
DomainAdaptor: A Novel Approach to Test-time Adaptation

Jian Zhang1,2 Lei Qi3,∗ Yinghuan Shi1,2,∗ Yang Gao1,2

1 State Key Laboratory for Novel Software Technology, Nanjing University
2 National Institute of Healthcare Data Science, Nanjing University

3 School of Computer Science and Engineering, Southeast University
zhangjian7369@smail.nju.edu.cn, qilei@seu.edu.cn, syh@nju.edu.cn, gaoy@nju.edu.cn

Abstract

To deal with the domain shift between training and test
samples, current methods have primarily focused on learn-
ing generalizable features during training and ignore the
specificity of unseen samples that are also critical during
the test. In this paper, we investigate a more challenging
task that aims to adapt a trained CNN model to unseen do-
mains during the test. To maximumly mine the information
in the test data, we propose a unified method called Do-
mainAdaptor for the test-time adaptation, which consists
of an AdaMixBN module and a Generalized Entropy Mini-
mization (GEM) loss. Specifically, AdaMixBN addresses the
domain shift by adaptively fusing training and test statis-
tics in the normalization layer via a dynamic mixture co-
efficient and a statistic transformation operation. To fur-
ther enhance the adaptation ability of AdaMixBN, we de-
sign a GEM loss that extends the Entropy Minimization loss
to better exploit the information in the test data. Extensive
experiments show that DomainAdaptor consistently out-
performs the state-of-the-art methods on four benchmarks.
Furthermore, our method brings more remarkable improve-
ment against existing methods on the few-data unseen do-
main. The code is available at https://github.com/
koncle/DomainAdaptor.

1. Introduction
To overcome the domain shift (i.e., training source and

test target data come from distinct domains, for deep learn-
ing models), previous studies (e.g., unsupervised domain
adaptation [33] or domain generalization [31]) have mainly
focused on designing sophisticated models in the training
stage. Despite their efforts, when a large domain gap exists
in the test stage, they still inevitably suffer drastic perfor-
mance degeneration. Given that abundant information ex-
ists in the unlabeled unseen data during the test, which is ne-

*Corresponding authors: Yinghuan Shi and Lei Qi.

B
atch N

orm

C
onv

Inaccurate statistic estimation

Data Loss
Entropy Minimization Loss

High confident
Small loss

C
on

fid
en

ce

1.0

Network

Pretrain

Estimated statistics

Target statistics

Test

...

Problem (1) Problem (2)

0.99

Figure 1: Illustration of the problem of (1) inaccurate statis-
tics estimation in BN and (2) small loss produced by en-
tropy minimization for the test-time adaptation methods.

glected when solely considering generalization in the train-
ing phase, a more practical approach is to adapt a trained
model to the unlabeled unseen data by incorporating this
information during the test (i.e., test-time adaptation [44]).

Incorporating both source data and unlabeled target data
can improve adaptation and enable a model to handle un-
seen domains in real-world scenarios. However, this ap-
proach is infeasible in practice due to the high computa-
tional cost of processing these data during the test. Be-
sides, data privacy is paramount in many real-world scenar-
ios where only model weights are accessible (e.g., clinical
data [20, 42] or commercial data [44]). These restrictions
remind us to consider a more practical problem: adapt a
trained CNN model to an arbitrarily unseen domain in the
test time without access to the source data, namely fully
test-time adaptation [44], to expand the generalization abil-
ity of a trained model without bearing retraining costs.

Several methods [38, 44, 2] have been developed re-
cently for fully test-time adaptation. One of the widely em-
ployed adaptation paradigm [44, 32, 10, 1] to exploit the
information of unseen samples is to finetune the Batch Nor-
malization [17] layers in a trained model with an unsuper-
vised loss, which is both simple and computationally effi-
cient. However, most of these methods only show their ef-
fectiveness on artificially corrupted datasets (e.g., CIFAR-
10-C [15]), which is different from the real-world scene
with diverse cross-domain styles in the domain generaliza-
tion task. For instance, when we adapt the model trained by

ar
X

iv
:2

30
8.

10
29

7v
1

 [
cs

.C
V

]
 2

0
A

ug
 2

02
3

https://github.com/koncle/DomainAdaptor
https://github.com/koncle/DomainAdaptor

photo data to the art painting data using existing methods,
there still exist the following two issues, as shown in Fig. 1:

(1) The success of current test-time adaptation methods
relies on an accurate estimation of the normalization statis-
tics, which is hard to achieve by solely employing the test
statistics obtained from the limited unseen data with a large
domain gap. We argue that the source statistics can help the
estimation, which is neglected by previous methods [44].

(2) During adaptation, previous unsupervised losses [3]
(e.g., Entropy Minimization (EM) loss) tend to bias the
training procedure to the samples that have low confidence
by producing large gradients and overlook the highly confi-
dent samples that also can help the adaptation procedure.

Considering the above limitations of current methods,
we present the DomainAdaptor, a novel approach for adapt-
ing a pre-trained CNN model to unseen domains, which
comprises an AdaMixBN module and a Generalized En-
tropy Minimization (GEM) loss. The AdaMixBN module
overcomes inaccurate estimation of test statistics by com-
bining training and test statistics and adapting the mixture
coefficient based on the current batch. However, directly
finetuning AdaMixBN may lead to performance degrada-
tion due to the weight mismatch problem caused by the
combined source statistics after finetuning. To address this
issue, we transform the source statistics into affine param-
eters in the normalization layers before finetuning. This
not only maintains the effectiveness of AdaMixBN but also
eliminates the negative impact of mismatched source statis-
tics. Moreover, the traditional Entropy Minimization (EM)
loss is not effective for finetuning AdaMixBN due to the
sharp probability distribution predicted by the model for
confident samples. Hence, we propose a GEM loss that em-
phasizes the role of temperature scaling in the traditional
EM loss. GEM loss softens the probability distribution of
each sample with temperature, generating large gradients
for confident samples and encouraging further learning.

The contributions of our proposed DomainAdaptor can
be summarized as follows:

• We propose AdaMixBN to adaptively mix the training
and test stats. in the transformed normalization layer,
which can trade off the training and test information.

• To better exploit unlabeled test samples, we propose
the Generalized Entropy Minimization loss to effec-
tively optimize the parameters of AdaMixBN.

• Our proposed method exhibits significant improve-
ment over existing approaches on four benchmark
datasets for domain generalization.

2. Related Work
Test time adaptation (TTA) [38, 10, 48, 18] is pro-

posed to learn the test distribution by leveraging unlabeled
test images, which provide hints about distribution informa-
tion. Test-time training [38] employs a manually designed

self-supervised learning task to learn the test distribution,
which requires altering the training stage and finetuning all
the layers. To mitigate this issue, Tent [44] is proposed by
only finetuning the batch normalization layers with an un-
supervised entropy minimization loss. Following works try
different unsupervised losses to help test time adaptation,
such as consistency loss [10], contrastive loss [30] or log-
likelihood ratio loss [32]. However, when applied to the test
data with a large domain gap, these methods commonly fail
due to the inaccurate estimation of statistics and produce
small gradients. In contrast, our method can alleviate these
issues and also succeed in the few-data scenarios.

Domain generalization (DG) has attracted significant
attention recently for its ability to generalize to unseen do-
mains by only learning from source domains [31, 15]. To
achieve the generalization ability, current methods primar-
ily aim to learn invariant features across all domains [55,
5, 4], augment data [25, 56, 58, 8, 49, 13] to learn di-
verse features or regularize network with training schemes
or losses [23, 24, 28, 3, 52]. While these methods only con-
sider the training stage, several methods alter model behav-
iors according to the test samples for better adaptation to
the unseen domains. Instance Normalization [41] and Ad-
aBN [26, 51] are simple but effective modules that utilize
test statistics to perform normalization. Du et al. [7] gen-
erates accurate statistics for each test sample with a trained
statistics prediction network. In addition to normalization,
Pandey et al. [36] train a generative network to generate the
nearest neighbor for each test sample in the source latent
space. ARM [53] applies a meta-learning training scheme
to extract batch-specific features during training and test for
adaptation. Despite their efforts to adapt the model at the
test stage, they require modifying the training stage and can-
not be applied to an already trained model. In contrast, we
propose our DomainAdaptor, which can be employed in any
trained model, making it more practical in the real world.

Temperature scaling has been studied in different
fields. In knowledge distillation [16, 29, 47, 54], it is used
to soften the probability distribution over classes, provid-
ing additional class relationship information for the stu-
dent model. In confidence calibration [11, 6, 39, 19], the
temperature is finetuned as a parameter to ensure the pre-
dicted class confidence accurately reflects the likelihood
of its ground truth correctness. In self-supervised learn-
ing [45, 50, 21], the temperature is used in contrastive loss
to penalize hard negative samples. Differently, in this work,
we employ temperature to encourage effective learning by
fully exploiting unlabeled test data.

