idation of learned knowledge simultaneously in online CL,
we propose Online Prototype Equilibrium (OPE) to learn
representative and discriminative features on both new and
seen classes by employing Lpro:

LOPE = Lnew
pro (P, P̂) + Lseen

pro (Pb, P̂b), (5)

where Lnew
pro focuses on learning knowledge from new

classes, and Lseen
pro is dedicated to preserving learned knowl-

edge of all seen classes. This process is similar to a zero-
sum game, and OPE aims to achieve the equilibrium to
play a win-win game. Concretely, as the model learns, the
knowledge of new classes is gained and added to the pro-
totypes over the memory bankM, causing Lseen

pro gradually
changes to the equilibrium that separates all seen classes
well, including new ones. This variation is crucial to miti-
gate forgetting and is consistent with the goal of CIL.

3.4. Adaptive Prototypical Feedback

Although OPE can bring an overall equilibrium, it tends
to treat each class equally. In fact, the degree of confusion
varies among classes, and the model should focus purpose-
fully on confused classes to consolidate learned knowledge.
To this end, we propose Adaptive Prototypical Feedback
(APF) with the feedback of online prototypes to sense the
classes that are prone to be misclassified and then enhance
their decision boundaries.

For each class pair in the memory bank M, APF cal-
culates the distances between online prototypes of all seen
classes from the previous time step, showing the class con-
fusion status by these distances. The closer the two pro-
totypes are, the easier to be misclassified. Based on this
analysis, our idea is to enhance the boundaries for those
classes. Therefore, we convert the prototype distance ma-
trix to a probability distribution P over the classes via a
symmetric Gaussian kernel, defined as follows:

Pi,j ∝ exp(−∥pb
i − pb

j ∥22), (6)

where i, j ∈ {1, . . . , |Pb|} and i ̸= j. Then, all proba-
bilities are normalized to a probability mass function that
sums to one. APF returns probabilities to M for guiding
the next sampling process and enhancing decision bound-
aries of easily misclassified classes.

Our adaptive prototypical feedback is implemented as
a sampling-based mixup. Specifically, APF adaptively se-
lects more samples from easily misclassified classes inM
for mixup [55] according to the probability distribution P .
Considering not over-penalizing the equilibrium of current
online prototypes, we introduce a two-stage sampling strat-
egy for replay data Xb of size m. First, we select nAPF

samples with P , and a larger Pa,b means more sampling
from classes a and b. Here, nAPF = α · m, and α is the
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ratio of APF. Second, the remaining m − nAPF samples
are uniformly randomly selected from the entire memory
bank to avoid the model only focusing on easily misclassi-
fied classes and disrupting the established equilibrium.

3.5. Overall Framework of OnPro

The overall structure of OnPro is shown in Fig. 2. On-
Pro comprises two key components based on proposed on-
line prototypes: Online Prototype Equilibrium (OPE) and
Adaptive Prototypical Feedback (APF). With the two com-
ponents, the model can learn representative features against
shortcut learning, and all seen classes maintain discrimi-
native when learning new classes. However, classes may
not be compact, because the online prototypes cannot cover
full instance-level information. To further achieve intra-
class compactness, we employ supervised contrastive learn-
ing [35] to learn instance-wise representations:

LINS =

2N∑
i=1

−1
|Ii|

∑
j∈Ii

log
exp (sim(zi, zj)/τ

′)∑
k ̸=i

exp (sim(zi, zk)/τ ′)

+

2m∑
i=1

−1∣∣Ibi ∣∣
∑
j∈Ib

i

log
exp(sim(zbi , z

b
j )/τ

′)∑
k ̸=i

exp
(
sim(zbi , z

b
k)/τ

′
) , (7)

where Ii = {j ∈ {1, . . . , 2N} | j ̸= i, yj = yi} and Ibi ={
j ∈ {1, . . . , 2m} | j ̸= i, ybj = ybi

}
are the set of positive

samples indexes to zi and zbi , respectively. ybi is the class
label of input xb

i from Xb. N is the batch size of X . τ ′

is the temperature hyperparameter. The similarity function
sim is computed in the same way as Eq. (9) in OCM [26].

Thus, the total loss of our OnPro framework is given as:

LOnPro = LOPE + LINS + LCE, (8)

where LCE = CE(yb, φ(f(aug(xb)))) is the cross-entropy
loss; see Appendix D for detailed training algorithms.

Following other replay-based methods [11, 44, 26], we
update the memory bank in each time step by uniformly
randomly selecting samples from X to push intoM and, if
M is full, pulling an equal number of samples out ofM.

