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Abstract
Despite recent advancements in deep learning, deep neu-

ral networks continue to suffer from performance degra-
dation when applied to new data that differs from train-
ing data. Test-time adaptation (TTA) aims to address this
challenge by adapting a model to unlabeled data at test
time. TTA can be applied to pretrained networks without
modifying their training procedures, enabling them to uti-
lize a well-formed source distribution for adaptation. One
possible approach is to align the representation space of
test samples to the source distribution (i.e., feature align-
ment). However, performing feature alignment in TTA is
especially challenging in that access to labeled source data
is restricted during adaptation. That is, a model does not
have a chance to learn test data in a class-discriminative
manner, which was feasible in other adaptation tasks (e.g.,
unsupervised domain adaptation) via supervised losses on
the source data. Based on this observation, we propose a
simple yet effective feature alignment loss, termed as Class-
Aware Feature Alignment (CAFA), which simultaneously 1)
encourages a model to learn target representations in a
class-discriminative manner and 2) effectively mitigates the
distribution shifts at test time. Our method does not require
any hyper-parameters or additional losses, which are re-
quired in previous approaches. We conduct extensive ex-
periments on 6 different datasets and show our proposed
method consistently outperforms existing baselines.

1. Introduction
Recent advancements [17, 52, 11, 10] in machine learn-

ing are effective in solving diverse problems, achiev-
ing remarkable performance enhancements on benchmark
datasets. However, these methods can suffer from signif-
icant performance degradation when applied to test data
with different properties from the training data (i.e., source
data), such as corruption [18], changing lighting condi-
tions [8], or adverse weather [54, 6]. Sensitivity to distri-
bution shifts [42] hampers deep networks from performing
well in practical scenarios where test samples may differ
from training data [26]. Thus, adapting deep models to the
test samples is crucial when distribution shifts exist.

Various adaptation methods [3, 15, 36, 14, 49, 13, 56, 21]

have been proposed to alleviate this problem. However,
most of these methods require either access to the source
data during adaptation [49, 14, 19] or modification of the
training procedure [33, 32, 50], which limits their applica-
bility. Therefore, we seek to design an adaptation method
that 1) is applicable to existing deep networks without mod-
ification and 2) does not require access to the source data
during adaptation. Satisfying such conditions, previous
studies perform adaptation at test time while making predic-
tions simultaneously, which is referred to as test-time adap-
tation (TTA).

One widely adopted approach to address distribution
shifts is to align the source (i.e., training data) and target
(i.e., test data) distributions [14, 49, 34, 48, 13, 51]. For ex-
ample, DANN [14] directly reduces the H-divergence be-
tween the source and target distributions, and CORAL [49]
minimizes the difference in the second-order statistics be-
tween the source and target data. Despite their demon-
strated effectiveness in the unsupervised domain adapta-
tion (UDA) task, applying those alignments to TTA has
the following limitation. Alignments are generally per-
formed along with supervised losses on the source data,
which encourages a model to learn target distributions in
a class-discriminative manner [49]. However, access to the
source data is prohibited during adaptation in TTA, preclud-
ing learning class discriminability.

With this issue in mind, we conduct an analysis of the
effects of feature alignments in TTA by using two distances
in the representation space: intra-class distance and inter-
class distance. As shown in Fig. 1 (c), intra-class distance
(dotted arrow) is defined as the distance between a sam-
ple and its ground-truth source class distribution, and inter-
class distance (solid arrow) denotes the averaged distance
between the sample and the other source class distribu-
tions. Achieving low intra-class distance and high inter-
class distance is crucial for improving classification accu-
racy [30, 4, 31, 43, 57].

For analysis, we first adopt a feature alignment that re-
duces the domain-level discrepancy between source and tar-
get domains, which is a commonly adopted paradigm in
UDA studies [14, 49, 48]. One straightforward approach
to achieve this is to align the mean and covariance of the
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Figure 1. A motivating example of our paper. (a) shows the change of the intra-class distance (dotted lines) and the inter-class distance
(solid lines) of ours (blue line) and global feature alignment (red line). (b) shows the accuracy changes as adaptation proceeds. (c) illustrates
how our method CAFA aligns the test features to the source distribution in a class-discriminative manner. We obtain the plots by adapting
a model to corrupted images of the CIFAR10-C dataset. Please refer to Section 4 for further details.

source and target distributions, i.e., global feature alignment
(Global FA).1 The result of applying this feature alignment
in TTA is depicted in Fig. 1 (a) (red line). The intra-class
distance is reduced, which is desirable but is also accom-
panied by a decrease in inter-class distance. Such effects
can degrade the image classification accuracy in Fig. 1 (b)
(red line). This is mainly due to the lack of class infor-
mation in the global feature alignment. A model does not
have a chance to learn the test data in a class-discriminative
manner since a supervised loss is not available on both the
source and target data.

