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Abstract

Out-of-distribution (OOD) generalization is a critical
ability for deep learning models in many real-world scenar-
ios including healthcare and autonomous vehicles. Recently,
different techniques have been proposed to improve OOD
generalization. Among these methods, gradient-based regu-
larizers have shown promising performance compared with
other competitors. Despite this success, our understanding
of the role of Hessian and gradient alignment in domain
generalization is still limited. To address this shortcoming,
we analyze the role of the classifier’s head Hessian matrix
and gradient in domain generalization using recent OOD
theory of transferability. Theoretically, we show that spec-
tral norm between the classifier’s head Hessian matrices
across domains is an upper bound of the transfer measure, a
notion of distance between target and source domains. Fur-
thermore, we analyze all the attributes that get aligned when
we encourage similarity between Hessians and gradients.
Our analysis explains the success of many regularizers like
CORAL, IRM, V-REx, Fish, IGA, and Fishr as they regularize
part of the classifier’s head Hessian and/or gradient. Finally,
we propose two simple yet effective methods to match the
classifier’s head Hessians and gradients in an efficient way,
based on the Hessian Gradient Product (HGP) and Hutchin-
son’s method (Hutchinson), and without directly calculating
Hessians. We validate the OOD generalization ability of
proposed methods in different scenarios, including transfer-
ability, severe correlation shift, label shift and diversity shift.
Our results show that Hessian alignment methods achieve
promising performance on various OOD benchmarks. The
code is available here.

1. Introduction

A typical assumption in the design of current supervised
deep learning algorithms is identical distributions of test
and training data. Unfortunately, in real-world problems,
this assumption is not always true (Koyama and Yamaguchi,
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2021) and the distribution gap between test and training data
degrades the performance of deep learning models (Wang
et al., 2022). In practice, not only is there a distribution
shift between test and training data, but also the training
data does not follow the i.i.d. assumption but contains data
from multiple domains. Histopathology medical datasets are
a concrete example where each hospital is using different
types of staining procedures and/or scanners (Chang et al.,
2021). In such a scenario, a deep learning model often fails
to generalize its knowledge to unseen domains. Arjovsky
et al. (2019) argue that the main reason behind poor OOD
generalization is the tendency of deep learning models to
capture simple spurious correlations instead of real causal
information. In order to improve OOD generalization, the
learning algorithm has to learn from invariant mechanisms.

The problem setup in domain generalization (DG) as-
sumes the training set contains data from multiple sources
(domains) where the task remains the same across differ-
ent data sources (Muandet et al., 2013). Furthermore, we
assume there is a causal mechanism that remains invariant
across different domains and hopefully for OOD data. Al-
though many learning algorithms have been proposed to
capture invariance, a recent work by Gulrajani and Lopez-
Paz (2020) shows that given a standard experimental setting,
the classic Empirical Risk Minimization (ERM) algorithm
(Vapnik, 1999), which minimizes the average of losses across
different training domains, outperforms many recently pro-
posed domain generalization methods. This suggests that
many current algorithms may not be successful in capturing
the invariance in data.

Out of the effective DG algorithms, one recent and
promising line of research is gradient-based methods which
try to capture invariance in gradient space (Parascandolo
et al., 2020; Koyama and Yamaguchi, 2021; Shi et al., 2021;
Rame et al., 2022). One fast and simple explanation for this
success can be derived from the seminal work by Jaakkola
and Haussler (1998). According to this work, given a gen-
erative model, the gradient with respect to each parameter
quantifies the role of that parameter in the generation of a
data point. With this intuition, encouraging the similarity
between gradients across environments can be translated as
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Figure 1: Visualization of Hessian alignment for domain generalization. δ denotes the small deviation from an optimum.
Hessian alignment matches the curvature and thus improves the transfer measure between source and target domains.

enforcing the network parameters to contribute the same for
different environments which captures a notion of invariance.
Beyond gradient matching, the Invariant Learning Consis-
tency (ILC) measure (Parascandolo et al., 2020) motivates
matching Hessians across different environments after con-
vergence, given that we found the optimal solution for all
environments and that the Hessian matrix is diagonal. Al-
though the efforts in Parascandolo et al. (2020); Koyama and
Yamaguchi (2021); Rame et al. (2022) improve our under-
standing of the role of Hessians and gradients to some extent,
the ILC measure is built based on heuristics and is only valid
under restricted assumptions like diagonal Hessian matrices.
Moreover, it is not exactly clear what attributes are getting
aligned when we match gradients or even Hessians. Finally,
the proposed methods to align gradients or Hessians (e.g.,
ANDmask, Parascandolo et al. 2020) seem to be suboptimal
as discussed by follow-up works (Shahtalebi et al., 2021;
Rame et al., 2022).

To address these limitations, in this paper, we study the
role of Hessians and gradients in domain generalization.
Since Hessians for the whole neural networks are hard to
compute, we focus on Hessians of the classifier head, which
contains more information than one usually expects. We
summarize our contributions as follows:

• To justify Hessian matching, we utilize a recent concept
from statistical learning theory, called transfer measure
(Zhang et al., 2021), which describes transferability be-
tween target and source domains. Unlike ILC, transfer
measure avoids the restrictive assumptions of diagonal
Hessians. We theoretically show that the distance be-
tween the classifier’s head Hessians is an upper bound
of the transfer measure.

• Furthermore, we show that Hessians and gradient align-
ment can be treated as feature matching. Our analysis
of feature matching compares other DG algorithms like
CORAL (Sun and Saenko, 2016) and V-REx (Krueger

et al., 2021) in a unified framework. Especially, the
success of CORAL can be attributed to approximate
Hessian alignment using our analysis.

• Last but not least, to match Hessians efficiently, we
propose two simple yet effective methods, based on
different estimation of the Hessian. To our knowledge,
these methods are the first DG algorithms based on
Hessian estimation that align Hessians and gradients
simultaneously.

Figure 1 provides an intuitive explanation why Hessian
alignment can reduce domain shift through minimizing trans-
ferability. With Hessian matching, the transfer measure, or
the excess risk gap between source and target domains, is
minimized. This makes any near-optimal source classifier
to be also near-optimal on the target, and thus improves the
transferability and OOD generalization.