4. Experiments
4.1. Experimental Setup

Datasets. We use three image classification benchmark
datasets, including CIFAR-10 [36], CIFAR-100 [36], and
TinyImageNet [38], to evaluate the performance of online
CIL methods. Following [52, 44, 25], we split CIFAR-10
into 5 disjoint tasks, where each task has 2 disjoint classes,
10,000 samples for training, and 2,000 samples for test-
ing, and split CIFAR-100 into 10 disjoint tasks, where each
task has 10 disjoint classes, 5,000 samples for training, and

1,000 samples for testing. Following [26], we split TinyIm-
ageNet into 100 disjoint tasks, where each task has 2 dis-
joint classes, 1,000 samples for training, and 100 samples
for testing. Note that the order of tasks is fixed in all exper-
imental settings.
Baselines. We compare our OnPro with 13 baselines, in-
cluding 10 replay-based online CL baselines: AGEM [10],
MIR [2], GSS [3], ER [11], GDumb [48], ASER [52],
SCR [44], CoPE [15], DVC [25], and OCM [26]; 3 offline
CL baselines that use knowledge distillation by running
them in one epoch: iCaRL [49], DER++ [4], and PASS [56].
Note that PASS is a non-exemplar method.
Evaluation metrics. We use Average Accuracy and Av-
erage Forgetting [52, 25] to measure the performance of
our framework in online CIL. Average Accuracy evaluates
the accuracy of the test sets from all seen tasks, defined as
Average Accuracy = 1

T

∑T
j=1 aT,j , where ai,j is the accu-

racy on task j after the model is trained from task 1 to i.
Average Forgetting represents how much the model forgets
about each task after being trained on the final task, defined
as Average Forgetting = 1

T−1

∑T−1
j=1 fT,j , where fi,j =

maxk∈{1,...,i−1} ak,j − ai,j .

Implementation details. We use ResNet18 [30] as the
backbone f and a linear layer as the projection head g
like [44, 26, 7]; the hidden dim in g is set to 128 as [12].
We also employ a linear layer as the classifier φ. We train
the model from scratch with Adam optimizer and an initial
learning rate of 5× 10−4 for all datasets. The weight decay
is set to 1.0×10−4. Following [52, 25], we set the batch size
N as 10, and following [26] the replay batch size m is set to
64. For CIFAR-10, we set the ratio of APF α = 0.25. For
CIFAR-100 and TinyImageNet, α is set to 0.1. The temper-
ature τ = 0.5 and τ ′ = 0.07. For baselines, we also use
ResNet18 as their backbone and set the same batch size and
replay batch size for fair comparisons. We reproduce all
baselines in the same environment with their source code
and default settings; see Appendix E for implementation
details about all baselines. We report the average results
across 15 runs for all experiments.
Data augmentation. Similar to data augmentations used
in SimCLR [12], we use resized-crop, horizontal-flip, and
gray-scale as our data augmentations. For all baselines, we
also use these augmentations. In addition, for DER++[4],
SCR [44], and DVC [25], we follow their default settings
and use their own extra data augmentations. OCM [26] uses
extra rotation augmentations, which are also used in OnPro.

4.2. Motivation Justification

Shortcut learning in online CL. Shortcut learning is se-
vere in online CL since the model cannot learn sufficient
representative features due to the single-pass data stream.
To intuitively demonstrate this issue, we conduct Grad-
CAM++ [8] on the training set of CIFAR-10 (M = 0.2k)
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Figure 3. t-SNE [54] visualizations of features learned from ER and OnPro on the test set of CIFAR-10. When learning new classes, ER
suffers serious class confusion probably because shortcut learning. In contrast, OnPro significantly mitigates the forgetting.

Method
CIFAR-10 CIFAR-100 TinyImageNet

M = 0.1k M = 0.2k M = 0.5k M = 0.5k M = 1k M = 2k M = 1k M = 2k M = 4k

iCaRL [49] 31.0±1.2 33.9±0.9 42.0±0.9 12.8±0.4 16.5±0.4 17.6±0.5 5.0±0.3 6.6±0.4 7.8±0.4
DER++ [4] 31.5±2.9 39.7±2.7 50.9±1.8 16.0±0.6 21.4±0.9 23.9±1.0 3.7±0.4 5.1±0.8 6.8±0.6
PASS [56] 33.7±2.2 33.7±2.2 33.7±2.2 7.5±0.7 7.5±0.7 7.5±0.7 0.5±0.1 0.5±0.1 0.5±0.1

AGEM [10] 17.7±0.3 17.5±0.3 17.5±0.2 5.8±0.1 5.9±0.1 5.8±0.1 0.8±0.1 0.8±0.1 0.8±0.1
GSS [3] 18.4±0.2 19.4±0.7 25.2±0.9 8.1±0.2 9.4±0.5 10.1±0.8 1.1±0.1 1.5±0.1 2.4±0.4
ER [11] 19.4±0.6 20.9±0.9 26.0±1.2 8.7±0.3 9.9±0.5 10.7±0.8 1.2±0.1 1.5±0.2 2.0±0.2
MIR [2] 20.7±0.7 23.5±0.8 29.9±1.2 9.7±0.3 11.2±0.4 13.0±0.7 1.4±0.1 1.9±0.2 2.9±0.3

GDumb [48] 23.3±1.3 27.1±0.7 34.0±0.8 8.2±0.2 11.0±0.4 15.3±0.3 4.6±0.3 6.6±0.2 10.0±0.3
ASER [52] 20.0±1.0 22.8±0.6 31.6±1.1 11.0±0.3 13.5±0.3 17.6±0.4 2.2±0.1 4.2±0.6 8.4±0.7