Motivated by such observations, we propose Class-
Aware Feature Alignment (CAFA) that aligns the target
features to the pre-calculated source feature distributions
by considering both intra- and inter-class distances. To
be more specific, we pre-calculate the statistics (i.e., mean
and covariance) of the source distribution to estimate class-
conditional Gaussian distributions from a pretrained net-
work. At test time, we use the Mahalanobis distance [37] to
1) align each sample to its predicted class-conditional Gaus-
sian distribution (i.e., reduce intra-class distance) and 2) en-
force samples to be distinct from the other class-conditional
Gaussian distributions (i.e., increase inter-class distance).
Applying CAFA successfully enhances class discriminabil-
ity as shown in Fig. 1 (a) (blue line) and significantly im-
proves the classification accuracy as adaptation proceeds
(Fig. 1 (b) (blue line)). We empirically show that reducing
intra-class distance alone is not sufficient as it could also
reduce the inter-class distance and result in performance
degradation.

Aligning feature distributions at test time requires ac-
cess to the source data before adaptation to pre-calculate
the source statistics, as similarly done in previous meth-
ods [12, 33, 7]. However, we empirically show that CAFA
only requires a small number of training samples (e.g., 5%
of the training samples in the ImageNet/CIFAR10 datasets

1We will explain the global feature alignment in more detail in Sec-
tion 3.2

(Fig. 3)) to obtain robust source statistics that outperform
the existing methods. In addition, CAFA does not require
any hyper-parameters or modifications on pretraining pro-
cedures for adaptation.

The main contributions of our work are as follows:

• We propose a novel Class-Aware Feature Alignment
(CAFA) that effectively mitigates distribution shifts
and encourages a model to learn discriminative target
representations simultaneously.

• Our proposed approach is simple yet effective, not re-
quiring hyper-parameters or additional modifications
of the training procedure.

• We conduct extensive experiments on 6 different
datasets along with in-depth analyses and show that
CAFA consistently outperforms the existing methods
on test-time adaptation.

2. Related Work

2.1. Test-time Adaptation

Existing UDA approaches [2, 1, 3, 15, 36, 41, 44, 19]
have addressed distribution shifts effectively by adapting to
target domains at training time. UDA approaches generally
assume that 1) source data is available during adaptation,
and 2) we already know which target domain the models
are adapted to. However, these assumptions sometimes do
not hold in real-world scenarios. To address such concerns,
approaches that adapt a model at test time have been pro-
posed, not requiring access to the source data during adap-
tation [55, 20, 58, 59, 45, 29, 50, 33, 23]. Several meth-
ods [50, 33] perform adaptation in an offline manner, pre-
dicting test samples after iterating multiple epochs over the
entire set of the test samples (i.e., test-time training). These
approaches modify the training procedure to have self-
supervised losses (e.g., rotation prediction or contrastive



loss) and utilize them as proxy losses for adaptation. How-
ever, as also pointed out in Wang et al. [55], it is not guaran-
teed that optimizing the proxy losses helps in improving the
main task since they are not directly related to classifying
images into categories. Addressing such concerns, test-time
adaptation (TTA) methods [55, 20, 58, 59, 45, 5] have been
proposed. These approaches do not require any modifica-
tion of the training procedures, allowing the algorithms to
be applicable to a given pretrained deep learning network.
TENT [55], a recent seminal work in TTA, proposed to up-
date the modulation parameters in batch normalization [22]
layers while minimizing the entropy loss, effectively miti-
gating distribution shifts.

2.2. Feature Alignment

Feature alignment is widely adopted in UDA studies
to mitigate distribution shifts [48, 13, 34, 51]. However,
most of these approaches do not consider categorical in-
formation but rather match the source and target distribu-
tions globally. This may harm class discrimination perfor-
mance since it does not guarantee class-to-class matching
between two distributions [4]. Tacking the problem, vari-
ous studies have proposed to align distributions in a class-
discriminative manner [4, 31, 35, 16, 43, 60, 47]. This point
of view is also relevant to test-time adaptation, and we de-
sign an effective loss that simultaneously mitigates the dis-
tribution gap while improving class discriminability.