3. Our Method
Let X ,Y denote the set of images and their correspond-

ing label. In the test stage, we are presented with a trained
model f(·|θ) : X → Y parametrized by θ ∈ Θ. At each

...
NetworkData

L
oss

Backprop

Forward

A
daM

ixB
N

...
Finetune

1 2Source
(far)

Source
(close)

Dynamic coefficents generation
Source statistics

Image statistics
Batch statistics

Shifted
Corrected

Statistics tranformation
Normalized with
simple mixed statistics

Normalized with
tranformed statistics

C
onv

C
on

fid
en

ce

Generalized Entropy Minimization

Large loss

Small loss

3

Figure 2: Method Overview. With an unlabeled test batch, (1) our proposed AdaMixBN first obtains the dynamic mixture
coefficient α with Eq. (2). (2) Then, the affine parameters (γ, β) are transformed with Eq. (5) to avoid negative side-effect of
mixed statistics. (3) Finally, we finetune the transformed affine parameters with Generalized Entropy Minimization (GEM)
loss to fully exploit batch information. The labels of the same batch are predicted with the finetuned network.

timestep t, a batch of data points {(xt
1, y

t
1), . . . , (x

t
N , ytN)}

is sampled from the unseen joint distribution PXY and only
the unlabeled batch of images xt = {xt

1, . . . , x
t
N } are

observed, where N is the batch size. For simplicity, we
drop the time t in the following paragraphs. Our goal
is to predict the labels of the batch correctly by adapting
the parameters θ of the trained model to the test distribu-
tion with only unlabeled data. To achieve this goal, we
propose AdaMixBN with statistics transformation opera-
tion and Generalized Entropy Minimization loss to effec-
tively exploit the information inside the unlabeled data. The
whole framework is illustrated in Fig. 2.

3.1. AdaMixBN

3.1.1 Dynamic coefficient generation

Given a batch of data, despite the lack of label information,
the statistics (i.e., mean and variance) of the extracted fea-
ture within the unlabeled data can also provide clues about
the underlying distribution of the data, which can be utilized
to help the model adapt to the corresponding domain. Since
the difference between the source statistics accumulated
during training and batch statistics during the test causes do-
main shift in the Batch Normalization layers [34, 10], pre-
vious methods (e.g., Tent [44]) only employ the test batch
statistics for normalization and drop the source statistics,
which is inaccurate for the real-world data and causes per-
formance degradation. Considering that higher layers with
high-level information are more transferable than lower lay-
ers (the experiment is conducted in Sec. 4.3), the source
statistics are also useful for adaptation. Therefore, we pro-
pose AdaMixBN that can dynamically fuse both statistics to
obtain a more accurate statistics estimation during the test:

x̂ =
x− (αµs + (1− α)µt)√

(ασ2
s + (1− α)σ2

t)
γ + β, (1)

where (µs, σ
2
s) and (µt, σ

2
t) are the statistics estimated from

the source and batch data, and (γ, β) are the affine parame-
ters in BN. The layer index is omitted for simplicity.

Table 1: The average distances between the single test im-
age, test batch, and the source statistics in the network.

Statistics Distance Art Cartoon Photo Sketch Avg.

img2batch (Min) 0.016 0.013 0.013 0.000 0.011
img2batch (Max) 3.334 5.418 2.772 0.061 2.896
src2batch 1.031 0.269 1.148 3.251 1.425

Instead of simply employing a manually defined fixed
mixture coefficient α which cannot handle the varying un-
seen domains, we design a novel generation module to dy-
namically mix the training and test statistics according to
the Euclidean distance d = ∥µ1 − µ2∥2+∥σ1 − σ2∥2 of the
statistics between source and test statistics:

α = 1− 1

N

∑
i

dst
dit + dis

. (2)

There are three distances in the formula: dst is the distance
between source statistics and test statistics; dis and dit are the
distances of the statistics of a single image xi to the source
and batch statistics, respectively. Although a single distance
dst can be employed to calculate α, a fixed threshold is re-
quired to determine its relationship to the value of α. For in-
stance, α can be obtained as α = sigmoid(dst − threshold),
where the threshold needs to be manually set for each batch,
which is impossible. We observe that the statistics of the
images in the batch should not be far away from the over-
all batch statistics. If the source-to-batch distance dst is
smaller than the image-to-batch distance dit, this implies
that the source domain is similar to the test domain, and
a large α can be used to incorporate more source statistics,
as shown in Fig. 2. For example, in the above Tab. 1, the
larger source-to-batch distance than the image-to-batch dis-
tance indicates a large domain gap for the Sketch domain.
To reduce this domain gap, more test statistics should be in-
corporated (i.e., a small α). Therefore, instead of manually
designing α or adopting a threshold, we propose to employ
the single image statistics as a proxy to dynamically mea-
sure the distance. We introduce the image-level distances dis
and dit as a relative distance measure that adapts to differ-

Table 2: The test accuracy (%) before/after fientuning (FT)
with different statistics. T is statistics transformation.

Test Mixed Source Mixed w/ T

Before FT 80.53 83.43 79.94 83.43
After FT 81.96 65.01↓ 17.36↓ 85.04

ent batches and layers. When the source and target statistics
differ significantly, dst and dis would be large while dit keeps
the same. Then the ratio would be large and result in a small
α, and vice versa. We average the ratio to obtain the final α.

3.1.2 Statistics transformation

Although AdaMixBN can improve the test-time perfor-
mance, directly finetuning the network with AdaMixBN
leads to significant degradation in performance. As shown
in Tab. 2, when fintuning with only test statistics, the perfor-
mance is improved, while when incorporating more source
statistics in the normalization process, the performance de-
grades significantly. To the extreme, if we only employ
source statistics without using test statistics, the perfor-
mance cannot even defeat the random guess.

This problem arises due to the weight mismatch between
the finetuned parameters (i.e., γ, β in all BN layers) and
source statistics, as illustrated in the middle row of Fig. 3.
After finetuning, BN weights (e.g., γ0 and β0 in Fig. 3) are
changed, which outputs the feature map x′

1 with the shifted
distribution. However, the source statistics (e.g., µs1 and
σ2
s1 in Fig. 3) are fixed across the finetuning process. Then if

we continue to utilize the source statistics that are only suit-
able for the original distribution to normalize feature map
x′
1 that has shifted distribution, the performance inevitably

degrades. The more source statistics involved, the more se-
rious the degradation. However, the performance of using
dynamic test statistics does not suffer from this degradation.
Therefore, to both keep the better performance of mixed
statistics while eliminating the side-effect of source statis-
tics, we propose to incorporate the source statistics in an im-
plicit way by transforming the normalization formulation of
AdaMixBN to match the formulation that only incorporates
the test statistics. To achieve this goal, we can transform
the normalization process of AdaMixBN in Eq. (1) to be
independent of the source statistics (i.e., µs and σs). With
several simple deductions, we obtain the following transfor-
mation (details are in Supplementary Material):

x̂ =
x− µt

σt
γ′ + β′, (3)

γ′ =
σt√

ασ2
s + (1− α)σ2

t

γ + β, (4)

β′ =
α(µt − µs)

σt
γ′ + β. (5)

Normalization
Affine

transformation Normalization

Normalize w/ source :

Normalize w/o source :

Correction

shifted
distribution

Figure 3: The normalization process after finetuning with
only test (w/o source) or mixed statistics (w/ source).

This transformation can be viewed as re-initializing γ and β
using the source and test statistics. In this way, the normal-
ization process only depends on the test statistics µt and σt,
which can dynamically change according to the distribution
of the current feature map. Note that, the operation is done
after the batch has been fed into the network and before the
finetuning process. As a result, we finetune γ′ and β′ in
each layer instead of the initial affine parameters. Further-
more, since we have altered the normalization process, the
training and test mode of BN can not affect it.

3.2. Generalized Entropy Minimization

3.2.1 GEM framework

After feeding an unseen batch into the model and trans-
forming its affine parameters for test-time adaptation with
AdaMixBN, we can adapt the model with its predictions.
However, we can not perform supervised finetuning as in
few-shot learning [9] since the label is unavailable. In-
stead, we can consider using several unsupervised losses
with human prior (e.g., rotation prediction task [38] or jig-
saw task [3, 35]). Different from these losses that require
manually defined labels, Entropy Minimization (EM) loss is
a simple but effective unsupervised loss that learning from
data by encouraging the model to be confident [44]:

LEM = −
C∑
i=1

pi log pi, pi =
exp(zi/τp)∑C

k=1 exp(zk/τp)
, (6)

where zi is the logits predicted by the model, C is the num-
ber of classes and τp = 1 is the temperature of the EM loss.