SCR [44] 40.2±1.3 48.5±1.5 59.1±1.3 19.3±0.6 26.5±0.5 32.7±0.3 8.9±0.3 14.7±0.3 19.5±0.3
CoPE [15] 33.5±3.2 37.3±2.2 42.9±3.5 11.6±0.7 14.6±1.3 16.8±0.9 2.1±0.3 2.3±0.4 2.5±0.3
DVC [25] 35.2±1.7 41.6±2.7 53.8±2.2 15.4±0.7 20.3±1.0 25.2±1.6 4.9±0.6 7.5±0.5 10.9±1.1
OCM [26] 47.5±1.7 59.6±0.4 70.1±1.5 19.7±0.5 27.4±0.3 34.4±0.5 10.8±0.4 15.4±0.4 20.9±0.7

OnPro (ours) 57.8±1.1 65.5±1.0 72.6±0.8 22.7±0.7 30.0±0.4 35.9±0.6 11.9±0.3 16.9±0.4 22.1±0.4

Table 1. Average Accuracy (higher is better) on three benckmark datasets with different memory bank sizes M . All results are the average
and standard deviation of 15 runs.

after the model is trained incrementally, as shown in Fig. 1.
Each row in Fig. 1 represents a task with two classes. We
can observe that although ER and DVC predict the correct
class, the models actually take shortcuts and focus on some
object-unrelated features. An interesting phenomenon is
that ER tends to take shortcuts in each task. For exam-
ple, ER learns the sky on both the airplane class in task
1 (the first row) and the bird class in task 2 (the second
row) . Thus, ER forgets almost all the knowledge of the old
classes. DVC maximizes the mutual information between
instances like contrastive learning [12, 29], which only par-
tially alleviates shortcut learning in online CL. In contrast,
OnPro focuses on the representative features of the objects
themselves. The results confirm that learning representa-
tive features is crucial against shortcut learning; see Ap-
pendix B.1 for more visual explanations.

Class confusion in online CL. Fig. 3 provides the t-
SNE [54] visualization results for ER and OnPro on the test

set of CIFAR-10 (M = 0.2k). We can draw intuitive obser-
vations as follows. (1) There is serious class confusion in
ER. When the new task (task 2) arrives, features learned in
task 1 are not discriminative for task 2, leading to class con-
fusion and decreased performance in old classes. (2) Short-
cut learning may cause class confusion. For example, the
performance of ER decreases more on airplanes compared
to automobiles, probably because birds in the new task have
more similar backgrounds to airplanes, as shown in Fig. 1.
(3) OnPro achieves better discrimination both on task 1 and
task 2. The results demonstrate that OnPro can maintain
discrimination of all seen classes and significantly mitigate
forgetting by combining the proposed OPE and APF.

4.3. Results and Analysis

Performance of average accuracy. Table 1 presents the
results of average accuracy with different memory bank
sizes (M ) on three benchmark datasets. Our OnPro con-
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Method
CIFAR-10 CIFAR-100 TinyImageNet

M = 0.1k M = 0.2k M = 0.5k M = 0.5k M = 1k M = 2k M = 1k M = 2k M = 4k

iCaRL [49] 52.7±1.0 49.3±0.8 38.3±0.9 16.5±1.0 11.2±0.4 10.4±0.4 9.9±0.5 10.1±0.5 9.7±0.6
DER++ [4] 57.8±4.1 46.7±3.6 33.6±3.5 41.0±1.1 34.8±1.1 33.2±1.2 77.8±1.0 74.9±0.6 73.2±0.8
PASS [56] 21.2±2.2 21.2±2.2 21.2±2.2 10.6±0.9 10.6±0.9 10.6±0.9 27.0±2.4 27.0±2.4 27.0±2.4

AGEM [10] 64.8±0.7 64.8±0.7 64.5±0.5 41.7±0.8 41.8±0.7 41.7±0.6 73.9±0.7 73.1±0.7 72.9±0.5
GSS [3] 67.1±0.6 65.8±0.6 61.2±1.2 48.7±0.8 46.7±1.3 44.7±1.1 78.9±0.7 77.0±0.5 75.2±0.7
ER [11] 64.7±1.1 62.9±1.0 57.5±1.8 47.0±1.0 46.4±0.8 44.7±1.5 79.1±0.6 77.7±0.6 76.3±0.5
MIR [2] 62.6±1.0 58.5±1.4 51.1±1.1 45.7±0.9 44.2±1.3 42.3±1.0 75.3±0.9 71.5±1.0 66.8±0.8

GDumb [48] 28.5±1.4 28.4±1.0 28.1±1.0 25.0±0.4 23.2±0.4 20.7±0.3 22.7±0.3 18.4±0.2 17.0±0.2
ASER [52] 64.8±1.0 62.6±1.1 53.2±1.5 52.8±0.8 50.4±0.9 46.8±0.7 78.9±0.5 75.4±0.7 68.2±1.1