3. Proposed Method
3.1. Preliminary

Assume that we have a model fs(x) = hs ◦ gs(x) pre-
trained with a supervised loss L(xs, ys) on source data,
where xs ∈ Xs and ys ∈ Ys. Here gs : Xs → Rd de-
notes the pretrained feature extractor, and hs : Rd → RC

indicates the pretrained classifier, where d is the dimension
of extracted features, and C is the number of classes. Then,
we aim to adapt the pretrained model fs(·) to target data xt

while correctly classifying them at test time.
Mahalanobis distance In this work, we adopt the Maha-
lanobis distance [37] to align the source and target distribu-
tions. The Mahalanobis distance measures the distance be-
tween a distribution and a sample. With an input image x,
feature extractor g(·), and Gaussian distribution N (µ,Σ),
the Mahalanobis distance is defined as

D(x;µ,Σ) = (g(x)− µ)⊤Σ−1(g(x)− µ). (1)

Intra-/inter-class distance For analysis, we measure
the intra- and inter-class distances between the class-
conditional source distributions and target samples. To be
more specific, we define class-conditional Gaussian distri-
butions as P (gs(x)|y = c) = N (gs(x)|µc,Σc), where
µc,Σc are the mean and covariance of the multivariate

Gaussian distribution of class c ∈ {1, ..., C}. Then, with
a target image xt, the intra-class distance is defined as

Dintra(xt, yt) = D(xt;µyt
,Σyt

), (2)

where yt indicates the corresponding ground-truth label of
the target image. Analogously, the inter-class distance is
defined as

Dinter(xt, yt) =
1

C − 1

C∑
c=1

1(yt ̸= c)D(xt;µc,Σc) (3)

Note that achieving low intra-class distance and high inter-
class distance is important for improving image classifica-
tion accuracy.

3.2. Analysis of Class Discriminability in Feature
Alignment

We compare and analyze three different feature align-
ments with respect to the intra- and inter-class distances.
First, we investigate the global feature alignment (Global
FA) that reduces the discrepancy between the source
and target distributions without considering class infor-
mation. With the given source Gaussian distribution
N (gs(xs)|µs,Σs), the Global FA loss LFA is formulated
as

LFA = ∥µs − µ̂t∥22 + ∥Σs − Σ̂t∥2F , (4)

where µs,Σs denote the mean and covariance of source
features without considering class information, and µ̂t, Σ̂t

indicate the mean and covariance estimated from a mini-
batch of test samples. ∥·∥2, ∥·∥F denote the Euclidean norm
and Frobenius norm, respectively. As shown in Fig. 1 (a)
(red lines), while the Global FA drastically decreases the
intra-class distance, it accompanies a significant reduction
of inter-class distance which needs to be high for achieving
a reasonable level of image classification accuracy. Fig. 1
(b) (red line) also verifies such a point by visualizing the
degraded image classification accuracy.

To address such a problem, we take the class information
into account when aligning features. Aligning the source
and target distributions in a class-wise manner would be
one straightforward approach. However, at test time, there
exist very few samples for each class in a mini-batch to pre-
cisely estimate class-conditional distributions of test data.
Thus, we align individual test samples to the source class-
conditional distribution of the predicted classes by using the
Mahalanobis distance. Note that we adopt the predicted
class of each sample as a proxy of its ground truth label
since we do not have access to the true label [29]. Specifi-
cally, with the given source class-conditional Gaussian dis-
tributions N (µc,Σc), the loss Lintra minimizing the intra-
class distance is defined as

Lintra =
1

N

N∑
n=1

Dintra(xt,n, ŷt,n), (5)



𝒈𝒔(𝒙𝒔), 𝒚𝒔 𝒚𝒔∈ 𝒀𝒔}
Pre-Stage: Obtaining Source Statistics

Class 𝟏: 𝝁𝟏, 𝚺𝟏
Class 𝟐: 𝝁𝟐, 𝚺𝟐
Class 𝐂: 𝝁𝑪, 𝚺𝑪…Feature

Extractor𝒙𝒔 ∈ 𝑿𝒔 𝒈𝒔(𝒙𝒔)
Test-Time Adaptation

𝒙𝒕 ∈ 𝑿𝒕 𝒈(𝒙𝒕)