During the finetuning of a network with EM loss, highly
confident samples that have a high probability of predicted
classes, produce small contributions for weight updating as
illustrated in the left figure of Fig. 4, resulting in little im-
provement on the trained model. We observe that highly
confident samples have a sharp logit distribution as demon-
strated in the right figure in Fig. 4. To reduce the sharp
distribution, we propose to use temperature scaling for two
reasons. First, it does not change the model’s prediction,
which can preserve the original semantic information. Sec-
ond, for highly confident samples, we can obtain a larger
loss by softening the logit distribution to enable fast learn-
ing. Meanwhile, the smoothness effect of temperature scal-

Probability distribution Scaled distribution

Figure 4: Loss decreases when confidence increases (left).
Probability changes after temperature scaling (right).

ing decays when a sample has lower confidence, and the
model also can learn from the low-confident samples. To
this end, we propose a novel Generalized Entropy Min-
imization (GEM) framework with temperature scaling to
adapt the trained model to the test unlabeled data:

LGEM = −τ2q

C∑
i=1

pi log qi, qi =
exp (zi/τq)∑C

k=1 exp (zk/τq)
, (7)

where τq is the temperature for qi, and we set τq ≥ τp ≥ 1
to soften the logits distribution. Note that we multiply GEM
loss by τ2q to ensure normal gradient magnitudes since the
temperature scaling downscales not only the logits to 1/τq ,
but also the gradients to 1/τ2q [16]. Different from tradi-
tional EM loss that employs the same probability in Eq. (6),
we utilize two different probabilities as a general version of
the cross-entropy loss, which imposes two different behav-
iors of GEM loss as analyzed in the following section.

3.2.2 Gradient analysis of GEM and GEM variants

For the logit zk of class k, the gradient from GEM loss is
(details can be found in Supplementary Material):

∂LGEM

∂zk
= −τ2q [

1

τq
(pk − qk)

+
pk
τp

(log qk −
∑
j

pj log qj)]. (8)

There are two terms in the right hand. If the gradient of pi
is stopped in Eq. (7) (similar to the one-hot label in the su-
pervised cross-entropy loss), only the first term in Eq. (8)
is left, which actually takes the same form as the knowl-
edge distillation loss employed in the teacher-student net-
work [16], where pk can be viewed as the probability out-
put from the teacher model and qk from the student model.
Optimizing with the first term could encourage the model to
output the distribution similar to p. Therefore, the first term
produces a Self-Knowledge Distillation (SKD) gradient that
learns from itself. By increasing the temperature of q, the
discrepancy between pk and qk would be large, and a larger
gradient is produced. Besides, if τq < τp, the distribution
of q is sharper than p. The model will learn from a softer

distribution and perform poorer. Thus, the τp should al-
ways be greater or equal to τq for better performance. When
pk = qk, the first term is zero, and only the second term is
left in Eq. (8), which plays the same role in the original en-
tropy minimization loss that sharpens the distribution. Note
that neither of these two terms can change the model’s pre-
diction when only a single sample is involved since they
can only produce sharper logits distribution without chang-
ing its prediction. Instead, we can learn diverse features and
improve the performance by learning from a batch.

Under the GEM framework, when τp = τq = 1 , GEM
loss is the same as the vanilla EM loss. We notice that pi
can be viewed as a weighting factor for GEM loss. If pi
is a one-hot tensor, only one term is left after summation.
It is actually the same as the traditional cross-entropy loss
that encourages the model to learn from a single class. But
when pi becomes smoother (i.e., τp is larger), it encourages
the model to learn from all classes. Thus, we propose sev-
eral variants by setting different τp to produce different pi.
For τq , we set it to τq = τa = s

N

∑N
i=1 σzi , where s is a

hyper-parameter to adjust the scaling strength, which fol-
lows previous work [12] that uses the standard deviation of
logits σzi as a dynamic temperature to scale the logits.

GEM-T. We set τp = τa. The first term in Eq. (8) be-
comes 0, and both probabilities are scaled smoother to pro-
duce a large gradient. In this way, since all classes in the
distribution are scaled and no distribution of samples is too
sharp, the model is easier to make different predictions.

GEM-SKD. We set τp = 1 and the gradient of pi
is stopped. In this manner, we only employ the Self-
Knowledge Distillation term in Eq. (8) for learning, where
pi is teacher’s output. Different from GEM-T, which en-
courages learning from all classes, it prevents the model
from changing too far away from its original prediction.

GEM-Aug. Being aware that pi can be viewed as a
teacher’s prediction in the GEM-SKD loss, the distillation
process can be further improved if pi is more accurate.
Thus, we propose to adopt Test Time Augmentation to logit
zi in GEM-SKD to obtain a more accurate prediction of pi.
pi = softmax(1

m

∑m
j=1 z

j
i), where m is the number of aug-

mented images for each sample.
Our DomainAdaptor equipped with these three different

GEM losses is named DomainAdaptor-T, DomainAdaptor-
SKD, and DomainAdaptor-Aug, respectively.

Remark: 1) Note that, with the above contributions that
fully take advantage of unlabeled data by fusing source and
target statistics and scaling the temperature, our method
can adapt to the data with a single finetune step without
permanently changing its weights. 2) Benefiting from it,
DomainAdaptor offers a significant advantage over previ-
ous methods that require online updating of model weights,
making it suitable for the few-data unseen domain. This
will be demonstrated in the experiment section.

4. Experiments
In the experiment, we first compare our method to pre-

vious methods and analyze the ablation study of each com-
ponent. Next, we apply our method to several trained DG
SOTA methods to validate its wide application. Finally, we
further analyze the hyperparameter sensitivity of our pro-
posed AdaMixBN and how GEM loss works. More experi-
ments can be found in the Supplementary Material.

We employ four domain generalization datasets to test
the performance of adapting to unseen domains with a large
distributional gap, including PACS [22], VLCS [40], Of-
ficeHome (OH) [43], and MiniDomainNet (MDN) [57], a
subset of DomainNet [37]. PACS is composed of 9, 991
images with 7 classes. VLCS contains 10, 729 images
with 5 classes. OfficeHome has 15, 500 images with 65
classes. MiniDomainNet consists of 140, 006 images with
126 classes. All of these datasets contain 4 domains. PACS
and MiniDomainNet have a large domain gap, while VLCS
and OfficeHome have a relatively small domain gap. Fol-
lowing the DG training and test scheme, we leave one do-
main out as the test domain and the others as training do-
mains to pre-train the network. More experimental details
can be found in the Supplementary Material.

4.1. Comparison to Previous Methods

We compare our method to several test-time adapta-
tion methods (i.e., Tent [44], SLR [32], LAME [2], and
ARM [53]) as shown in Tab. 3. Note that the methods em-
ploying online updating are marked with (o) while the oth-
ers update the parameter temporarily for the current batch.
In these methods, ARM requires altering the training stage
and has its own trained network (denoted as ARM (Base)),
while other methods utilize DeepAll as the trained network.
The performance of the ARM baseline is low (e.g., 74.49%
vs. 79.44%) because the weight space that the meta-learning
training paradigm finds is not suitable for a specific domain,
which needs to be finetuned in the test stage to achieve bet-
ter performance. Besides, Tent, SLR, and ARM all adopt
AdaBN [26] that employs test batch statistics for normal-
ization and finetuning the network during adaptation. Dif-
ferently, LAME does not perform AdaBN and finetune. In-
stead, it exploits the relationship between images in a batch
to refine the predictions with iterative optimization.

Given a trained model, these methods can achieve better
performance than the baseline on the PACS dataset, espe-
cially for Tent and SLR which employ an online adaption
strategy, since a batch of data is enough for the model to
produce an approximately accurate statistics estimation on
the PACS dataset. However, when encountered with other
datasets (i.e., VLCS, OfficeHome, and MiniDomainNet),
they cannot even outperform the baseline. For Tent, SLR,
and ARM, the application of AdaBN degrades their perfor-
mance due to inaccurate estimation of test statistics. Be-

Table 3: Comparison to SOTA with Resnet-18 and Resnet-
50 as backbone. The best performance (%) is marked as
bold. Methods marked with (o) are updated online.

PACS VLCS OH MDN Avg.