SCR [44] 43.2±1.5 35.5±1.8 24.1±1.0 29.3±0.9 20.4±0.6 11.5±0.6 44.8±0.6 26.8±0.5 20.1±0.4
CoPE [15] 49.7±1.6 45.7±1.5 39.4±1.8 25.6±0.9 17.8±1.3 14.4±0.8 11.9±0.6 10.9±0.4 9.7±0.4
DVC [25] 40.2±2.6 31.4±4.1 21.2±2.8 32.0±0.9 32.7±2.0 28.0±2.2 59.8±2.2 52.9±1.3 45.1±1.9
OCM [26] 35.5±2.4 23.9±1.4 13.5±1.5 18.3±0.9 15.2±1.0 10.8±0.6 23.6±0.5 26.2±0.5 23.8±1.0

OnPro (ours) 23.2±1.3 17.6±1.4 12.5±0.7 15.0±0.8 10.4±0.5 6.1±0.6 21.3±0.5 17.4±0.4 16.8±0.4

Table 2. Average Forgetting (lower is better) on three benckmark datasets. All results are the average and standard deviation of 15 runs.
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(b) Confusion matrix of OCM and OnPro
Figure 4. Incremental accuracy on tasks observed so far and confusion matrix of accuracy (%) in the test set of CIFAR-10.

sistently outperforms all baselines on three datasets. Re-
markably, the performance improvement of OnPro is more
significant when the memory bank size is relatively small;
this is critical for online CL with limited resources. For
example, compared to the second-best method OCM, On-
Pro achieves about 10% and 6% improvement on CIFAR-
10 when M is 100 and 200, respectively. The results show
that our OnPro can learn more representative and discrimi-
native features with a limited memory bank. Compared to
baselines that use knowledge distillation (iCaRL, DER++,
PASS, OCM), our OnPro achieves better performance by
leveraging the feedback of online prototypes. Besides, On-
Pro significantly outperforms PASS and CoPE that also use
prototypes, showing that online prototypes are more suit-
able for online CL.

We find that the performance improvement tends to be
gentle when M increases. The reason is that as M in-
creases, the samples in the memory bank become more di-
verse, and the model can extract sufficient information from
massive samples to distinguish seen classes. In addition,
many baselines perform poorly on CIFAR-100 and TinyIm-
ageNet due to a dramatic increase in the number of tasks. In

contrast, OnPro still performs well and improves accuracy
over the second best.

Performance of average forgetting. We report the Aver-
age Forgetting results of our OnPro and all baselines on
three benchmark datasets in Table 2. The results confirm
that OnPro can effectively mitigate catastrophic forgetting.
For CIFAR-10 and CIFAR-100, OnPro achieves the lowest
average forgetting compared to all replay-based baselines.
For TinyImageNet, our result is a little higher than iCaRL
and CoPE but better than the latest methods DVC and OCM.
The reason is that iCaRL uses a nearest class mean classi-
fier, but we use softmax and FC layer during the test phase,
and CoPE slowly updates prototypes with a high momen-
tum. However, as shown in Table 1, OnPro provides more
accurate classification results than iCaRL and CoPE. It is a
fact that when the maximum accuracy of a task is small, the
forgetting on this task is naturally rare, even if the model
completely forgets what it learned.

Performance of each incremental step. We evaluate
the average incremental performance [4, 25] on CIFAR-10
(M = 0.1k) and CIFAR-100 (M = 0.5k), which indicates
the accuracy over all seen tasks at each incremental step.
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Method
CIFAR-10 CIFAR-100

Acc ↑(Forget ↓) Acc ↑(Forget ↓)

baseline 46.4±1.2(36.0±2.1) 18.8±0.8(18.5±0.7)
w/o OPE 53.1±1.4(24.7±2.0) 19.3±0.7(15.9±0.9)
w/o APF 52.0±1.5(34.6±2.4) 21.5±0.5(16.3±0.8)
w/o Lnew

pro 54.8±1.2(22.1±3.0) 19.6±0.8(19.9±0.7)
w/o Lseen

pro 55.7±1.4(25.5±1.5) 20.1±0.4(16.2±0.6)
Lseen

pro w/o Cnew 56.2±1.2(26.4±2.3) 20.8±0.6(17.9±0.7)
OnPro (ours) 57.8±1.1(23.2±1.3) 22.7±0.7(15.0±0.8)

Table 3. Ablation studies on CIFAR-10 (M = 0.1k) and CIFAR-
100 (M = 0.5k). “baseline” means LINS + LCE. “Lseen

pro w/o
Cnew” means Lseen

pro do not consider new classes in current task.

Fig. 4a shows that OnPro achieves better accuracy and ef-
fectively mitigates forgetting while the performance of most
baselines degrades rapidly with the arrival of new classes.
Confusion matrices at the end of learning. We report
the confusion matrices of our OnPro and the second-best
method OCM, as shown in Fig. 4b. After learning the last
task (i.e., the last two classes), OCM forgets the knowl-
edge of early tasks (classes 0 to 3). In contrast, OnPro per-
forms relatively well in all classes, especially in the first task
(classes 0 and 1), outperforming OCM by 27.8% average
improvements. The results show that learning representa-
tive and discriminative features is crucial to mitigate catas-
trophic forgetting; see Appendix B for extra experimental
results.