F
C

ෝ𝒚𝒕
𝒈(𝒙𝒕 , ෝ𝒚𝒕) 𝓛𝑪𝑨𝑭𝑨

Forward
Stop Gradient
Gradient Flow

Feature
Extractor

Frozen Weights
Learnable Weights (BN)

Figure 2. Overview of our method. (Pre-stage) Our method first pre-calculates source class-conditional Gaussian distributions using a
pre-trained network. (Test-time adaptation) During test-time adaptation, we adapt a model by optimizing class-aware feature alignment
loss while making predictions simultaneously.

where ŷt,n indicates the predicted class of the target sample
xt,n, and N denotes the number of target samples. While
utilizing Lintra effectively reduces the intra-class distance, it
still decreases the inter-class distance as shown in Fig. 4 (a)
(green line). We present our method in the next section that
addresses this issue by adopting the loss function to also
enlarge the inter-class distance.

3.3. CAFA: Class-Aware Feature Alignment

Pre-calculation of source statistics As shown in the pre-
stage of Fig. 2, we calculate C class-conditional Gaussian
distributions P (gs(xs)|y = c) = N (gs(xs)|µc,Σc) with
the pretrained feature extractor gs(·) over source training
samples (xs, ys) with the following equations:

µc =
1

Nc

Nc∑
n=1

gs(xs,nc),

Σc =
1

Nc

Nc∑
n=1

(gs(xs,nc
)− µc)(gs(xs,nc

)− µc)
⊤,

(6)

where Nc denotes the number of training samples of class
c, and xs,nc

indicates training samples of class c.
Test-time adaptation With the source class-conditional
distributions P (gs(xs)|y = c), we perform class-aware fea-
ture alignment at test time as illustrated in the test-time
adaptation stage of Fig. 2. We initialize a model using the
weights of pretrained networks fs(·) and perform adapta-
tion to target data considering both intra- and inter-class
distances. Our final loss LCAFA is defined as

LCAFA =
1

N

N∑
n=1

log
Dintra(xt,n, ŷt,n)∑C
c=1 D(xt,n;µc,Σc)

. (7)

As shown in Fig. 4 (a) (blue line), our final loss aligns the
source and target distributions in a desirable way by reduc-
ing the intra-class distance and enlarging the inter-class dis-
tance.

3.4. Theoretical Background

Gaussian assumption of features Recent studies [37, 28]
present theoretical justifications about the Gaussian as-
sumption of features when the network is trained with the
Softmax function. For image classification, a discrimina-
tive classifier is trained using the Softmax function whose
posterior distribution is

p(y = c|x) = exp(w⊺
c x+ bc)∑

c′ exp(w
⊺
c′x+ bc′)

, (8)

where x, y denote input features and labels, and wc, bc in-
dicate weight and bias. However, a generative classifier
such as Gaussian discriminant analysis (GDA) can also be
used for classification. GDA defines posterior distribution
by assuming that a class distribution follows the multivari-
ate Gaussian distribution p(x|y = c) = N (x|µc,Σc), and
a class prior distribution follows the Bernoulli distribution
p(y = c) = βc∑

c′ βc′
. Additionally, GDA assumes all the

class-conditional distributions share the same covariance,
i.e., Σc = Σ. The posterior distribution of GDA is rep-
resented as

p(y = c|x) = p(y = c)p(x|y = c)∑
c′ p(y = c′)p(x|y = c′)

(9)

=
exp(µ⊺

cΣ
−1x− 1

2µ
⊺
cΣ

−1µc + log βc)∑
c′ exp(µ

⊺
c′Σ

−1x− 1
2µ

⊺
c′Σ

−1µc′ + log βc′)
.