Resnet-18

DeepAll 79.44±0.44 75.77±0.29 64.61±0.18 65.12±0.11 71.24

ARM(Base) [53] 74.49±3.86 72.10±0.51 63.33±1.22 64.97±0.33 68.72

AdaBN [26] 80.44±0.29 69.44±0.48 63.38±0.12 64.20±0.11 69.37

ARM [53] 82.47±0.59 68.21±1.68 63.15±0.61 64.91±0.23 69.69

SLR [32] 81.33±0.22 69.69±0.44 63.64±0.09 64.51±0.10 69.79

SLR (o) [32] 85.15±0.35 74.13±0.58 64.71±0.12 43.69±0.84 66.92

Tent [44] 80.59±0.26 69.69±0.44 63.58±0.14 64.37±0.09 69.56

Tent (o) [44] 83.56±0.47 73.37±0.31 64.54±0.06 48.50±1.86 67.49

LAME [2] 80.28±0.33 75.59±0.96 63.16±0.28 64.42±0.28 70.86

DomainAdaptor-T 85.04±0.23 77.54±0.14 65.39±0.19 66.39±0.08 73.59

DomainAdaptor-SKD 84.37±0.28 78.10±0.14 65.61±0.14 66.42±0.08 73.63

DomainAdaptor-Aug 84.93±0.19 78.50±0.22 66.73±0.25 68.23±0.08 74.60

Resnet-50

DeepAll 84.37±0.42 76.96±0.54 70.87±0.16 71.49±0.10 75.92

ARM (Base) [53] 70.37±7.19 77.49±0.71 49.01±3.01 71.51±0.11 67.08

AdaBN [26] 85.29±0.43 70.95±0.61 69.37±0.24 70.21±0.08 73.96

ARM [53] 86.10±0.74 78.28±0.71 66.66±1.00 70.85±0.10 75.50

SLR [32] 86.06±0.47 71.75±0.62 69.61±0.19 70.53±0.07 74.49

SLR (o) [32] 90.32±0.27 76.08±0.31 70.61±0.18 43.52±1.15 70.13

Tent [44] 85.38±0.43 71.11±0.58 69.58±0.21 70.43±0.07 74.12

Tent(o) [44] 88.70±0.34 74.86±0.46 71.14±0.27 46.67±1.96 70.34

LAME [2] 84.77±0.29 76.66±0.77 69.46±0.14 70.82±0.12 75.43

DomainAdaptor-T 88.74±0.30 78.52±0.57 71.62±0.14 72.10±0.09 77.75

DomainAdaptor-SKD 88.57±0.38 79.11±0.38 71.89±0.10 72.51±0.10 78.02

DomainAdaptor-Aug 88.45±0.16 79.55±0.36 72.84±0.05 73.82±0.10 78.67

sides, based on AdaBN, ARM and SLR can improve the
performance of the PACS dataset, while Tent has little im-
provement on all datasets. For LAME that does not em-
ploy AdaBN, since it considers the relationship between
images in a batch, it requires the trained network to make
a correct classification for most classes, which could help
correctly infer the classes of these images. However, for
VLCS, OfficeHome, and MDN, the trained model has low
performance, which is hard for LAME to infer correctly.
Besides, OfficeHome and MDN have a large number of
classes, which also increases the difficulty of inference.

To better analyze this problem, we calculated the vari-
ance of statistics during the training process in Tab. 4. No-
tably, we observe the highest variance in PACS compared to
the other three datasets. Since training with diverse statis-
tics can effectively enhance the model’s robustness to test-
time distribution shifts, adopting test statistics that have
a different distribution of source statistics can benefit the
adaptation process and vice versa. As a result, most meth-
ods demonstrate obvious improvement on the PACS dataset
but fail to perform well on the other datasets. Moreover, de-
spite the sensitivity of the trained model to the distribution
shift in the training stage, combining the source statistics
enables us to obtain a more robust model, as demonstrated
by the improved performance of DomainAdaptor.

By employing AdaMixBN and different GEM variants,
our method can mitigate the drawbacks of ARM (require-
ment of altering training stage), AdaBN (inaccurate statis-

Table 4: The variance of statistics for different datasets.

DataSets PACS VLCS OH MDN

Variance 1.08 0.05 0.78 0.43

Table 5: Ablation study of our method with AdaMixBN and
GEM-Aug. AdaBN is also included for clearer analysis. T
is the shorthand of statistics transformation.

AdaBN AdaMixBN w/o T GEM-Aug w/ T PACS VLCS OH MDN

79.44 75.77 64.61 65.12
✓ 80.44 69.44 63.38 64.20

✓ 83.43 76.62 65.08 65.98
✓ ✓ 82.85 72.28 65.37 66.97

✓ ✓ 59.47 62.63 44.84 25.68
✓ ✓ ✓ 84.93 78.50 66.73 68.23

tics estimation), and Tent (small gradient for adaptation)
and achieves better performance than the SOTA methods
on three datasets. Specifically, since the predictions on the
PACS dataset are not reliable due to the large domain gap,
GEM-T can obtain 5.6% performance improvement on the
PACS dataset (i.e., 85.04% vs. 79.44%) by encouraging
learning from all classes. Differently, GEM-SKD is bet-
ter than GEM-T on other datasets. Because predictions on
the dataset with a small domain gap (i.e., VLCS) are more
reliable and for the dataset with a large number of classes
(i.e., OfficeHome, MDN), only a part of classes are critical
for a sample. Thus, learning from all classes is meaning-
less, and GEM-SKD can perform better. Since GEM-Aug
is based on GEM-SKD, its performance can be further im-
proved based on it by employing more accurate predictions.

4.2. Ablation Study

We conducted an ablation study on our DomainAdaptor
to investigate the efficacy of each component. The loss is
vanilla Entropy Minimization (EM) loss if not mentioned.

AdaBN. From Tab. 5, we can observe that applying Ad-
aBN to the baseline can improve the performance on PACS
(i.e., 80.44% vs. 79.44%) but degrades on other datasets
(e.g., 69.44% vs. 75.77% on VLCS). We hypothesize that
in PACS, the images in the same domain have similar
styles, providing more accurate statistics estimation for the
batch. Besides, the domain gap in PACS is large, which
enhances the effectiveness of AdaBN. On the contrary, in
other datasets, the intra-domain images have diverse styles,
resulting in inaccurate statistics estimation. Their domain
gaps are also relatively small compared to PACS and thus
achieve performance lower than the baselines.

AdaMixBN. Different from AdaBN, AdaMixBN em-
ploys source statistics to ease the inaccurate estimation of
statistics. As seen in Tab. 5, AdaMixBN can improve
the performance largely on PACS data (i.e., 83.43% vs.
79.44%), and it also can improve on other three datasets.
The improvement on PACS shows that by incorporating

Table 6: Performance (%) changes with respect to α for
AdaMixBN on different datasets. The best performance of
α is marked as bold.

α 0.5 0.6 0.7 0.8 0.9 0.99 AdaMixBN

PACS 83.01 83.41 83.64 83.42 82.35 79.87 83.43
VLCS 73.02 74.03 75.04 75.86 76.33 75.87 76.62

OH 64.68 64.95 65.20 65.35 65.24 64.72 65.08
MDN 65.51 65.77 66.03 66.21 66.11 65.29 65.98

more source statistics, not only the inaccurate statistics in
VLCS and OfficeHome can be accurate, but the already ac-
curate statistics also can be further improved.

GEM-Aug. Simply applying EM loss cannot effectively
learn from highly confident samples. For instance, Tent ob-
tains 80.59% on PACS in Tab. 3 while AdaBN itself can
achieve 80.44% in Tab. 5. There is only 0.15% improve-
ment brought by EM loss. Differently, by encouraging fur-
ther learning from highly confident samples, GEM-Aug loss
based on AdaBN can improve more on all four datasets
(e.g., 2.41% improvement (82.85% vs. 80.44%) on PACS).

Transformation. However, when AdaMixBN is fine-
tuned without the statistics transformation, GEM-Aug loss
degrades the performance significantly (e.g., 83.43% vs.
59.47% on PACS in Tab. 5) due to the weight mismatch
problem. Note that not only GEM loss but also other losses
that change weight drastically have the same issue, which
will be shown in Sec. 4.3. By transforming the source
statistics into affine parameters in AdaMixBN, we can miti-
gate this issue and the performance can be further improved
based on AdaMixBN (e.g., 84.93% vs. 83.43% on PACS),
which validates the efficacy of our method.

4.3. Further Analysis

Whether AdaMixBN learns the optimal α. We pro-
pose AdaMixBN to dynamically adjust the coefficient α
between source and batch statistics. To validate whether it
learns the optimal α, we finetune α from 0.5 to 0.99 for
different datasets to find its optimal value and the corre-
sponding performance. We compare them with the perfor-
mance produced by the dynamically learned α. As shown
in Tab. 6, the optimal α in different datasets are different,
and AdaMixBN can approximate the performance of these
optimal α values by employing a relative distance measure.