4.4. Ablation Studies

Effects of each component. Table 3 presents the ablation
results of each component. Obviously, OPE and APF can
consistently improve the average accuracy of classification.
We can observe that the effect of OPE is more significant on
more tasks while APF plays a crucial role when the mem-
ory bank size is limited. Moreover, when combining OPE
and APF, the performance is further improved, which indi-
cates that both can benefit from each other. For example,
APF boosts OPE by about 6% improvements on CIFAR-10
(M = 0.1k), and the performance of APF is improved by
about 3% on CIFAR-100 (M = 0.5k) by combining OPE.
Equilibrium in OPE. When learning new classes, the data
of new classes is involved in both Lnew

pro and Lseen
pro of OPE,

where Lnew
pro only focuses on learning new knowledge while

Lseen
pro tends to alleviate forgetting on seen classes. To ex-

plore the best way of learning new classes, we consider
three scenarios for OPE in Table 3. The results show that
only learning new knowledge (w/o Lseen

pro ) or only consoli-
dating the previous knowledge (w/o Lnew

pro ) can significantly
degrade the performance, which indicates that both are in-
dispensable for online CL. Furthermore, when Lseen

pro only
considers old classes and ignores new classes (Lseen

pro w/o
Cnew), the performance also decreases. These results show

Method M = 0.1k M = 0.2k M = 0.5k

Random 53.5±2.7 62.9±2.5 70.8±2.2
APF (ours) 57.8±1.1 65.5±1.0 72.6±0.8

Table 4. Comparison of Random Mixup and APF on CIFAR-10.

1 2 3 4 5
Number of Tasks

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e 

Si
m

ila
rit

y

class 0
class 1

class 2
class 3

class 4
class 5

class 6
class 7

class 8
class 9

Figure 5. The cosine similarity between online prototypes and pro-
totypes of the entire memory bank.

that the equilibrium of all seen classes (OPE) can achieve
the best performance and is crucial for online CL.
Effects of APF. To verify the advantage of APF, we com-
pare it with the completely random mixup in Table 4. APF
outperforms random mixup in all three scenarios. Notably,
APF works significantly when the memory bank size is
small, which shows that the feedback can prevent class con-
fusion due to a restricted memory bank; see Appendix C for
extra ablation studies.

4.5. Validation of Online Prototypes

Fig. 5 shows the cosine similarity between online proto-
types and global prototypes (prototypes of the entire mem-
ory bank) at each time step. For the first mini-batch of
each task, online prototypes are equal to global prototypes
(similarity is 1, omitted in Fig. 5). In the first task, on-
line and global prototypes are updated synchronously with
the model updates, resulting in high similarity. In subse-
quent tasks, the model initially learns inadequate features
of new classes, causing online prototypes to be inconsistent
with global prototypes and low similarity, which shows that
accumulating early features as prototypes may be harmful
to new tasks. However, the similarity will improve as the
model learns, because the model gradually learns represen-
tative features of new classes. Furthermore, the similarity
on old classes is only slightly lower, showing that online
prototypes are resistant to forgetting.

5. Conclusion

This paper identifies shortcut learning as the key limit-
ing factor for online CL, where the learned features are bi-
ased and not generalizable to new tasks. It also sheds light
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on why the online learning models fail to generalize well.
Based on these, we present a novel online prototype learn-
ing (OnPro) framework to address shortcut learning and
mitigate catastrophic forgetting. Specifically, by taking full
advantage of introduced online prototypes, the proposed
OPE aims to learn representative features of each class
and discriminative features between classes for achieving
an equilibrium status that separates all seen classes well
when learning new classes, while the proposed APF is able
to sense easily misclassified classes and enhance their de-
cision boundaries with the feedback of online prototypes.
Extensive experimental results on widely-used benchmark
datasets validate the effectiveness of the proposed OnPro as
well as its components. In the future, we will try more effi-
cient alternatives, such as designing a margin loss to ensure
discrimination between classes further.
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Appendix

A. Difference from PCL

PCL [41] bridges instance-level contrastive learning with
clustering based on unsupervised representation learning.
We discuss the differences between PCL and OPE in the
following three parts.
(1) Difference in learning settings. PCL is an unsu-
pervised contrastive learning method while OPE explicitly
leverages class labels to compute online prototypes. Thus,
OPE belongs to the supervised setting.
(2) Difference in prototype calculation. At each time step
(iteration), PCL uses all samples of classes to obtain proto-
types by performing K-means clustering. In contrast, OPE
just utilizes a mini-batch of training data to calculate online
prototypes.
(3) Difference in contrastive form (most significant dif-
ferences). The anchor of OPE as well as its positive and
negative samples are online prototypes, which means no in-
stance is involved, while PCL takes instance-level represen-
tation as the anchor and cluster centers as the positive and
negative samples. Specifically, OPE regards an online pro-
totype and its augmented view as a positive pair; online pro-
totypes of different classes are regarded as negative pairs.
PCL clusters samples M times, then regards a representa-
tion z of one image (instance) and its cluster center c as a
positive pair; z and other cluster centers as negative pairs,
formally defined as:

LPCL= −
2N∑
i=1

 1

M

M∑
m=1

log
exp(

zT
i cm

i

τm )∑r
j=0 exp(

zT
i cm

j

τm )

 , (A1)

where N is the batch size, r is the number of negative sam-
ples, and τm is the temperature hyper-parameter.