2. Problem Setting and Related Work
Consider a deep neural network that consists of a feature

extractor g and a classifier head hθ with parameters θ, and
suppose the training data contains n different source domains
Esource = {S1, . . . ,Sn}. The main goal in DG is to design
a learning algorithm where the trained model can generalize
to an unseen target domain T . Denoting H as the hypothesis
class, the classification loss of a classifier hθ ∈ H on a
domain D is:

LD(θ) = E(x,y)∼D[ℓ(ŷ,y;θ)], (1)

where x and y are the input and the associated one-hot
label, ŷ is the logit (classifier output) and ŷ = hθ(g(x))
where g(x) is the output of a feature extractor, hθ is the
classifier and ℓ(ŷ,y;θ) is the cross entropy between ŷ and
y. The classic baseline for OOD generalization is Empirical
Risk Minimization (ERM, Vapnik, 1999) which minimizes
the average of losses across different training environments



namely 1
n

∑
e LSe . However, it has been shown that this

approach might fail to generalize to out-of-distribution data
when there is an easy-to-learn spurious correlation in data
(Arjovsky et al., 2019). To tackle this, many algorithms
are proposed to avoid domain-specific representations and
capture invariance of data from different perspectives. We
categorize the most related into four main classes:

Data augmentation. Recently many papers have shown
that data augmentation can improve OOD generalization.
Gulrajani and Lopez-Paz (2020) showed that the classic
ERM with data augmentation can outperform many DG
algorithms. Zhang et al. (2018) proposed mixup, a data
augmentation strategy designed for domain generalization
where samples across multiple source domains get mixed to
generate new data for training. Ilse et al. (2021) derived an
algorithm that select proper data augmentation.

Robust optimization techniques have been used to
achieve better OOD generalization (Sagawa et al., 2020; Hu
et al., 2018). These techniques minimize the worst-case loss
over a set of source domains, and can be helpful when we
know the distance between training and test environments.

Learning domain invariant features. Invariant represen-
tation learning was initialized by seminal work of Ben-David
et al. (2010). A wide range of notions of invariance have
been proposed since then. Tzeng et al. (2014) proposed fea-
ture matching across domains while Sun and Saenko (2016)
considered encouraging the similarity between feature co-
variance matrices. DANN (Ganin et al., 2016) proposed
matching feature distributions with an adversarial network,
which is followed by MMD (Li et al., 2018b) and MDAN
(Zhao et al., 2018). Zhao et al. (2019) discussed the funda-
mental tradeoff between feature matching and optimal joint
risk. Another line work started from Invariant Risk Min-
imization (IRM) (Arjovsky et al., 2019), which proposed
to encourage the classifier head to be optimal for different
domains simultaneously. This idea led to a new notion of
invariance as followed by e.g., Risk Extrapolation (V-REx)
(Krueger et al., 2021) where authors proposed similarity
between losses across training domains.

Gradient matching based algorithms. Recently, gra-
dient alignment has been used for domain generalization
(Parascandolo et al., 2020; Shahtalebi et al., 2021; Koyama
and Yamaguchi, 2021; Mansilla et al., 2021; Shi et al., 2021;
Rame et al., 2022) with good performance. In this regard,
Shi et al. (2021) proposed Fish to maximize the inner prod-
uct of average gradients for different domains. In a similar
approach, Koyama and Yamaguchi (2021) proposed the In-
ter Gradient Alignment (IGA) algorithm that minimizes the
variance of average gradients over environments. Parascan-
dolo et al. (2020) developed ANDmask algorithm where
the authors proposed ILC, which measures the consistency
of local minima for different environments. Parascandolo
et al. (2020) proposed ANDmask to reduce the speed of

convergence in directions where landscapes have different
curvatures. Inspired by ILC measure (Parascandolo et al.,
2020), Rame et al. (2022) proposed Fishr as a better alterna-
tive compared with ANDmask to reduce inconsistency. In
Fishr, the variance of domain level gradients is minimized.

3. Theory of Hessian Matching
In this section, we study the role of Hessians and gradients
in domain generalization from two views: transferability and
invariant representation learning.

3.1. Hessian alignment minimizes transfer measure

We motivate our work through the lens of transferability
and transfer measure introduced in Zhang et al. (2021). By
their definition, domain S is transferable to domain T on a
hypothesis class H, if given any near-optimal classifier hθ

on S , it also achieves near-optimal performance on T . More
precisely, we have:

Definition 1 (transferability, Zhang et al. 2021). S is
(δS , δT )H-transferable to T if for δS > 0, there exists δT >
0 such that argmin(LS , δS)H ⊆ argmin(LT , δT )H, where:

argmin(LD, δD)H := {hθ ∈ H : LD(θ)

≤ inf
hθ∈H

LD(θ) + δD},D ∈ {S, T }.

The set argmin(LD, δD)H is called a δ-minimal set
(Koltchinskii, 2010) of LD, and represents the near-optimal
set of classifiers. With the δ-minimal set, we can define the
transfer measure:

Definition 2 (transfer measure, Zhang et al. 2021). Given
Γ = argmin(LS , δS)H, L∗

S := infhθ∈Γ LS(θ) and L∗
T :=

infhθ∈Γ LT (θ) we define the transfer measure TΓ(S∥T ) as:

TΓ(S∥T ) := sup
hθ∈Γ

LT (θ)− L∗
T − (LS(θ)− L∗

S). (2)

The transfer measure in Eq. 2 measures the upper bound of
the difference between source domain excess risk (LS(θ)−
L∗
S) and the target domain excess risk (LT (θ)− L∗

T ), on a
neighborhood Γ. Usually, we choose Γ to be a neighborhood
of our learned near-optimal source classifier.

Now, we state our main theorem which, under mild as-
sumptions, implies that Hessian alignment effectively re-
duces the transfer measure and improving transferability.

Theorem 3 (Hessian alignment). Suppose both the source
and target domain losses LS and LT are µ-strongly convex
with respect to the classifier head and twice differentiable
with the same minimizer, i.e., argminLS = argminLT .
Then with δ = 2δS/µ and Γ = argmin(LS , δS)H we have:

TΓ(S∥T ) ≤ 1

2
δ2∥HT −HS∥2 + o(δ2). (3)



Proof. Let θ∗ represent the optimal classifier for both source
and target domains. Given that LS(θ) is strongly convex,
we can write infhθ∈H LS(θ) = LS(θ

∗) and subsequently Γ
can be written as

argmin(LS , δS)H := {hθ ∈ H : LS(θ)− LS(θ
∗) ≤ δS}.

Now, we define set F1 as

F1 = {θ : LS(θ)− LS(θ
∗) ≤ δS}. (4)

On the other hand, from the µ-strong convexity of LS(θ),
we can write

LS(θ) ≥ LS(θ
∗) +∇θL⊤

S (θ
∗)(θ − θ∗) +

µ

2
∥θ − θ∗∥22.