The posterior distribution of GDA becomes equivalent to
the one from the Softmax function if we set the weight



Method Gaus. Shot Impu. Defo. Glas. Moti. Zoom Snow Fros. Fog Brig. Cont. Elas. Pixe. Jpeg. Average

Source 48.73 44.00 57.00 11.84 50.78 23.38 10.84 21.93 28.24 29.41 7.01 13.27 23.38 47.88 19.46 29.14
BN 17.34 16.36 28.25 9.89 26.11 14.27 8.15 16.29 13.82 20.69 8.58 8.49 19.67 11.74 14.17 15.59
PL 17.22 16.07 27.85 9.74 25.94 14.13 8.07 16.12 13.78 20.14 8.53 8.53 19.73 11.65 13.94 15.43

FR-Online† 17.23 16.15 27.31 10.07 25.58 14.12 8.35 16.17 13.67 20.01 8.64 8.65 19.48 11.82 14.20 15.43
TFA-Online† 15.80 14.91 23.89 9.29 23.08 12.82 7.41 13.93 12.60 16.41 7.43 7.95 17.24 12.00 12.86 13.84

TTT++-Online† 16.80 14.92 21.99 9.60 22.97 12.32 7.55 13.14 12.67 14.33 7.06 7.85 17.27 11.63 12.74 13.52
TENT† 15.95 14.55 24.72 9.03 23.25 12.74 7.47 13.91 12.78 16.66 8.13 8.12 18.30 10.85 13.21 13.98
EATA† 16.73 15.42 25.09 9.83 24.10 13.36 8.45 15.02 13.64 17.39 8.63 8.44 19.08 11.70 13.97 14.72

CAFA (Ours) 14.28 12.70 21.12 7.73 20.84 10.55 6.75 11.93 11.31 13.33 6.95 7.13 16.08 9.59 11.67 12.13

Source 80.77 77.84 87.75 39.62 82.26 54.22 38.38 54.58 60.19 68.11 28.86 50.93 59.54 72.27 49.96 60.35
BN 47.37 45.58 60.10 34.01 56.70 40.99 32.05 46.53 42.57 54.41 32.56 33.30 48.83 37.47 39.43 43.46
PL 46.74 45.26 59.21 33.83 56.08 40.29 31.64 46.10 42.07 53.74 32.24 33.08 48.24 37.11 39.01 43.00

FR-Online† 47.16 45.60 59.85 34.09 56.70 41.06 32.20 46.44 42.65 54.37 32.72 33.48 48.85 37.49 39.45 43.47
TFA-Online† 44.68 43.28 56.17 32.47 54.11 37.48 30.32 42.46 39.73 47.57 30.18 32.52 45.34 36.81 37.28 40.69

TTT++-Online† 43.70 41.84 55.77 31.15 53.38 35.54 29.98 41.13 38.70 45.08 29.14 30.34 44.69 35.47 37.37 39.55
TENT† 43.11 41.70 53.30 31.35 51.08 36.34 29.90 42.73 38.99 45.13 29.64 30.62 44.03 34.23 36.34 39.23
EATA† 43.12 41.94 52.20 32.02 50.35 36.56 30.42 41.94 39.31 43.52 29.88 30.89 44.75 34.55 37.10 39.24

CAFA (Ours) 41.60 39.77 50.45 30.17 48.35 34.65 28.76 39.52 37.42 41.25 27.95 29.54 42.37 32.87 35.02 37.31

Table 1. Classification error (%) on the CIFAR10-C (upper group) and CIFAR100-C (lower group) datasets with severity level 5 corruptions.
† denotes the results obtained from the official codes.

Method Averaged Error (%) ↓

ResNet-26 (GroupNorm) 32.70
• MEMO [59] 29.68

ResNet-26 (GroupNorm)+JT 35.30
• TTT [50] 20.00
• TTT (Episodic) 32.85

ResNet-26 (BatchNorm) 34.93
• FR-Online [12] 18.43
• TENT [55] 17.25

• CAFA (Ours) 16.72

Table 2. Classification error (%) on the CIFAR10-C dataset with
severity level 5 corruptions using ResNet-26 networks. All the
numbers are obtained from the official codes. JT denotes joint
training.

wc = µ⊺
cΣ

−1 and the bias bc = − 1
2µ

⊺
cΣ

−1µc + log βc.
This derivation implies that source features x may follow
the Gaussian distribution when the network is trained with
the Softmax function.
Interpretation of CAFA Even though our loss is devised
from intuition (Fig. 1), we can interpret our loss by using the
posterior distribution of GDA. By assuming a uniform prior
distribution and assuming each class has its own covariance,
the negative log-posterior can be simplified as

− log p(y = c|x) (10)

= − log
exp(− 1

2D(x;µc,Σc)− 1
2 log|Σc|)∑

c′ exp(−
1
2D(x;µc′ ,Σc′)− 1

2 log|Σc′ |)
.