In addition, at each iteration, PCL needs to cluster all
samples M times, which is very expensive for training,
while our OPE only needs to compute online prototypes
once.

B. Extra Experimental Results

B.1. More Visual Explanations

To further demonstrate the shortcut learning in online
CL, we randomly select several images from all (ten)
classes in the training set of CIFAR-10 and provide their vi-
sual explanations by GradCAM++ [8], as shown in Fig. A1.
The results confirm that shortcut learning is widespread in
online CL. Although ER [11] and DVC [25] predict the
correct class, they still focus on some oversimplified and
object-unrelated features. In contrast, our OnPro learns rep-
resentative features of classes.

B.2. Knowledge Distillation on ER

As analyzed in the main paper, it is hard to distill use-
ful knowledge due to shortcut learning. To demonstrate
this, we apply the knowledge distillation in [56] to ER,
and the results are shown in Table A1. The performance
of ER decreases after using knowledge distillation, and a
larger memory bank does not result in significant perfor-
mance gains.

Method M = 0.1k M = 0.2k M = 0.5k

ER 19.4±0.6 20.9±0.9 26.0±1.2
ER with KD 17.0±2.7 17.3±2.1 17.6±0.8

Table A1. Average Accuracy with knowledge distillation [56]
(KD) for ER on CIFAR-10. All results are the average of 5 runs.

B.3. Experiments on Larger Datasets

We conduct extra experiments on ImageNet-100 and
ImageNet-1k. ImageNet-100 is a subset of ImageNet-1k
with randomly sampled 100 classes; we follow [33] to
use the fixed random seed (1993) for dataset generation.
We set the number of tasks to 50, the batch size and the
buffer batch size to 10, and the memory bank size to 1k for
ImageNet-100 and 5k for ImageNet-1k. For a fair compari-
son, all methods use the same data augmentations, including
resized-crop, horizontal-flip, and gray-scale. The mean Av-
erage Accuracy over 3 runs are reported in Table A2, sug-
gesting: (i) on larger datasets, our OnPro still achieves the
best performance and is more stable (lower STD); and (ii)
the performance on larger datasets varies greatly. For ex-
ample, on ImageNet-1k, DVC fails, ER is unstable (large
STD), and SCR performs even worse than ER.

ER SCR DVC OCM OnPro
IN-100 9.6±3.5 12.9±2.2 11.7±2.9 16.4±3.6 18.6±2.3
IN-1k 5.6±4.5 4.7±0.2 0.1±0.1 5.5±0.1 6.0±0.2

Table A2. Average Accuracy on ImageNet-100 (M = 1k) and
ImageNet-1k (M = 5k). All results are the average of 3 runs.

B.4. Visualization of All Classes

To demonstrate the impact of our OnPro on classifica-
tion, we provide the visualization of OnPro and OCM for all
classes in the test set on CIFAR-10 (M = 0.2k), as shown
in Fig. A2. It is intuitive that the closer the prototypes of
the two classes are, the more confused these two classes
become. Obviously, OCM does not avoid class confu-
sion, especially for the three animal classes of Bird, Cat,
and Dog, while OnPro achieves clear inter-class dispersion.
Furthermore, compared to OCM, OnPro can perceive se-
mantically similar classes and present their relationships in
the embedding space. Specifically, for the two classes of

12



Input ER OnProDVC Input ER OnProDVC

1.00.80.60.40.20

Figure A1. More visual explanations by GradCAM++ on the training set of CIFAR-10 (image size 32 × 32).
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(b) OnPro(a) OCM

Figure A2. t-SNE visualization of all classes in the test set of CIFAR-10 (M = 0.2k).

Method
CIFAR-10 CIFAR-100

Accuracy ↑ Forgetting ↓ Accuracy ↑ Forgetting ↓

LCE(both) 48.5±2.2 46.6±2.4 20.4±0.6 41.0±0.6
LCE(sepa) 53.2±2.1 38.9±2.3 18.8±0.6 48.1±0.8

OnPro (ours) 57.8±1.1 23.2±1.3 22.7±0.7 15.0±0.8

Table A3. Ablation studies about LCE on CIFAR-10 (M = 0.1k) and CIFAR-100 (M = 0.5k). LCE(both) means calculating X and Xb

in one CE loss, while LCE(sepa) is calculating X and Xb separately in two CE losses. All results are the average of 15 runs.