(5)

Given the optimality of θ∗ (and thus ∇θLS(θ
∗) = 0), from

Eqs. 4 and 5 we obtain that for any θ ∈ F1,
µ

2
∥θ − θ∗∥22 ≤ LS(θ)− LS(θ

∗) ≤ δS . (6)

If we define set F2 as

F2 = {θ :
µ

2
∥θ − θ∗∥22 ≤ δS}. (7)

Then (6) implies F1 ⊂ F2 and as a result, an upper bound
of the transfer measure TΓ(S∥T ) can be written as

sup
∥θ−θ∗∥2≤δ

LT (θ)− LT (θ
∗)− (LS(θ)− LS(θ

∗)), (8)

with δ = 2δS/µ. Now, we may write the second-order
Taylor expansion LS around θ∗ as:

LS(θ) = LS(θ
∗) + (θ − θ∗)⊤∇θLS(θ

∗)+

+
1

2
(θ − θ∗)⊤HS(θ − θ∗) + o(∥θ − θ∗∥2),

(9)

where given ∇θLS(θ
∗) = 0, the source domain excess risk

is

LS(θ)− LS(θ
∗) =

1

2
∆θ⊤HS∆θ + o(∥θ − θ∗∥2),

(10)

with ∆θ = θ − θ∗. Following a similar path for the tar-
get domain and considering that θ∗ is the optimal solution
for both source and target domains, the transfer measure
TΓ(S∥T ) is upper bounded by

sup
∥θ−θ∗∥2≤δ

1

2
(θ − θ∗)⊤(HT −HS)(θ − θ∗) + o(δ2),

(11)

which, from the definition of spectral norm, results in

TΓ(S∥T ) ≤ 1

2
δ2∥HT −HS∥2 + o(δ2), (12)

and the proof is complete.

Note that convexity and differentiability are easily satis-
fied if we use the standard linear classifier head and cross
entropy loss with softmax. Since in practice we do not have
access to the target domain, we minimize the distance be-
tween available source domains. For simplicity, we replace
the spectral norm with the Frobenius norm (note that Frobe-
nius norm is an upper bound, i.e., ∥ · ∥2 ≤ ∥ · ∥F ). As
opposed to pairwise regularizers which grow quadratically
with the number of environments, we minimize the variance
of Hessian distances across domains, namely

1

n

n∑
e=1

∥HSe −HS∥22 where HS =
1

n

n∑
e=1

HSe

and HSe is the Hessian matrix for the e-th source domain.
In this way, computation is linear with respect to the number
of environments.

3.2. Hessian and gradient alignment is feature
matching

In §3.1 we assumed that the minimizers of source and target
are the same. In order to align them, gradient alignment is
often necessary. To get more insight into the attributes that
get matched while the Hessians and gradients get aligned, in
Proposition 4, we study the Hessian and gradient structures
with respect to the classifier head parameters.

Proposition 4 (Alignment attributes in Hessian and gradi-
ent). Let ŷp and yp be the network prediction and true target
with the p-th class, zi be the i-th feature before the classifier.
Denote the classifier’s parameters as wk,i, the element in
row k and column i of the classifier weight matrix, and bk
as the bias term for the k-th neuron. Matching the gradients
and Hessians w.r.t. the classifier head across domains aligns
the following:

∂ℓ

∂bp
= (ŷp − yp), (Error) (13)

∂L
∂wp,q

= (ŷp − yp)zq, (Error × Feature) (14)

∂2ℓ

∂bu∂bv
= ŷu(δu,v − ŷv), (Logit) (15)

∂2ℓ

∂wp,q∂bu
= zq ŷp(δp,u − ŷu), (Logit× Feature)

(16)

∂2ℓ

∂wp,q∂wu,v
= ŷpzqzv(δp,u − ŷu), (Logit× Covariance)

(17)

where δp,u is the Kronecker delta which is 1 if p = u and 0
otherwise and u, v, p, q, k, i are dummy indices.

Here the error means the difference between the true
one-hot label and our prediction. Eqs. 13–17 show that



Table 1: The alignment attributes for different Domain Generalization algorithms where Loss is (yp − ŷp)
2, Feature zq,

Covariance zqzv , Error yp − ŷp, Error × Feature (ŷp − yp)zq , Logit ŷu(δu,v − ŷv), Logit × Feature zq ŷp(δp,u − ŷu), and
Logit × Covariance is ŷpzqzv(δp,u − ŷu). Gradient alignment method matches Error and Error × Feature while matching
Hessians would align Logit, Logit × Feature, Logit × Covariance. 1To be precise, the Loss that get aligned in V-Rex is
negative log likelihood instead of squared error. 2To be precise, Fishr aligns Loss × Feature.

Alignment attribute Loss Feature Covariance Error Error × Feature Logit Logit × Feature Logit × Covariance

V-Rex ✓1 ✗ ✗ ✗ ✗ ✗ ✗ ✗

CORAL ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

IGA ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗

Fish ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗

Fishr ✓ ✗ ✗ ✗ ✓2 ✗ ✗ ✗

Hessian Alignment ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

matching Hessians and gradients with respect to classifier
parameters will align the errors, features weighted by errors,
logits, features weighted by logits, and covariance weighted
by logits across different domains simultaneously. Although
gradient alignment can be helpful before convergence, when
the training is close to convergence, the gradients go to zero
and aligning them is not helpful anymore. On the other hand,
the attributes extracted from the Hessian matrix can remain
non-zero both before and after convergence and aligning
them can boost OOD performance.

Proposition 4 shows that matching gradients and Hessians
can be seen as a generalization of other works like V-Rex
(Krueger et al., 2021), CORAL (Sun and Saenko, 2016), Fish
(Shi et al., 2021), IGA (Koyama and Yamaguchi, 2021), and
Fishr (Rame et al., 2022), as these algorithms only partially
realize the matching of loss/error, feature or covariance. We
summarize alignments in different methods in Table 1 and re-
veal their connection to Hessian and gradient alignment. One
interesting observation is that similar to Hessian alignment,
CORAL also matches the feature and its covariance, which
opens the venue to understand the success of CORAL with
Hessian matching. In the supplementary, we also present
similar results for regression tasks.

4. Efficient Hessian matching

So far, we have shown that aligning Hessians across do-
mains can reduce the transfer measure (or in other words,
increase transferability) and match the representations at
different levels i.e., logits, features, errors and covariances.
However, given the computational complexity of calculating
Hessian matrices, it is quite challenging to directly minimize
∥HS1

−HS2
∥F . To align Hessian matrices efficiently, we

propose two approaches, aligning Hessian-gradient products
and matching Hessian diagonals using Hutchinson’s trace
estimator (Bekas et al., 2007).