Performance degradation with different α. To inves-
tigate whether the performance degradation phenomenon is
only caused by GEM loss or also other losses and how α
in AdaMixBN influences the degree of degradation, we ex-
periment with three losses (i.e., EM loss, SLR loss, and
GEM-Aug loss) equipped with AdaMixBN on PACS with
different α. As shown from Tab. 7, when α becomes large,
not only does using GEM-Aug loss cause the performance
drop but also SLR degrades the performance. Differently,

0 2 4 6 8 10 12 14 16 18
BN Layers

0.5

0.6

0.7

0.8

0.9

1.0

Al
ph

a

Art
Cartoon
Photo
Sketch

(a) The values of alpha on the PACS dataset.

> 1.0 > 0.9 > 0.8 > 0.7 > 0.6 > 0.5 > 0.4
Confidence

83.5

84.0

84.5

85.0

85.5

Ac
c

(%
)

EM
SLR

GEM-T
GEM-SKD

GEM-Aug

(b) Influence of confident samples.

4 8 16 32 64 128 256
Batch Size

70.0
72.5
75.0
77.5
80.0
82.5
85.0

Ac
c

(%
)

Baseline
AdaBN

AdaMixBN
GEM-T

GEM-SKD
GEM-TTA

(c) Comparison with different batch sizes.

Figure 5: The values of calculated α in the AdaMixBN (a). The influence of sample (b) and batch size (c) on the performance.

Table 7: Performance (%) degradation with respect to α
using different losses in AdaMixBN.

α 0.1 0.3 0.5 0.7 0.9 0.99

AdaMixBN 80.94 82.01 83.01 83.64 82.35 79.87

Finetune without statistics transformation

EM 81.05 82.22 83.14 83.79 82.41 79.10
SLR 81.98 83.10 84.17 83.53 65.66 43.08

GEM-Aug 83.07 82.06 74.40 48.43 22.80 19.77

Finetune with statistics transformation

GEM-Aug 83.32 84.07 84.61 85.08 82.49 82.49

the performance of EM loss does not drop significantly be-
cause both GEM loss and SLR loss change model weights
drastically, while EM loss makes little changes to the model
weights due to the small gradients it produces, resulting in
a similar performance to AdaMixBN (e.g., when α = 0.5,
83.01% vs. 83.14%). Besides, we find that with more
source statistics mixed, the performance drops more signifi-
cantly. This is caused by the mismatch between fixed source
statistics and finetuned model weights and can be addressed
with the statistics transformation. As shown in the last line
in Tab. 7, after we applying the statistics transformation op-
eration, GEM-Aug loss improves the performance consis-
tently instead of hurting the performance.

The values of dynamic α. In Sec. 3.1.1 we argue
that lower layers contain more domain-specific information
while higher layers contain less. Therefore a dynamic mix-
ture coefficient is proposed for statistic fusing. To investi-
gate whether this is the case, we plot α obtained by Eq. (2)
in different layers of BN and their regression lines on the
PACS dataset. As seen from Fig. 5a, in all four domains, α
increases as the layer becomes higher, which indicates that
source statistics in higher layers are more transferable and
should be incorporated with a larger value of α.

Contributions of different confident samples. To in-
vestigate whether our proposed GEM loss can better learn
from highly confident samples, we compare different losses
by finetuning AdaMixBN with samples whose confidence
predicted by the model is higher than a threshold. As shown
in Fig. 5b, with more low-confident samples incorporated,

the performance of EM loss only slightly improves and then
decreases due to the noise introduced by the more low-
confident samples. While SLR loss can better exploit sam-
ples with confidence larger than 0.9, it decreases a lot when
more low-confident samples are added since it cannot in-
hibit the noise introduced by the low-confident samples.
Different from these two losses, by only finetuning sam-
ples with confidence higher than 0.9, our three losses can
achieve higher performance than EM loss. Besides, by em-
ploying the temperature to soften the probability, noise can
be reduced and our two losses (i.e., GEM-Aug and GEM-
SKD) can all benefit from more low-confident samples and
achieve better performance. The performance of GEM-T
drops slightly since it encourages the model to make differ-
ent predictions, which is more sensitive to batch noise.

The influence of batch size. Since both AdaMixBN
and the adaptation process are closely related to the batch
size, we compare AdaBN, AdaMixBN, and our proposed
three losses to see how the batch size influences their per-
formances. As shown in Fig. 5c, with a batch size of 4,
the performance of AdaBN drops drastically from 79.44%
to 68.40% because the statistics estimated from only 4 im-
ages are very inaccurate and cannot effectively normalize
the features. On the contrary, our proposed AdaMixBN can
still achieve higher performance than the baseline by incor-
porating more source statistics. As the number of images in-
creases, the performance can be further improved and then
plateaus, which means the statistics are accurate and can not
be improved. Although the performance of AdaBN also in-
creases, AdaMixBN can still outperform it with the source
statistics. When more unlabeled images are utilized, the
performances of adaptation with different losses also in-
crease. We hypothesize that sample diversity plays a sig-
nificant role in the adaptation process. With more samples
incorporated, the noise produced by incorrectly predicted
samples is alleviated, and the optimization direction toward
the global minimum can be more accurate.

Comparison with few test data. To compare with other
methods under limited test data, we divide the original
dataset into several subsets of the same size and evaluate all
the methods on each subset, with model parameters reset
before finetuning on a new subset. The adaption batch size

Table 8: Performance (%) comparison with few data.

Subset Size 64 128 256 512 1024 2048 4096

Tent 80.79 81.00 81.24 81.75 82.41 82.95 83.52
SLR 81.33 81.99 82.55 83.46 84.26 84.79 85.15

DomainAdaptor-T 85.04 85.04 85.04 85.04 85.04 85.04 85.04

Table 9: Performance (%) of applying DomainAdaptor to
previously pretrained models.

P A C S Avg.

DeepAll 96.44 78.25 75.57 67.48 79.44
+ DomainAdaptor-T 97.40 82.51 80.65 79.59 85.04
+ DomainAdaptor-SKD 97.01 82.22 80.46 77.78 84.37
+ DomainAdaptor-Aug 97.20 83.04 80.20 79.28 84.93

MLDG [23] 94.91 80.59 76.20 77.65 82.34
+ DomainAdaptor-T 96.35 82.84 81.28 80.96 85.36
+ DomainAdaptor-SKD 96.36 83.04 81.41 81.02 85.46
+ DomainAdaptor-Aug 96.16 82.95 81.37 81.54 85.50

FSDCL [46] 95.63 85.30 81.31 81.17 85.85
+ DomainAdaptor-T 96.65 87.01 83.53 81.04 87.06
+ DomainAdaptor-SKD 96.65 87.40 83.66 79.28 86.75
+ DomainAdaptor-Aug 96.53 86.57 83.70 80.89 86.92

MVRML [52] 95.29 85.20 79.97 83.11 85.89
+ DomainAdaptor-T 96.18 85.99 83.98 83.73 87.47
+ DomainAdaptor-SKD 96.23 85.92 83.86 83.59 87.40
+ DomainAdaptor-Aug 96.41 86.69 84.33 85.05 88.12

is 64. The resulting accuracies are then aggregated across
all subsets. As shown from Tab. 8, the performances of
both Tent and SLR are low when the subset size is small,
indicating their poor adaptation ability in the few-data sce-
nario. Differently, DomainAdaptor can achieve consistent
improvement regardless of subset size due to its ability to
perform adaptation with only a single batch.

The performance of being applied to the trained
model. Since our method does not require altering the train-
ing stage and thus can be applied to any trained CNN mod-
els, we apply it to several trained recent DG SOTA models
on PACS. As seen from Tab. 9, our method can significantly
improve the baseline method’s performance (e.g., 85.04%
vs. 79.44%). When applied to existing DG SOTA models,
our method can make further improvements (e.g., 88.12%
vs. 85.89% for MVRML) without the requirement of alter-
ing the training stage and retraining the model.

Comparison to self-supervised losses. To determine
the effectiveness of our method compared to previous self-
supervised losses, we conducted a comparison with rota-
tion [38] and jigsaw [3] loss. Since these self-supervised
losses require an extra classification head, to assess their
performance, we re-train the DeepAll with a new head (de-
noted as Base) and report the results with a single finetuning
for each batch. As shown in Tab. 10, these losses also do
not yield significant performance improvement since they
cannot produce a sufficiently large gradient for weight up-

Table 10: Performance (%) comparison of adapting with
different self-supervised losses or different statistics. The
baselines of rotation and jigsaw losses are denoted as Base.

PACS VLCS OH MDN Avg.