Automobile and Truck, their distributions are adjacent
in OnPro because they have more similar semantics com-
pared to other classes. However, OCM cannot capture the
semantics relationships, causing the two classes to be rela-
tively far apart. The results suggest that OnPro can achieve
an equilibrium status that separates all seen classes well by
learning representative and discriminative features with on-
line prototypes.

C. Extra Ablation Studies

C.1. Class Balance on Cross-Entropy Loss

In Table A3, we find that the way to calculate the cross-
entropy (CE) loss can significantly affect the performance
of OnPro, where LCE(both) = l(y∪yb, φ(f(x∪xb))) and
LCE(sepa) = l(y, φ(f(x))) + l(yb, φ(f(xb))). Here we
omit aug for simplicity. Both LCE(both) and LCE(sepa)
degrade the performance because adding the data of new
classes will bring serious class imbalance, causing the clas-
sifier to easily overfit to new classes and forget previous
knowledge.

C.2. Effects of Rotation Augmentation

As mentioned in the main paper, besides resized-crop,
horizontal-flip, and gray-scale, OCM and OnPro use Rota-
tion augmentation (Rot) like [56]. To explore the effects of
Rot, we employ it for some SOTA baselines, as shown in

Table A4. We find that using Rot can improve the perfor-
mance of baselines except for SCR. However, they are still
inferior to OnPro.

Method M = 0.1k M = 0.2k M = 0.5k

ER-Rot 30.1±1.9 34.1±3.0 42.8±4.1
ASER-Rot 30.7±3.5 35.8±0.8 43.8±2.1
SCR-Rot 35.8±3.3 46.4±2.4 59.8±2.6
DVC-Rot 45.3±4.3 58.5±2.8 66.7±2.1

OCM 47.5±1.7 59.6±0.4 70.1±1.5
OnPro (ours) 57.8±1.1 65.5±1.0 72.6±0.8

Table A4. Average Accuracy using Rotation augmentation (Rot)
on CIFAR-10. All results are the average of 5 runs.

C.3. Effects of the APF Ratio α

Encouraging the model to have a tendency to focus on
confused classes is helpful for mitigating catastrophic for-
getting. However, excessive focus on these classes may dis-
rupt the established equilibrium. Therefore, we study the
trade-off factor α on CIFAR-10 (M = 0.2k) and CIFAR-
100 (M = 0.5k), and the results are shown in Table A5. On
the one hand, when α is too small, the APF reduces to the
random selection and takes little account of easily misclas-
sified classes. On the other hand, too large α causes fo-
cusing too much on confused classes and ignoring general
cases. Based on the experimental results, we set α = 0.25
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α 0 0.10 0.25 0.50 0.75 0.9
CIFAR-10 62.9±2.5 63.2±2.0 65.5±1.0 65.4±2.7 64.6±1.8 64.1±2.0
CIFAR-100 22.0±1.5 22.7±0.7 22.1±1.1 21.7±1.2 21.3±1.3 21.1±1.1

Table A5. Effects of the APF ratio α on CIFAR-10 (M = 0.2k) and CIFAR-100 (M = 0.5k). All results are the average of 5 runs.

on CIFAR-10 and α = 0.1 on CIFAR-100 and TinyIma-
geNet.

C.4. Effects of Projection Head g

We employ a projection head g to get representations,
which is widely-used in contrastive learning [12]. For base-
lines, SCR [44], DVC [25], and OCM [26] also use a pro-
jection head to get representations. To explore the effects
of the projector g in OnPro, we conduct the experiment in
Table A6. The result shows that projector g can only bring
a slight performance improvement, and also illustrates that
the performance of OnPro comes mainly from our proposed
components.

Method M = 0.1k M = 0.2k M = 0.5k

no Projector 56.1±4.7 63.3±1.9 71.0±1.5
OnPro (ours) 57.8±1.1 65.5±1.0 72.6±0.8

Table A6. Average Accuracy without projector g on CIFAR-10.
All results are the average of 5 runs.

C.5. Effects of Memory Bank Batch Size m

Fig. A3 shows the effects of memory bank batch size.
We can observe that the performance of OnPro improves as
the memory bank batch size increases. However, the train-
ing time also grows with larger memory bank batch sizes.
Following [26], we set the memory bank batch size to 64.

10 16 32 64 128
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Figure A3. The performance of OnPro on CIFAR-10 (M = 0.2k)
with different memory bank batch sizes.

D. Training Algorithms of OnPro and APF
The training procedures of the proposed OnPro and APF

are presented in Algorithms 1 and 2, respectively. The
source code will be made publicly available upon the ac-
ceptance of this work.

E. Implementation Details about Baselines
The hyperparameters of OnPro are given in the main pa-

per. Here we discuss in detail how each baseline is imple-
mented.

For all baselines, we follow their original paper and de-
fault settings to set the hyperparameters. We set the random
seed to 0 and run the experiment 15 times in the same pro-
gram to get the results.

For iCaRL, AGEM, and ER, we use the SGD optimizer
and set the learning rate to 0.1. We uniformly randomly
select samples to update the memory bank and replay.