4.1. Hessian Gradient Product (HGP)

For the Hessian-gradient product matching we propose
the following loss:

LHGP=
1

n

n∑
e=1

LSe
+ α∥HSe

∇θLSe
−HS∇θLS∥22+

+ β∥∇θLSe −∇θLS∥22, (18)

where α and β are regularization parameters,

∇θLS =
1

n

n∑
e=1

∇θLSe
, and (19)

HS∇θLS =
1

n

n∑
e=1

HSe
∇θLSe

. (20)

Given that ∇θLSe
and ∇θLS are close enough, minimizing

eq. 18 reduces the distance between HSe
and HS . We can

efficiently compute the HGP term without directly calculat-
ing Hessians, using the following expression

HSe
∇θLSe

= ∥∇θLSe
∥ · ∇θ∥∇θLSe

∥, (21)

which follows from ∇x∥x∥2 = x/∥x∥2 with x ∈ Rd and
chain rule. For domain e, to calculate the exact value of the
Hessian-gradient product, we only need two rounds of back-
propagation: one for ∇θLSe and another for ∇θ∥∇θLSe∥.

4.2. Hutchinson’s method

In order to estimate Hessians more accurately, we propose
another approach to estimate the Hessian diagonal using
Hutchinson’s method (Bekas et al., 2007):

DSe = diag(HSe) = Er[r ⊙ (HSe · r)], (22)

where Er is expectation of random variable r sampled from
Rademacher distribution and ⊙ is Hadamard product. In



practice, the expectation is replaced with the mean over a set
of samples. Note that HSe · r can be calculated efficiently
by calculating ∇θ

(
∇θL⊤

Se
r
)
. Given that we have estimated

the Hessian diagonal, the LHutchinson loss is

LHutchinson =
1

n

n∑
e=1

LSe
+ α∥DSe

−DS∥22+

β∥∇θLSe
−∇θLS∥22. (23)

Compared to HGP, Hutchinson’s method is more expensive
to compute, as it requires an estimation with sampling. In
practice, we use 100 samples for each domain. The trade-
off is that Hutchinson’s method gives us a more accurate
matching algorithm for Hessian, since after training, the
Hessian matrix is often close to diagonal (Skorski, 2021),
whereas the gradient (and thus the Hessian-gradient product)
becomes nearly zero.

5. Experiments
To comprehensively validate the effectiveness of HGP and
Hutchinson, we evaluate the proposed algorithms from mul-
tiple views, in terms of transferability (Zhang et al., 2021),
OOD generalization on datasets with correlation shift (Col-
ored MNIST), correlation shift with label shift (imbalanced
Colored MNIST), and diversity shift (Ye et al., 2021), includ-
ing PACS (Li et al., 2017) and OfficeHome (Venkateswara
et al., 2017) datasets from DomainBed.

5.1. Transferability

To show the role of Hessian discrepancy in improving trans-
ferability (i.e, Theorem 3), we use the algorithm presented in
Zhang et al. (2021), which computes the worst-case gap
sup∥θ−θ∗∥≤δ LSi(θ) − LSj (θ) among all pairs of (i, j),
to evaluate transferability among multiple domains. First,
we find the domains i and j such that LSi

and LSj
are

maximized and minimized respectively and consider the
LSi

− LSj
as the gap. Then, we run an ascent optimizer on

classifier θ to maximize gap and project θ on to Euclidean
ball ∥θ − θ∗∥ ≤ δ. We repeat this procedure for multiple
rounds and report the test target accuracy for the worst-case
gap. Figure 2 shows that OOD accuracies of both HGP
and Hutchinson are robust against the attack of an ascent
optimizer, which implies that minimizing ∥HS1

−HS2
∥F

improves transferability.

5.2. OOD generalization under correlation shift us-
ing Colored MNIST

Our Colored MNIST (CMNIST) setup is from Arjovsky et al.
(2019), where the dataset contains two training and one test
environments and the objective is a binary classification task
in which class zero and one contain digits less than 5 and
greater and equal 5 respectively. Further, the labels have

(a) OfficeHome (b) PACS

Figure 2: OOD accuracy of HGP and Hutchinson compared
with multiple baselines on OfficeHome and PACS datasets
with different values of δ for the ascent optimizer.

been flipped with a probability 0.25 and each image has
been colored either red or yellow such that the colors are
heavily correlated with the class label. However, this color
correlation is spurious as it has been reversed for test data.
The correlations of labels with colors are +90% and +80%
for training environments and -90% for the test environment.

Given the structure of data, if our learning algorithm only
learns the spurious correlation (in this case color), the test
accuracy will be 14%, while if our model learns the invariant
features, we can achieve 75% test accuracy. The CMNIST
setup (Arjovsky et al., 2019) we use has also been followed
by Fishr (Rame et al., 2022) and V-Rex (Krueger et al., 2021).
The only difference is that we replace the regularizer in IRM
with our proposed regularizers in HGP and Hutchinson. In
this setting, a simple fully connected network is used for
training where we train the model for 501 steps and at step
190 the regularization parameters α and β increase from 1
to 91257.18 suddenly (found by grid search for IRM). We
repeated the experiments 10 times and reported the mean
and average over these runs.

Table 2: Comparison of ERM, IRM, V-Rex, Fishr, and our
proposed methods HGP and Hutchinson, on Colored MNIST
experiment in introduced in IRM (Arjovsky et al., 2019)
while the same hyperparameters have been used.

Method Train acc. Test acc.

ERM 86.4 ± 0.2 14.0 ± 0.7
IRM 71.0 ± 0.5 65.6 ± 1.8
V-REx 71.7 ± 1.5 67.2 ± 1.5
Fishr 71.0 ± 0.9 69.5 ± 1.0
HGP 71.0 ± 1.5 69.4 ± 1.3
Hutchinson 61.7 ± 1.9 74.0 ± 1.2

Table 2 compares the performance of HGP and Hutchin-
son against common DG baselines. As can be seen, while
HGP achieves competitive performance against the state-of-
the-art Fishr algorithm, Hutchinson outperforms all methods



(a) No label shift - accuracy (b) No label shift - loss (c) Heavy label shift - accuracy (d) Heavy label shift - loss

Figure 3: Correlation between Hessian distances (∥HS1 −HS2∥F ) and OOD accuracies/losses for HGP and Hutchinson
regularization during the training for Colored MNIST. (a), (b): no label shift; (c), (d): heavy label shift.

by a large gap and obtains the near-optimal OOD accuracy
of 74%, which is close to the maximum achievable accuracy
of 75%.