While this term and our loss both play a similar role in min-
imizing/maximizing the intra-/inter-class distances, we ob-
served that the above term generates large gradients since it
can get easily saturated due to the high variance of Maha-
lanobis distances. On the other hand, we empirically found
that our final loss is more stable, and thus, allows us to use a
higher learning rate, achieving state-of-the-art performance.

From these analyses, we believe our loss generalizes well if
the source model is trained with the Softmax function.

4. Experiments
This section first demonstrates evaluation results in two

different settings: 1) robustness to corruptions, and 2)
domain adaptation beyond image corruptions. Then, we
present in-depth analyses of our method by conducting ab-
lation studies and providing visualizations of the represen-
tation space.
Baselines For evaluations, we consider the following base-
lines in our experiments: no adaptation (Source), test-
time normalization (BN) [45], pseudo label (PL) [29], test-
time training (TTT) [50], test-time entropy minimization
(TENT) [55], efficient anti-forgetting test-time adaptation
(EATA) [39], constrastive test-time-adaptation (AdaCon-
trast) [5], test-time template adjuster (T3A) [23], marginal
entropy minimization with one test-point (MEMO) [59],
feature restoration (FR-Online) [12], test-time feature align-
ment (TFA-Online) [33], and test-time training++ (TTT++-
Online) [33]2. For fair comparisons, we note that FR-
Online, TFA-Online, TTT++-Online, and CAFA store the
training statistics before deployment for test-time adapta-
tion while others do not require such a step. Further details
about the baselines can be found in the supplementary ma-
terials.
Implementation details We adopt the ResNet50 [17] for
our main experiments except for Table 2. For the test-
time adaptation, we set the batch size as 200 and utilize
the Adam [24] optimizer with a learning rate of 0.001 for
adaptation. For ImageNet-C experiments, we adopt a batch
size of 64, and we set a learning rate to 0.0025 for CAFA

2Online adaptation denotes predicting incoming test samples immedi-
ately, while offline adaptation predicts the test samples after several itera-
tions of the entire test data.



Method Gaus. Shot Impu. Defo. Glas. Moti. Zoom Snow Fros. Fog Brig. Cont. Elas. Pixe. Jpeg. Average

Source 94.86 93.14 97.25 86.96 88.45 77.87 77.63 83.71 80.35 92.85 81.94 98.55 69.03 58.89 55.64 82.47
BN 68.74 67.80 74.72 68.71 77.13 61.04 59.71 67.37 67.21 76.52 66.09 93.73 61.32 55.07 55.75 68.06
PL 68.11 66.95 74.18 67.92 76.52 60.32 58.87 67.08 66.63 75.99 65.34 93.38 60.82 54.77 55.50 67.49

TENT† 64.11 63.72 70.35 63.22 73.39 56.64 55.07 64.28 62.99 70.39 60.88 92.44 57.17 51.72 52.94 63.95
EATA† 65.18 64.20 72.84 63.71 74.81 56.90 55.81 65.28 64.43 71.79 60.11 97.54 57.98 52.20 53.85 65.11

CAFA (Ours) 63.68 63.04 70.12 61.27 71.30 55.22 54.34 63.31 61.88 67.96 59.15 92.53 56.16 51.21 52.60 62.92

Table 3. Classification error (%) on the TinyImageNet-C dataset with severity level 5. † denotes the results obtained from the official codes.

Method Gaus. Shot Impu. Defo. Glas. Moti. Zoom Snow Fros. Fog Brig. Cont. Elas. Pixe. Jpeg. Average

Source 97.79 97.07 98.15 82.08 90.18 85.22 77.50 83.11 76.69 75.57 41.07 94.57 83.05 79.39 68.35 81.99
BN 84.73 84.11 84.16 84.95 84.83 73.61 61.12 65.66 66.90 51.86 34.77 83.18 55.90 51.17 60.43 68.49
PL 85.66 88.98 84.34 93.01 91.91 65.85 54.46 55.59 69.07 43.48 32.75 98.85 47.67 41.88 48.61 66.81

TENT† 71.26 69.54 69.99 71.95 72.85 58.77 50.69 52.86 58.89 42.57 32.68 73.29 45.17 41.57 47.94 57.33
EATA† 65.00 63.10 64.30 66.30 66.60 52.90 47.20 48.60 54.30 40.10 32.00 55.70 42.40 39.30 45.00 52.00

CAFA (Ours) 69.59 67.29 68.03 71.09 70.87 56.13 50.03 50.77 56.77 41.86 33.24 61.30 43.76 40.87 47.03 55.24

Table 4. Classification error (%) on the ImageNet-C dataset with severity level 5. † denotes the results obtained from the official codes.

and 0.00025 for others with SGD optimizer. Note that we
only optimize the modulation parameters γ, β in batch nor-
malization layers, following Wang et al. [55].