DeepAll 79.44±0.44 75.77±0.29 64.61±0.18 65.12±0.11 71.24

Rot (Base) 80.91±0.67 75.02±0.38 64.24±0.15 64.65±0.09 71.22

+ RotLoss 81.26±0.46 69.82±0.61 63.00±0.24 63.50±0.09 69.39

+ GEM-Aug 83.16±0.76 72.77±0.63 63.87±0.32 65.41±0.10 71.29

Jig (Base) 78.60±0.73 74.91±0.60 61.70±0.58 62.55±0.10 69.43

+ JigLoss 80.24±0.21 70.53±1.07 62.47±0.44 63.85±0.11 69.25

+ GEM-Aug 84.51±0.40 73.64±1.19 63.95±0.33 64.92±0.10 71.75

AdaBN 80.44±0.29 69.44±0.48 63.38±0.12 64.20±0.11 69.37

AdaBN (src+test) 81.80±0.45 76.11±0.31 65.26±0.20 65.89±0.12 72.27

AdaMixBN (α) 83.43±0.23 76.62±0.27 65.08±0.12 65.98±0.10 72.78

AdaMixBN (1− α) 81.31±0.27 69.51±0.50 63.47±0.13 64.36±0.10 69.66

DomainAdaptor-Aug 84.93±0.19 78.50±0.22 66.73±0.25 68.23±0.08 74.60

dating. Differently, benefiting from GEM loss, our method
still can produce a substantial performance boost.

Normalization with different statistics. Since calcu-
lating the statistics with source and target data may serve
as an upper bound, we recalculate the statistics, as shown
in Tab. 10 (denoted as AdaBN (src+test)). While we ob-
serve an improvement compared to AdaBN, it only results
in marginal improvement over the baseline. Differently, our
proposed AdaMixBN consistently achieves better perfor-
mance than the baseline. We hypothesize that AdaMixBN
benefits from the dynamically mixing statistics between the
source and target statistics from different layers, which can-
not be achieved by simply accumulating the statistics. Be-
sides, we also adopt 1− α during mixing to verify whether
the similarity-based distance works. As shown in Tab. 10, it
degrades significantly compared to using α, which validates
the effectiveness of our proposed measurement.

5. Conclusion
In this paper, we proposed DomainAdaptor to deal with

the fully test-time adaptation problem for any incoming test
batch with a large domain gap. It consists of AdaMixBN
and Generalized Entropy Minimization loss to effectively
exploit unlabeled test data. Specifically, AdaMixBN dy-
namically fuses statistics between source and test batch
statistics for an accurate statistics estimation and Gener-
alized Entropy Minimization loss effectively enhances the
adaptation ability of the AdaMixBN module. Besides, a
statistics transformation operation was incorporated to pre-
vent performance degradation in AdaMixBN. Extensive ex-
periments validated the effectiveness of our method.

Acknowledgment: This work is supported by NSFC Pro-
gram (62222604, 62206052, 62192783), China Postdoc-
toral Science Foundation Project (2023T160100), Jiangsu
Natural Science Foundation Project (BK20210224), and
CCF-Lenovo Bule Ocean Research Fund.

References
[1] Mathilde Bateson, Hervé Lombaert, and Ismail Ben Ayed.

Test-time adaptation with shape moments for image segmen-
tation. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, 2022. 1

[2] Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and Luca
Bertinetto. Parameter-free online test-time adaptation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 2022. 1, 6, 13

[3] Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Bar-
bara Caputo, and Tatiana Tommasi. Domain generalization
by solving jigsaw puzzles. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2019. 2, 4, 9

[4] Yang Chen, Yu Wang, Yingwei Pan, Ting Yao, Xinmei Tian,
and Tao Mei. A style and semantic memory mechanism for
domain generalization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2021. 2

[5] Zhun Deng, Frances Ding, Cynthia Dwork, Rachel Hong,
Giovanni Parmigiani, Prasad Patil, and Pragya Sur. Repre-
sentation via representations: Domain generalization via ad-
versarially learned invariant representations. arXiv, 2020. 2

[6] Zhipeng Ding, Xu Han, Peirong Liu, and Marc Nietham-
mer. Local temperature scaling for probability calibration.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021. 2

[7] Yingjun Du, Xiantong Zhen, Ling Shao, and Cees GM
Snoek. Metanorm: Learning to normalize few-shot batches
across domains. In International Conference on Learning
Representations, 2020. 2

[8] Xinjie Fan, Qifei Wang, Junjie Ke, Feng Yang, Boqing
Gong, and Mingyuan Zhou. Adversarially adaptive normal-
ization for single domain generalization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021. 2

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In International Conference on Machine Learning, 2017. 4

[10] François Fleuret et al. Test time adaptation through pertur-
bation robustness. In Advances in Neural Information Pro-
cessing Systems Workshop, 2021. 1, 2, 3

[11] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In International
Conference on Machine Learning, 2017. 2

[12] Jia Guo, Chen Minghao, Hu Yao, Zhu Chen, He Xiaofei, and
Cai Deng. Spherical knowledge distillation. arXiv, 2020. 5

[13] Jintao Guo, Na Wang, Lei Qi, and Yinghuan Shi. ALOFT:
A lightweight mlp-like architecture with dynamic low-
frequency transform for domain generalization. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023. 2

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2016. 13

[15] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-
ral network robustness to common corruptions and perturba-
tions. arXiv, 2019. 1, 2

[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. arXiv, 2015. 2, 5, 12

[17] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv, 2015. 1

[18] Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier
adjustment module for model-agnostic domain generaliza-
tion. In Advances in Neural Information Processing Systems,
2021. 2

[19] Tom Joy, Francesco Pinto, Ser-Nam Lim, Philip HS Torr, and
Puneet K Dokania. Sample-dependent adaptive temperature
scaling for improved calibration. arXiv, 2022. 2

[20] Neerav Karani, Ertunc Erdil, Krishna Chaitanya, and Ender
Konukoglu. Test-time adaptable neural networks for robust
medical image segmentation. Medical Image Analysis, 2021.
1

[21] Anna Kukleva, Moritz Böhle, Bernt Schiele, Hilde Kuehne,
and Christian Rupprecht. Temperature schedules for self-
supervised contrastive methods on long-tail data. In Interna-
tional Conference on Learning Representations, 2023. 2

[22] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M
Hospedales. Deeper, broader and artier domain generaliza-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, 2017. 6, 13

[23] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M
Hospedales. Learning to generalize: Meta-learning for do-
main generalization. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2018. 2, 9

[24] Da Li, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe
Song, and Timothy M Hospedales. Episodic training for do-
main generalization. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, 2019. 2

[25] Lei Li, Veronika A Zimmer, Wangbin Ding, Fuping Wu,
Liqin Huang, Julia A Schnabel, and Xiahai Zhuang. Ran-
dom style transfer based domain generalization networks in-
tegrating shape and spatial information. arXiv, 2020. 2

[26] Yanghao Li, Naiyan Wang, Jianping Shi, Xiaodi Hou, and
Jiaying Liu. Adaptive batch normalization for practical do-
main adaptation. Pattern Recognition, 2018. 2, 6

[27] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and
Xiaodi Hou. Revisiting batch normalization for practical do-
main adaptation. Pattern Recognition, 2016. 13

[28] Yiying Li, Yongxin Yang, Wei Zhou, and Timothy M
Hospedales. Feature-critic networks for heterogeneous do-
main generalization. In International Conference on Ma-
chine Learning, 2019. 2

[29] Sihao Lin, Hongwei Xie, Bing Wang, Kaicheng Yu, Xiaojun
Chang, Xiaodan Liang, and Gang Wang. Knowledge dis-
tillation via the target-aware transformer. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022. 2

[30] Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste
Bellot-Gurlet, Taylor Mordan, and Alexandre Alahi. TTT++:
When does self-supervised test-time training fail or thrive?