5.3. OOD generalization under label shift

In order to explore the robustness of our proposed algorithm
to label shift, we designed an imbalanced Colored MNIST
dataset which is the same as the Colored MNIST dataset
but we modified the dataset in a way that each of the two
domains contain 95% of data points from one class and 5%
from the other class. In fact, in the imbalanced Colored
MNIST dataset, both correlation shift and label shift exist.
We repeated the experiments in Table 2 on imbalanced Col-
ored MNIST and reported the results in Table 3. Looking
at Table 3, in the heavy label shift case, the Hutchinson
achieves the highest OOD accuracy which outperforms the
best-performing algorithm by a margin of 12%.

Table 3: Comparison of ERM, IRM, V-Rex, Fishr, and our
proposed methods HGP and Hutchinson on Imbalanced Col-
ored MNIST where each domain has 95% from one class
and 5% from other class. Except for the imposed label shift,
the setting is same as Colored MNIST experiment introduced
in IRM (Arjovsky et al., 2019).

Method Train acc. Test acc.

ERM 86.4 ± 0.1 16.7 ± 0.1
IRM 84.9 ± 0.1 14.3 ± 1.4
V-REx 83.3 ± 0.2 35.1 ± 1.2
Fishr 75.7 ± 2.7 35.5 ± 5.3
HGP 83.0 ± 0.2 30.0 ± 0.9
Hutchinson 79.4 ± 0.3 47.7 ± 1.4

5.4. Training dynamics for Colored MNIST and Im-
balanced Colored MNIST

Similar to earlier works (Arjovsky et al., 2019; Krueger et al.,
2021; Rame et al., 2022), we study the training and OOD

generalization dynamics of HGP and Hutchinson on CM-
NIST and imbalanced CMNIST datasets. Figure 3a and
Figure 3b show the Hessian distance ∥HS1 −HS2∥F and
OOD accuracy/loss of HGP and Hutchinson during the train-
ing. From Figure 3a when regularization parameters increase
at step 190, the Hessian distance significantly drops and im-
mediately OOD accuracy increases which suggests a strong
negative correlation between the Hessian distance and OOD
accuracy. This correlation is more evident for Hutchinson
compared to HGP since after step 300, the Hessian distance
keeps decreasing and OOD accuracy increases correspond-
ingly. In contrast, for HGP, after step 300 when we are close
to convergence, OOD accuracy becomes stable and even
there is a slight increase in the Hessian distance. This is
because close to convergence the gradients become zero and
HGP loss cannot align Hessians as well as Hutchinson.

Figure 4: The Hessian distances ∥HS1
−HS2

∥F in Hutchin-
son and HGP regularization losses during the training steps
for no label shift and heavy label shift in Colored MNIST
experiment. Clearly, for heavy label shift, the Hessian dis-
tance is significantly more than no label shift case.

For the heavy label shift case, Figure 3c and 3d show that
it is much more difficult to decrease the Hessian distance in



general. Besides, Hutchinson is more capable of reducing
the Hessian distance compared to HGP and subsequently, it
achieves better OOD accuracy.

Finally, Figure 4 compares Hessian distance while we
use HGP and Hutchinson regularizers in no label shift and
heavy label shift datasets. Clearly, for heavy label shift,
the Hessian distance is significantly larger which shows
that transferability between domains becomes more difficult.
This experiment validates our argument that Hessian distance
captures transferability between domains.

5.5. OOD generalization under diversity shift

In this section we use the Domainbed benchmark (Gulra-
jani and Lopez-Paz, 2020) to evaluate OOD accuracy of
HGP and Hutchinson. We validate our proposed algorithms
on the VLCS (Fang et al., 2013), PACS (Li et al., 2017),
OfficeHome (Venkateswara et al., 2017), and DomainNet
(Peng et al., 2019) datasets from the DomainBed benchmark.
Domainbed provides a standard scheme to validate the per-
formance of DG algorithms in a fair manner with different
model selections. Table 4 provides the performance of HGP
and Hutchinson methods against multiple benchmarks for
leave-one-domain-out model selection reported from Do-
mainbed. It shows that our Hutchinson method gives the
state-of-the-art OOD performance in most cases. For HGP,
our results are not as good as expected since the gradients
diminish near convergence. The most competitive method
to Hutchinson is CORAL, which we showed approximately
aligns Hessians (by matching covariances) and gradients (by
matching features). The results for other model selections
are reported in the supplementary material.

5.6. Robustness to adversarial shift

Robustness of deep learning models to adversarial attacks
is a notion of their generalization ability. To explore adversar-
ial robustness of models trained using HGP and Hutchinson
loss, we evaluate their performance against the Fast Gradi-
ent Sign Method (FSGM) attack (Goodfellow et al., 2014)
and benchmark their performances against, ERM, IRM, V-
Rex, and Fishr on CMNIST in Figure 5. We see that our
Hutchinson method is also more transferable to adversarially
perturbed domains.

5.7. Computational time comparison

For CMNIST experiments, we recorded the training time
of our proposed algorithms (HGP and Hutchinson) and sev-
eral popular domain generalization algorithms. The results
of this experiment are presented in Table 5. We note that
our Hessian alignment methods have more computation cost
than existing algorithms, due to the Hessian estimation. This
is the expense of better OOD generalization. However, the
additional cost is controllable.

Figure 5: Comparison of OOD accuracy under adversarial
attack. ε denotes the perturbation amplitude.

5.8. The roles of Hessian and gradient alignment

Since we have implemented both Hessian and gradient align-
ment in our algorithms, which part is playing a main role?
In this section, we conduct an ablation study to investigate
the role of each regularization term in the loss functions of
Hessian alignment. Recall that α is the regularization weight
of Hessian alignment and β is the weight of the gradient
alignment. We set up an experiment with the PACS dataset
and set the Sketch domain as test domain. We compare the
Hutchinson algorithm in three different scenarios:

• Both: α = 10−5, β = 10−5;

• Only Hessian alignment: α = 10−5, β = 0;

• Only gradient alignment: α = 0, β = 10−5.

The test domain accuracies for models trained with different
hyperparameters are presented in Table 6. Clearly, with
both Hessian and gradient alignment we achieve the best
OOD generalization. Moreover, Hessian alignment plays
a more important role than gradient alignment. Additional
ablation studies for CMNIST experiment are presented in
the appendix.