For DER++, we use the SGD optimizer and set the learn-
ing rate to 0.03. We fix α to 0.1 and β to 0.5.

For PASS, we use the Adam optimizer and set the learn-
ing rate to 0.001. The weight decay is set to 2e-4. We set
the loss weights λ and γ to 10 and fix the temperature as
0.1.

For GSS, we use the SGD optimizer and set the learning
rate to 0.1. The number of batches randomly sampled from
the memory bank to estimate the maximal gradients cosine
similarity score is set to 64, and the random sampling batch
size for calculating the score is also set to 64.

For MIR, we use the SGD optimizer and set the learning
rate to 0.1. The number of subsamples is set as 100.

For GDumb, we use the SGD optimizer and set the learn-
ing rate to 0.1. The value for gradient clipping is set to 10.
The minimal learning rate is set to 0.0005, and the epochs
to train for the memory bank are 70.

For ASER, we use the SGD optimizer and set the learn-
ing rate to 0.1. The number of nearest neighbors to perform
ASER is set to 3. We use mean values of Adversarial SV
and Cooperative SV, and set the maximum number of sam-
ples per class for random sampling to 1.5. We use the SV-
based methods for memory update and retrieval as given in
the original paper.

For SCR, we use the SGD optimizer and set the learning
rate to 0.1. We set the temperature to 0.07 and employ a
linear layer with a hidden size of 128 as the projection head.

For CoPE, we use the SGD optimizer and set the learning
rate to 0.001. We set the temperature to 1. The momentum
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Algorithm 1: Training Algorithm of OnPro
Input: Data stream D, encoder f , projector g, classifier φ, and data augmentation aug.
Initialization: Memory bankM← {},
for t=1 to T do

for each mini-batch X in Dt do
Xb ← APF (M)
X̂, X̂b ← aug(X,Xb)

z, zb = g(f (X ∪ X̂)), g(f (Xb ∪ X̂b))
Compute online prototypes P and Pb ▷ Eq. (2) in the main paper
LOnPro ←LOPE(P , Pb) + LINS(z, zb) + LCE(φ(f(X̂b)))
θf , θg ← LOnPro

M← Update(M, X)
end

end

Algorithm 2: Algorithm of APF

Input:M, and online prototypes
{
pb
i

}Kb

i=1
of previous time step.

Output: Xb

Initialization: S ← {}, nAPF = α ·m,
P ←Compute probability Pi,j for each class pair using pb

i and pb
j ▷ Eq. (6) in the main paper

for each Pi,j in P do
Xi, Xj ← sample ⌊Pi,j · nAPF + 0.5⌋ images from class i and class j
S ← S ∪Mixup(Xi, Xj)

end
Xbase ← the remaining m− nAPF samples are uniformly randomly selected fromM
Xb← S ∪Mixup(Xbase, Xbase)

of the moving average updates for the prototypes is set to
0.99. We use dynamic buffer allocation instead of a fixed
class-based memory as given in the original paper.

For DVC, we use the SGD optimizer and set the learning
rate to 0.1. The number of candidate samples for retrieval
is set to 50. For CIFAR-100 and TinyImageNet, we set loss
weights λ1 = λ2 = 1, λ3 = 4. For CIFAR-10, λ1 = λ2 =
1, λ3 = 2.

For OCM, we use the Adam optimizer and set the learn-
ing rate to 0.001. The weight decay is set as 0.0001. We
set the temperature to 0.07 and employ a linear layer with
a hidden size of 128 as the projection head. λ is set to 0.5.
We set α to 1 and β to 2 for contrastive loss and set α to
0 and β to 2 for supervised contrastive loss as given in the
original paper of OCM.

We refer to the links in Table A7 to reproduce the results.

F. Execution Time

Fig. A4 shows the training time of all methods on
CIFAR-10. OnPro is faster than OCM [26] and GSS [3].
We find that rotation augmentation (Rot) is the main reason
for the increase in training time. When rotation augmenta-

tion is not used, the training time of OnPro is significantly
reduced and is close to most of the baselines. Furthermore,
OnPro achieves the best performance compared to all base-
lines.
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Baseline Link
iCaRL https://github.com/srebuffi/iCaRL
DER++ https://github.com/aimagelab/mammoth
PASS https://github.com/Impression2805/CVPR21 PASS
AGEM https://github.com/facebookresearch/agem
GSS https://github.com/rahafaljundi/Gradient-based-Sample-Selection
MIR https://github.com/optimass/Maximally Interfered Retrieval
GDumb https://github.com/drimpossible/GDumb
ASER and SCR https://github.com/RaptorMai/online-continual-learning
CoPE https://github.com/Mattdl/ContinualPrototypeEvolution
ER and DVC https://github.com/YananGu/DVC
OCM https://github.com/gydpku/OCM

Table A7. Baselines with source code links.

aRERASGEGSSERMIRDumSESCRCoPDVCOCMo(no nPro
4 # 4 8 # 5 7 6 # 24 10 #
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Figure A4. Training time of each method on CIFAR-10.
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