In Advances in Neural Information Processing Systems,
2021. 2

[31] Krikamol Muandet, David Balduzzi, and Bernhard
Schölkopf. Domain generalization via invariant fea-
ture representation. In International Conference on Machine
Learning, 2013. 1, 2

[32] Chaithanya Kumar Mummadi, Robin Hutmacher, Kilian
Rambach, Evgeny Levinkov, Thomas Brox, and Jan Hendrik
Metzen. Test-time adaptation to distribution shift by confi-
dence maximization and input transformation. arXiv, 2021.
1, 2, 6, 13

[33] Jaemin Na, Heechul Jung, Hyung Jin Chang, and Wonjun
Hwang. FixBi: Bridging domain spaces for unsupervised
domain adaptation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2021.
1

[34] Hyeonseob Nam and Hyo-Eun Kim. Batch-instance normal-
ization for adaptively style-invariant neural networks. In Ad-
vances in Neural Information Processing Systems, 2018. 3

[35] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of
visual representations by solving jigsaw puzzles. In Proceed-
ings of the European Conference on Computer Vision, 2016.
4

[36] Prashant Pandey, Mrigank Raman, Sumanth Varambally,
and Prathosh Ap. Generalization on unseen domains via
inference-time label-preserving target projections. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2021. 2

[37] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, 2019. 6

[38] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei
Efros, and Moritz Hardt. Test-time training with self-
supervision for generalization under distribution shifts. In
International Conference on Machine Learning, 2020. 1, 2,
4, 9

[39] Christian Tomani, Sebastian Gruber, Muhammed Ebrar Er-
dem, Daniel Cremers, and Florian Buettner. Post-hoc uncer-
tainty calibration for domain drift scenarios. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2021. 2

[40] Antonio Torralba and Alexei A Efros. Unbiased look at
dataset bias. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2011. 6, 13

[41] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv, 2016. 2

[42] Jeya Maria Jose Valanarasu, Pengfei Guo, Vibashan VS, and
Vishal M Patel. On-the-fly test-time adaptation for medical
image segmentation. arXiv, 2022. 1

[43] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for
unsupervised domain adaptation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2017. 6, 13

[44] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation

by entropy minimization. In International Conference on
Learning Representations, 2021. 1, 2, 3, 4, 6, 13

[45] Feng Wang and Huaping Liu. Understanding the behaviour
of contrastive loss. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2021.
2

[46] Yue Wang, Lei Qi, Yinghuan Shi, and Yang Gao. Feature-
based style randomization for domain generalization. IEEE
Transactions on Circuits and Systems for Video Technology,
2022. 9

[47] Hui Wu, Min Wang, Wengang Zhou, Houqiang Li, and Qi
Tian. Contextual similarity distillation for asymmetric image
retrieval. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022. 2

[48] Qilong Wu, Xiangyu Yue, and Alberto Sangiovanni-
Vincentelli. Domain-agnostic test-time adaptation by pro-
totypical training with auxiliary data. In Advances in Neural
Information Processing Systems Workshop, 2021. 2

[49] Qinwei Xu, Ruipeng Zhang, Ya Zhang, Yanfeng Wang, and
Qi Tian. A fourier-based framework for domain generaliza-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2021. 2

[50] Chaoning Zhang, Kang Zhang, Trung X Pham, Axi Niu, Zhi-
nan Qiao, Chang D Yoo, and In So Kweon. Dual temperature
helps contrastive learning without many negative samples:
Towards understanding and simplifying moco. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022. 2

[51] Jian Zhang, Lei Qi, Yinghuan Shi, and Yang Gao. Gen-
eralizable model-agnostic semantic segmentation via target-
specific normalization. Pattern Recognition, 2022. 2

[52] Jian Zhang, Lei Qi, Yinghuan Shi, and Yang Gao. MVDG:
A unified multi-view framework for domain generalization.
In Proceedings of the European Conference on Computer Vi-
sion, 2022. 2, 9

[53] Marvin Zhang, Henrik Marklund, Nikita Dhawan, Abhishek
Gupta, Sergey Levine, and Chelsea Finn. Adaptive risk min-
imization: Learning to adapt to domain shift. In Advances in
Neural Information Processing Systems, 2021. 2, 6

[54] Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun
Liang. Decoupled knowledge distillation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Pecognition, pages 11953–11962, 2022. 2

[55] Shanshan Zhao, Mingming Gong, Tongliang Liu, Huan Fu,
and Dacheng Tao. Domain generalization via entropy reg-
ularization. In Advances in Neural Information Processing
Systems, 2020. 2

[56] Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Do-
main generalization with mixstyle. In International Confer-
ence on Learning Representations, 2020. 2

[57] Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Do-
main adaptive ensemble learning. IEEE Transactions on Im-
age Processing, 2021. 6

[58] Ziqi Zhou, Lei Qi, Xin Yang, Dong Ni, and Yinghuan Shi.
Generalizable cross-modality medical image segmentation
via style augmentation and dual normalization. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022. 2

A. Supplementary Material
In the Supplementary Material, we first provide the de-

tailed derivation of the gradient of generalized entropy min-
imization loss. Following it, the implementation details are
provided. Then we apply our method to a strong base-
line ERM and a SOTA method SWAD on the DomainBed
benchmark to further validate its wide application. More-
over, we show that previous methods heavily rely on con-
tinuous adaptation, which may perform poorly in multi-
domain scenarios. Finally, we provide the full results of
the performance comparison in Sec. 4.1 in the main text.

B. Formula Derivations
The derivation of statistics transformation. Given fea-

ture map x, the source statistics (µs, σs) and target statis-
tics (µt, σt) for each normalization layer, where the layer
indices are omitted for simplicity. To eliminate the nega-
tive effect of source statistics, we propose to transform the
source statistics into the affine parameter in the normaliza-
tion layer with the following formula:

x− (αµs + (1− α)µt)√
ασ2

s + (1− α)σ2
t

· γ + β (9)

=
x− (αµs + (1− α)µt)

σt
· σt√

ασ2
s + (1− α)σ2

t

γ + β

(10)

=
x− (αµs + (1− α)µt)

σt
· γ′ + β (11)

=(
x− µt

σt
+

α(µt − µs)

σt
) · γ′ + β (12)

=
x− µt

σt
· γ′ +

α(µt − µs)

σt
· γ′ + β (13)

=
x− µt

σt
· γ′ + β′, (14)

where we set

γ′ =
σt√

ασ2
s + (1− α)σ2

t

γ + β, (15)

β′ =
α(µt − µs)

σt
γ′ + β. (16)

This process can be seen as a re-initialization of the affine
parameter, which is done before the finetuning process, that
is, we finetune the transformed parameters instead of the
original parameters.

The derivation of Generalized Entropy Minimization
(GEM) loss. The GEM loss is

L = −
∑

pi log qi, (17)

pi =
ezi/τ1∑
j e

ej/τ1
, qi =

ezi/τ2∑
j e

ej/τ2
. (18)

And the gradient of pi with respect to the logits zi is:

∂pi
∂zi

=
{ pi(1− pi), for 0 ≤ n ≤ 1

−pipj , for 0 ≤ n ≤ 1.
(19)

Then the gradient of logit zk of class k can be obtained by
the following formula:

∂L

∂zk
= −

[∂pk log qk
∂zk

+
∂
∑

j ̸=k pj log qj

∂zk

]
(20)

= −
[∂pk
∂zk

log qk + pk
1

qk

∂qk
∂zk

+
∑
j ̸=k

(
∂pj
∂zk

log qj + pj
1

qj

∂qj
∂zk

)]
(21)

= −
[1

τ1
pk (1− pk) log qk +

pk
qk

1

τ2
qk (1− qk) (22)

+
∑
j ̸=k

(
− 1

τ1
pjpk log qj −

pj
qj

1

τ2
qjqk

)]
(23)

= −
[1

τ1
pk (1− pk) log qk +

1

τ2
pk (1− qk)

−
∑
j ̸=k

(
1

t
pjpk log qj +

1

τ2
pjqk

)]
(24)

= −
[1

τ1
pk log qk +

1

τ2
pk

−
∑
j

(
1

τ1
pjpk log qj +

1

τ2
pjqk

)]
(25)

= −
[1

τ1
pk log qk +

1

τ2
pk

− 1

τ1
pk

∑
j

pj log qj −
1

τ2
qk

]
(26)

= −
[1

τ2
(pk − qk)

+
pk
τ1

log qk −
∑
j

pj log qj

]
. (27)

When the gradient of pi is detached, the gradient of logit
zk becomes:

∂L

∂zk
= −

∑
i

pi
qi

∂qi
∂zk

(no gradient to pi) (28)

= − 1

τ2

pk − pkqk −
∑
j ̸=k

pjqk

 (29)

= − 1

τ2

pk −
∑
j

pjqk

 = − 1

τ2
(pk − qk) , (30)

which takes the same form of knowledge distillation [16].

Table 11: The running time (ms) on the Art domain with 2048 images.

Non-Adapted AdaBN LAME ARM SLR Tent AdaMixBN DomainAdaptor-T

Time (ms) 34.4 37.19 41.88 175.94 155.63 152.19 41.88 194.69
Acc (%) 78.25 76.36 80.05 81.02 81.66 81.06 80.81 82.51

C. Implementation Details
In all experiments, we adopt Resnet-18 and Resnet-

50 [14] models trained with ERM (i.e., simply aggregate all
source data) as our baseline. During adaptation, the learning
rate of the SGD optimizer is set to 1e − 3 without momen-
tum. The default batch size is 64 and test images are resized
to 224 × 224 without other augmentation. For GEM-Aug,
we adopt weak augmentations that consist of a random crop
with a scale range of [0.8, 1] and a random flip with a prob-
ability of 0.5. The test order of samples is fixed for a fair
comparison to each method.