5.9. Implementation details

We provide the implementation details for all the experi-
ments we conducted in the paper. For the transferability
experiments in Figure 2, the experimental setup is exactly
the same as the one used in Zhang et al. (2021). For reg-
ularization parameters, we used α = 10−5 and β = 10−3

for HGP and Hutchinson methods. For the CMNIST exper-
iment, the experimental setting is exactly the same as the
IRM paper (Arjovsky et al., 2019). To set the regulariza-
tion parameters, we also used the same scheme employed in



Table 4: DomainBed benchmark with leave-one-domain-out cross-validation model selection for CMNIST, VLCS, PACS, and
OfficeHome datasets. We show the best and second best number with boldface and underline respectively. Due to time and
computation limit, we did not finish the Fishr experiment on DomainNet.

Algorithm VLCS PACS OfficeHome DomainNet Avg

ERM (Vapnik, 1999) 77.2 83.0 65.7 40.6 66.6
IRM (Arjovsky et al., 2019) 76.3 81.5 64.3 33.5 63.9
GroupDRO (Sagawa et al., 2020) 77.9 83.5 65.2 33.0 64.9
Mixup (Wang et al., 2020) 77.7 83.2 67.0 38.5 66.6
MLDG (Li et al., 2018a) 77.2 82.9 66.1 41.0 66.8
CORAL (Sun and Saenko, 2016) 78.7 82.6 68.5 41.1 67.7
MMD (Li et al., 2018b) 77.3 83.2 60.2 23.4 61.0
DANN (Ganin et al., 2016) 76.9 81.0 64.9 38.2 65.2
CDANN (Zhou et al., 2021) 77.5 78.8 64.3 38.0 64.6
MTL (Blanchard et al., 2021) 76.6 83.7 65.7 40.6 66.7
SagNet (Nam et al., 2020) 77.5 82.3 67.6 40.2 66.9
ARM (Zhang et al., 2020) 76.6 81.7 64.4 35.2 64.5
VREx (Krueger et al., 2021) 76.7 81.3 64.9 33.4 64.1
RSC (Huang et al., 2020) 77.5 82.6 65.8 38.9 66.2
Fishr (Rame et al., 2022) 78.2 85.4 67.8 - -

HGP 76.7 82.2 67.5 41.1 66.9
Hutchinson 79.3 84.8 68.5 41.4 68.5

Table 5: Training time comparison on CMNIST between
ERM, IRM, V-Rex, Fishr, and our proposed methods HGP
and Hutchinson for 100 steps averaged over 10 runs.

Method Train acc.

ERM 15.3 ± 0.1
CORAL 32.0 ± 3.2
V-REx 34.1 ± 2.3
IRM 27.0 ± 4.6
GroupDRO 32.8 ± 2.9
Fishr 25.3 ± 2.1

HGP 39.5 ± 4.4
Hutchinson 62.4 ± 1.5

Table 6: Ablation study of the Hutchinson method on differ-
ent alignment regularization on the PACS dataset when the
test domain is sketch.

Method Test acc.

Hessian & gradient 81.4
Gradient only 77.0
Hessian only 79.4

the IRM paper (Arjovsky et al., 2019). The only difference
here is that we have two regularization parameters so we
set α = β. For DomainBed experiments, the setup is the

same as in Gulrajani and Lopez-Paz (2020). For α and β,
we used ranges (−3,−5), (−1,−3) for HGP and (−1,−3),
(−2,−4) for Hutchinson, respectively.

6. Conclusions
In this paper, we study the role Hessian alignment in domain
generalization. Hessian alignment of the classifier head does
not only improve the transferability to new domains, but also
serves as an effective feature matching mechanism. In order
to overcome the difficulty of heavy computation, we propose
two estimation methods for Hessians, using Hessian-gradient
product and Hutchinson’s diagonal estimation. These meth-
ods are tested to be effective in various scenarios, includ-
ing spurious correlation (CMNIST), standard diversity shift
benchmark (Domainbed), and adversarial shift. At the ex-
pense of slightly heavier computation, Hessian alignment
performs competitively, often achieving the state-of-the-art.
To our knowledge, our method provides the first Hessian
alignment in domain generalization. In the future, it would
be interesting to study and compare more efficient ways to
align Hessians and gradients across domains.
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A. Proof of Proposition 4
Proof. To formulate the classifier head of the neural network, let zi be the i-th component of the feature vector before the
classifier layer and the classifier’s parameter θ is decomposed to wk,i, the element in row k and column i of the classifier
weight matrix, and bk, the bias term for the k-th output. We define ak as

ak =

c∑
i

wk,izi + bk, (24)

where c is the number of classes. Given ak, if we assume the classifier activation function σ(·) to be softmax, the classifier
output for the k-th neuron can be written as

ŷk = σ(ak) =
eak∑c
j=1 e

aj
, (25)

Now, if we denote (x,y) as the sample and ŷ as the associated output, and assume the loss function be cross-entropy

ℓ(x,y;θ) = −
c∑

l=1

yl log ŷl, (26)

Having the loss function, we proceed to calculate the gradients and hessian of loss with respect to classifier parameters wp,q

and bp is

∂ℓ(ŷ,y;θ)

∂wp,q
=

c∑
l=1

∂ℓ

∂ŷl

c∑
k=1

∂ŷl
∂ak

∂ak
∂wp,q

. (27)

∂ℓ(ŷ,y;θ)

∂bu
=

c∑
l=1

∂ℓ

∂ŷl

c∑
k=1

∂ŷl
∂ak

∂ak
∂bu

. (28)

Given that the activation function is a softmax function ŷl = σ(al) =
eal∑
j eaj , the ∂σ(al)

∂ak
can be calculated as:

∂σ(al)

∂ak
= σ(al)δl,k − σ(al)σ(ak). (29)

Now, using Eq. 29, we can rewrite Eqs. 27 and 28 as follows:

∂ℓ

∂wp,q
= (ŷp − yp)zq,

∂ℓ

∂bu
= (ŷu − yu). (30)

For the Hessian, we only calculate the elements of matrix that are only related to the classifier layer. More precisely, we
calculate ∂2ℓ

∂wu,v∂wp,q
, ∂2ℓ
∂wp,q∂bu

, and ∂2ℓ
∂bu∂bv

. For the ∂2ℓ
∂wu,v∂wp,q

we can write

∂2ℓ

∂wu,v∂wp,q
=

∂

∂wu,v
((ŷp − yp)zq) . (31)

To calculate the above expression, we need ∂ŷp

∂wu,v
:

∂ŷp
∂wu,v

=
∑
k

∂ŷp
∂ak

∂ak
∂wu,v

=
∑
k

∂σ(ap)

∂ak

∑
i

δk,uδi,vzi =
∑
k

σ(ap)(δp,k − σ(ak))δk,uzv = ŷpzv(δp,u − ŷu) (32)

Now, incorporating eq. 32 into eq. 31, the elements of Hessian matrix in classifier layer i.e., ∂2ℓ
∂wu,v∂wp,q

, we have:

∂2ℓ

∂wu,v∂wp,q
= zqzv ŷp(δp,u − ŷu). (33)



For ∂2ℓ
∂wp,q∂bu

we can write

∂2ℓ

∂wp,q∂bu
=

∂

∂bu
((ŷp − yp)zq) =

∂(ŷp − yp)

∂bu
zq =

∑
k

∂ŷp
∂ak

∂ak
∂bu

zq = zq ŷp(δp,u − ŷu). (34)

Eventually, for ∂2L
∂bu∂bv

we have:

∂2ℓ

∂bu∂bv
=

∂

∂bv
(ŷu − yu) =

∑
k

∂ŷu
∂ak

∂ak
∂bv

= ŷu(δu,v − ŷv). (35)

B. Alignment attributes in Hessian and gradient in regression task with mean square error loss and
general activation function

In this section, we extend our analysis to regression tasks for real numbers. We show that the classifier head’s gradient and
Hessian yield similar information of the features. To adapt our framework to regression, we replace the meaning of σ from
softmax to an arbitrary uni-variate activation function.

Proposition 5 (Alignment attributes in Hessian and gradient for mean square error loss and general activation function).
Let ŷ and y be the network prediction and true target associated with the output neuron of a single output network, σ(·) be the
activation function, zi be the i-th feature value before the last layer (regression layer). Suppose the last layer’s parameter θ
is decomposed to wi, the i-th element of the weight vector, and b, the bias term. Matching the gradients and Hessians with
respect to the last layer across the domain aligns the following attributes

∂ℓ

∂b
= (ŷ − y)σ′(a), (36)

∂ℓ

∂wi
= (ŷ − y)σ′(a)zi, (37)

∂2ℓ

∂b2
= σ′(a)2 + (ŷ − y)σ′′(a), (38)

∂2ℓ

∂wi∂b
= σ′(a)2zi + (ŷ − y)σ′′(a)zi, (39)

∂2ℓ

∂wi∂wk
= σ′(a)2zizk + (ŷ − y)σ′′(a)zizk, (40)

Proof. To formulate the last layer of the neural network we define a as

a =
∑
i

wizi + b. (41)

Given a, if we assume the last layer activation function is σ(·), the single output can be written as

ŷ = σ(a). (42)

Now, if we denote the input data as (x, y) and associated output ŷ, and assume the loss function be

ℓ(x, y;θ) =
1

2
(ŷ − y)2. (43)

Having the loss function, we proceed to calculate the gradients and hessian of loss with respect to last layer parameters wi

and b. For the gradients, we write

∂ℓ

∂wi
=

∂L
∂ŷ

∂ŷ

∂a

∂a

∂wi
= (ŷ − y)σ′(a)zi, (44)

∂ℓ

∂b
=

∂L
∂ŷ

∂ŷ

∂a

∂a

∂b
= (ŷ − y)σ′(a). (45)



For the Hessian matrix, we only calculate the elements of the matrix that are only related to the last layer. More precisely,
we calculate ∂2L

∂wi∂wk
, ∂2L
∂wi∂b

, and ∂2L
∂b2 . For the ∂2L

∂wi∂wk
we can write

∂2ℓ

∂wi∂wk
=

∂

∂wk
((ŷ − y) · σ′(a)zi) =

∂(ŷ − y)

∂wk
· σ′(a)zi + (ŷ − y)

∂

∂wk
σ′(a)zi (46)

To calculate the above expression, we need ∂ŷ
∂wk

and ∂
∂wk

σ′(a).

∂ŷ

∂wk
=

∂ŷ

∂a

∂a

∂wk
= σ′(a)zk, (47)

∂

∂wk
σ′(a) =

∂

∂a
σ′(a)

∂a

∂wk
= σ′′(a)zk. (48)

Now, incorporating eq. 48 into 46 the elements of the last-layer Hessian matrix become:

∂2ℓ

∂wi∂wk
= σ′(a)2zizk + (ŷ − y)σ′′(a)zizk. (49)

For ∂2L
∂wi∂b

we can write

∂2ℓ

∂wi∂b
=

∂

∂b
((ŷ − y) · σ′(a)zi) =

∂(ŷ − y)

∂b
· σ′(a)zi + (ŷ − y)

∂

∂b
σ′(a)zi (50)

=
∂ŷ

∂a

∂a

∂b
· σ′(a)zi + (ŷ − y)

∂

∂a
σ′(a)

∂a

∂b
zi = σ′(a)2zi + (ŷ − y)σ′′(a)zi. (51)

Eventually, ∂2L
∂b2 is calculated as:

∂2ℓ

∂b2
=

∂

∂b
(ŷ − y) · σ′(a)) =

∂(ŷ − y)

∂b
· σ′(a) + (ŷ − y)

∂

∂b
σ′(a) (52)

=
∂ŷ

∂a

∂a

∂b
· σ′(a) + (ŷ − y)

∂

∂a
σ′(a)

∂a

∂b
= σ′(a)2 + (ŷ − y)σ′′(a). (53)

Eqs. 45, 49, 51, 53 show that matching Hessians and gradients with respect to the last layer parameters will match neural
network outputs, last layer input features and covariance between output features across domains. This supports the idea
of matching gradients and Hessians during training. The above result can be extended to multi-dimensional outputs if the
activation is element-wise.

C. Ablation Study

We also repeat the Colored MNIST and imbalanced Colored MNIST experiments in scenarios where one of α and β
is non-zero, in Table 7 and Table 8. Recall that α controls the Hessian alignment and β controls the gradient alignment.
If not mentioned, the values for α and/or β are non-zero and they are chosen exactly as the IRM paper (Arjovsky et al.,
2019). According to Table 7, for both HGP and Hutchinson methods, gradient alignment seems to contribute more to OOD
generalization on CMNIST. This might be due to the heavy correlation shift and we have to align the local minima first. For
Hutchinson, when β = 0, the OOD performance drops which we believe is because the value that has been chosen for α is
optimized for the IRM loss. In other words, if we optimize α for aligning the diagonal part of Hessian, it can contribute to the
OOD generalization. For imbalanced Colored MNIST, the same trend for the role of α and β can be observed. Overall, the
key observation is that both aligning gradients and diagonal parts of Hessians contribute to the OOD generalization.