D. More Experiments
D.1. Time cost comparison

We have added the run-time comparison of our method
and previous methods with a batch size of 64 on the Art
domain. The experiments are done on an RTX2080 GPU.
As shown in Tab. 11, with a little computational overhead,
our method could achieve better performance.

D.2. Experiments on DomainBed

We apply our method to ERM and SWAD trained on Do-
mainBed on three datasets (i.e., PACS [22], VLCS [40] and
OfficeHome [43]). The checkpoint of ERM is selected in
the last iteration and SWAD is the ensembled version of
ERM. We test the performance of these methods on the
whole leave-out domain with a batch size of 64 and a learn-
ing rate of 0.05. The results are averaged by three indepen-
dent runs. By applying our method to these two methods,
although SWAD could achieve strong performance on Do-
mainBed, we still could improve on it by fully exploiting
the information in the test batch for adaptation.

D.3. Comparison to continuous adaptation

Since our method only requires a single finetuning it-
eration by fully exploiting the information of a test batch,
which differs from the previous test-time adaptation meth-
ods [44, 32, 2] that have a large demand of data by em-
ploying online updating. To further demonstrate the poor
adaptation ability of previous test-time adaptation method,
we conduct several experiments to verify that 1) these meth-
ods rely on the continuous adaptation and cannot effectively
exploit the current batch data in Tab. 13; 2) the performance
degradation occurs when the original prediction is inaccu-
rate in Tab. 14 or multiple domains exist in Tab. 15.

Tent relies on continuous finetuning. We argue that
the success of Tent relies on two critical factors: the contin-

Table 12: Performance (%) comparison to ERM and SWAD
on the DomainBed benchmark.

PACS VLCS OfficeHome Avg.

ERM 83.32 75.51 65.30 74.71
+MixAdaBN 85.76 76.00 66.03 75.93
+DomainAdaptor-T 86.61 76.60 66.70 76.63
+DomainAdaptor-SKD 86.31 76.71 66.60 76.54
+DomainAdaptor-Aug 86.68 77.09 67.51 77.09

ERM+SWAD 86.77 77.62 70.31 78.23
+MixAdaBN 88.88 78.83 70.82 79.51
+DomainAdaptor-T 89.42 79.02 70.90 79.78
+DomainAdaptor-SKD 89.30 79.21 71.03 79.85
+DomainAdaptor-Aug 89.62 79.58 71.71 80.30

Table 13: The performance (%) of Tent without online up-
dating weights or without the momentum term in SGD.

P A C S Avg.

baseline 96.44 78.25 75.57 67.48 79.44±0.44

Tent w/o both 95.70 76.38 78.75 71.07 80.47±0.28

Tent w/o Online 95.80 76.69 78.98 71.69 80.79±0.19

Tent w/o Momentum 95.87 77.05 79.33 73.43 81.42±0.17

Tent 96.42 79.39 80.86 77.44 83.53±0.42

uous finetuning and the momentum term in the optimizer.
To verify it, we conduct an ablation study by only updating
the model weights online without momentum in the opti-
mizer or only enabling the momentum without online up-
dating the model weights. As shown in Tab. 13, both mo-
mentum term and online updating could improve the per-
formance of Tent (i.e., 83.53% vs. 80.79%, and 83.53% vs.
81.42%). The online updating could preserve the learned
knowledge from previous batches, while the momentum
term could utilize the history gradients to guide current gra-
dients. Also, we could find that online updating is more
important since all of the learned knowledge is kept in the
finetuned weights. However, when both are missing, there
is a little improvement of Tent, which is actually owing to
AdaBN [27] (80.44% on PACS) equipped in Tent, as men-
tioned before. Therefore, Tent that adapts only once cannot
effectively exploit the unlabeled batch.

Continuous adaptation to a single domain. We per-
form continual adaptations for Tent to investigate whether
online learning can always improve performance. Since
Tent only utilizes AdaBN for normalization, which would
degrade performance for some datasets (e.g., VLCS), we

Table 14: The continuous adaptation with Tent and its vari-
ants that continuously update the source statistics with mo-
mentum m. Best performance (%) is bolded for Tent.

Method PACS VLCS OH MDN

Adaptation only once

DeepAll 79.44 75.77 64.61 65.12

Tent 80.59 69.69 63.58 64.37

DomainAdaptor-T 85.04 77.54 65.39 66.39

DomainAdaptor-SKD 84.37 78.10 65.61 66.42

DomainAdaptor-Aug 84.93 78.50 66.73 68.23

Continuous adaptation

Tent, m = 0.0 49.42 58.69 16.08 1.36

Tent, m = 0.1 80.47 65.34 51.09 4.71

Tent, m = 0.5 83.89 73.07 64.55 26.54

Tent, m = 0.9 83.60 73.42 64.55 47.44

Tent, m = 1.0 83.53 73.37 64.52 48.23

Table 15: The performance (%) of continuous adaptation on
PACS datasets. The baseline is trained on the Photo domain
and the best performance is bolded.

A C S AC AS CS ACS

Baseline 59.08 25.78 29.84 41.45 39.90 28.33 35.96

Tent 67.53 62.20 43.70 48.18 36.79 31.28 36.33

Ours 64.45 49.70 50.79 56.64 55.39 50.39 53.88

gauss. shot imp. def. glass mot. zoom snow frost fog bright cont. elas. pixel. jpeg
Corruptions

0

10

20

30

40

Ac
c

(%
)

Tent
Tent(s)
Ours

Figure 6: Continuous adaptation on CIFAR-10-C dataset.
The trained model is adapted to the batches sampled from
shuffled domains. ‘(s)’ means a single domain is adapted.

also add the comparison to the variants of Tent that update
the source statistics online with incoming batch statistics,
and we normalize the batch with the updated source statis-
tics. The updating momentum is denoted as m. m = 1 is
the original version of Tent and when m = 0, Tent only
utilizes the original source statistics. As shown in Tab. 14,
compared with adaptation only once, the performance of
Tent that adapts online can be improved on PACS, VLCS,
and OfficeHome with online adaptation when m > 0.5.
However, its performance still cannot surpass our method.
Besides, its performance on MiniDomainNet decreases a lot
because when the model is not confident about the incoming
data, the training on these data may only degrade the perfor-
mance and online learning would continuously enhance this
effect and finally obtain a badly trained model.

Continuous adaptation to multiple domains. Al-
though continuous adaptation to a single domain could im-

1.3 1.4 1.5 1.6 1.7 1.8 1.9
Class Norm

600

800

1000

1200

1400

Tr
ai

ni
ng

 N
um

be
r

PACS
Photo
Art
Cartoon
Sketch
regression

1.2 1.3 1.4 1.5 1.6
Class Norm

100
125
150
175
200
225
250

Tr
ai

ni
ng

 N
um

be
r

OfficeHome
Art
Clipart
Product
ReaWorld
regression

Figure 7: The relationship between the number of training
samples and the norm of classifier weights.

prove model performance on some datasets (e.g., PACS),
when faced with batches from multiple domains, the per-
formance of Tent drops drastically. We conducted an exper-
iment on the PACS dataset. The result is shown in Tab. 15.
The baseline is trained on the Photo domain and we adapt
it to the other three domains (i.e., Art (A), Cartoon (C),
Sketch (S)). When the model is adapted to a single domain,
it could improve the performance on both Art and Car-
toon significantly (e.g., 67.53% vs. 59.08% on Art). How-
ever, when two domains are incorporated, the improvement
drops and it even degrades the performance (i.e., 36.79%
vs. 39.90%) on the environment mixed with Art and Sketch
domains. When all three domains are included, there is
only little improvement (i.e., 36.33% vs. 35.96%). Mean-
while, our method could steadily improve the performance
of the baseline. To further investigate the effect of multiple
domains, we also experiment on CIFAR-10-C dataset. As
shown in Fig. 6, when more domains are incorporated, the
performance of a multiple-domain adapted Tent drops dras-
tically, while our method could achieve comparable perfor-
mance to a single-domain adapted Tent.

D.4. Further analysis of the norm of classifiers

In the Experiment section, we find that our method in-
creases model confidence by changing the angle between
the classifier weights and features, which also increases the
norm of the feature. With a larger norm, the model could
make a more confident prediction. In addition to the norm
of the feature, the norm of a classifier also plays an impor-
tant role in classification. If the weight of a class has a large
norm, it would make a more confident prediction. Besides,
if the model is trained with a large number of samples for a
single class, it would be more confident in this class. There-
fore, we hypothesize that more training samples may have
a positive relation to the norm of classifier weights. We plot
the correlation between the norm of classifier weights and
its corresponding training samples in Fig. 7. As seen, there
is a positive correlation between these two factors. Note
that this phenomenon is more evident on PACS compared
to OfficeHome because the training number for each class
is relatively small and similar to each other, resulting in a
less obvious correlation.