Table 7: Comparison of ERM, IRM, V-Rex, Fishr, and our proposed methods HGP and Hutchinson with ablation study on α
and β on Colored MNIST. The setting is same as the Colored MNIST experiment introduced in IRM (Arjovsky et al., 2019).

Method Train acc. Test acc.

ERM 86.4 ± 0.2 14.0 ± 0.7
IRM 71.0 ± 0.5 65.6 ± 1.8
V-REx 71.7 ± 1.5 67.2 ± 1.5
Fishr 71.0 ± 0.9 69.5 ± 1.0
HGP 71.0 ± 1.5 69.4 ± 1.3
HGP (α = 0) 70.6 ± 1.8 69.3 ± 1.2
HGP (β = 0) 78.9 ± 0.3 53.3 ± 1.7
Hutchinson 61.7 ± 1.9 74.0 ± 1.2
Hutchinson (α = 0) 70.6 ± 1.8 69.3 ± 1.2
Hutchinson (β = 0) 84.9 ± 0.1 9.8 ± 0.2

Table 8: Comparison of ERM, IRM, V-Rex, Fishr, and our proposed methods HGP and Hutchinson with ablation study on α
and β on Imbalanced Colored MNIST where each domain has 95% from one class and 5% from other class. Except for the
imposed label shift, the setting is same as the Colored MNIST experiment introduced in IRM (Arjovsky et al., 2019).

Method Train acc. Test acc.

ERM 86.4 ± 0.1 16.7 ± 0.1
IRM 84.9 ± 0.1 14.3 ± 1.4
V-REx 83.3 ± 0.2 35.1 ± 1.2
Fishr 75.7 ± 2.7 35.5 ± 5.3
HGP 83.0 ± 0.2 30.0 ± 0.9
HGP (α = 0) 83.2 ± 0.4 29.7 ± 1.7
HGP (β = 0) 84.3 ± 0.1 20.4 ± 1.0
Hutchinson 79.4 ± 0.3 47.7 ± 1.4
Hutchinson (α = 0) 83.2 ± 0.4 29.7 ± 1.7
Hutchinson (β = 0) 84.9 ± 0.1 9.8 ± 0.2

D. Domainbed Results for Other Model Section Methods
In this section, we provide the Domainbed results for the two other model selection methods, i.e., the training-domain
validation set and test-domain validation set (oracle). First note that the oracle model selection is not a valid benchmarking
scheme and not applicable in practice as it uses the target domain data for selecting the hyperparameters. In fact, in this
scenario, algorithms with more hyperparameters and training tricks (like warmup, exponential moving average and etc) can
obtain better performance since they have more freedom to tune the model on test data. Considering this, we should not rely
on the oracle model selection technique to compare domain generalization algorithms. The other model selection technique is
the training-domain validation set where the validation sets of all training domain are concatenated together and select the
hyperparameters that maximize the accuracy on the entire validation set.

As can be seen in Table 9 and Table 10, although Hessian alignment methods are not the best, their performance across all
datasets is still competitive for other model selections. As also shown in Gulrajani and Lopez-Paz (2020), different model
selections could result in different rankings of the algorithms. We find that training-domain model selection in general gives
better results for most baseline algorithms, but the performance of the Hutchinson method slightly degrades. We defer the
study of comparing model selections to future work.



Table 9: DomainBed benchmark with training-domain validation set model selection method for CMNIST, VLCS, PACS, and
OfficeHome datasets. We show the best and second best number with boldface and underline respectively.

Algorithm VLCS PACS OfficeHome DomainNet Avg

ERM 77.5 85.5 66.5 40.9 67.6
IRM 78.5 83.5 64.3 33.9 65.1
GroupDRO 76.7 84.4 66.0 33.3 65.1
Mixup 77.4 84.6 68.1 39.2 67.3
MLDG 77.2 84.9 66.8 41.2 67.5
CORAL 78.8 86.2 68.7 41.5 68.8
MMD 77.5 84.6 66.3 23.4 63.0
DANN 78.6 83.6 65.9 38.3 66.6
CDANN 77.5 82.6 65.8 38.3 66.1
MTL 77.2 84.6 66.4 40.6 67.2
SagNet 77.8 86.3 68.1 40.3 68.1
ARM 77.6 85.1 64.8 35.5 65.8
VREx 78.3 84.9 66.4 33.6 65.8
RSC 77.1 85.2 65.5 38.9 66.7
AND-mask 78.1 84.4 65.5 37.2 66.3
SAND-mask 77.4 84.6 65.8 32.1 65.0
Fish 77.8 85.5 68.6 42.7 68.7
Fishr 77.8 85.8 67.8 41.7 68.3

HGP 77.6 84.7 68.2 41.1 67.9
Hutchinson 76.8 83.9 68.2 41.6 67.6

Table 10: DomainBed benchmark with test-domain validation set (oracle) model selection method for CMNIST, VLCS, PACS,
and OfficeHome datasets. We show the best and second best number with boldface and underline respectively.

Algorithm VLCS PACS OfficeHome DomainNet Avg

ERM 77.6 86.7 66.4 41.3 68.0
IRM 76.9 84.5 63.0 28.0 63.1
GroupDRO 77.4 87.1 66.2 33.4 66.0
Mixup 78.1 86.8 68.0 39.6 68.1
MLDG 77.5 86.8 66.6 41.6 68.1
CORAL 77.7 87.1 68.4 41.8 68.8
MMD 77.9 87.2 66.2 23.5 63.7
DANN 79.7 85.2 65.3 38.3 67.1
CDANN 79.9 85.8 65.3 38.5 67.4
MTL 77.7 86.7 66.5 40.8 67.9
SagNet 77.6 86.4 67.5 40.8 68.1
ARM 77.8 85.8 64.8 36.0 66.1
VREx 78.1 87.2 65.7 30.1 65.3
RSC 77.8 86.2 66.5 38.9 67.4
AND-mask 76.4 86.4 66.1 37.9 66.7
SAND-mask 76.2 85.9 65.9 32.2 65.1
Fish 77.8 85.8 66.0 42.7 68.1
Fishr 78.2 86.9 68.2 43.4 69.2

HGP 77.3 86.5 67.4 41.2 68.1
Hutchinson 77.9 86.3 68.4 41.9 68.6