4.1. Robustness to Corruptions

Datasets For corruption datasets, we evaluate meth-
ods on the CIFAR10-C, CIFAR100-C, TinyImageNet-C,
and ImageNet-C [18] datasets. CIFAR10 [25] and CI-
FAR100 [25] include 50,000 training samples and 10,000
test samples with 10 and 100 classes, respectively. TinyIm-
ageNet [27] is a subset of the original ImageNet [9] dataset,
containing 100,000 training images and 10,000 validation
images with 200 classes. ImageNet [9] contains 1.2 mil-
lion training samples and 50,000 validation samples with
1,000 object categories. CIFAR10-C and CIFAR100-C [18]
datasets contain 15 different corruptions, and the corrup-
tions are applied to the test set of CIFAR10 and CIFAR100
datasets. Analogous to the CIFAR10-C / CIFAR100-C
datasets, TinyImageNet-C and ImageNet-C datasets are
composed of 15 corruption types, where the corruptions
are applied to the validation set of TinyImageNet and Im-
ageNet, respectively.
Quantitative evaluation and comparisons To evaluate the
robustness to corruption, we utilize the pretrained networks
on CIFAR10, CIFAR100, TinyImageNet, and ImageNet
datasets and adapt the pretrained networks to their corre-
sponding corruption datasets, respectively.

Table 1 shows the image classification errors (%) on di-
verse corruption types with the severest corruption level in
the CIFAR10-C and CIFAR100-C datasets. As shown, our
proposed method outperforms the baselines on all types of
corruptions in both CIFAR10-C and CIFAR100-C datasets
by a large margin. Additionally, we conduct an experi-
ment on the CIFAR10-C dataset with the ResNet-26 archi-
tecture to make further comparisons of CAFA with other
test-time adaptation methods. Note that MEMO [59] and
TTT [50] adopt ResNet-26 with group normalization layers
as their base architecture. As reported in Table 2, CAFA

achieves the lowest error among the methods sharing the
same pretrained model (i.e., ResNet-26 (BatchNorm)). Fur-
thermore, CAFA achieves the largest performance gain over
the source model compared to MEMO [59] and TTT [50].

We further evaluate our method on a larger dataset,
TinyImageNet-C, as shown in Table 3. Similar to the results
of CIFAR10-C and CIFAR100-C, CAFA outperforms the
baselines in all types of corruptions except for the contrast
corruption on the TinyImageNet-C dataset. Even in such a
case, the increased error is 0.1% which is marginal consid-
ering the performance gains in other corruption types. Fi-
nally, we validate our method on the most challenging cor-
ruption dataset, ImageNet-C. As reported in Table 4, even
though our method is not a top performer, it outperforms
most of the baselines by a large margin, which is 26.8%
over the source model and 2.1% over TENT.

In the CIFAR10-C and CIFAR100-C datasets, CAFA
achieves lower error rates compared to the TFA-Online and
FR-Online methods which align source and target distribu-
tions without considering the class information. Such re-
sults demonstrate that considering both intra- and inter-class
distances is important when performing feature alignments
for test-time adaptation. Note that TFA-Online and TTT++-
Online methods are online adaptation methods based on the
original TFA and TTT++ [33] algorithms. Those are de-
signed for offline adaptation that iterates multiple epochs
over the entire set of test samples and predicts the test sam-
ples at once after multiple epochs. In their offline adaptation
setting, TFA and TTT++ achieve 11.87% and 9.60% error
rates on the CIFAR10-C dataset.3

4.2. Domain Adaptation beyond Image Corruptions

This section presents the experimental results for domain
adaptation datasets beyond image corruption.
Datasets We adopt Office-Home [53] and DomainNet [40]
datasets, which are widely used domain adaptation datasets.
Office-Home [53] dataset consists of around 15,500 images
and contains 65 categories of everyday objects with four

3Those numbers are obtained from Liu et al. [33]



Method Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→Ar Re→Cl Re→Pr Average

Source 67.33 46.68 36.81 68.52 54.22 53.91 66.25 71.25 40.76 45.16 65.02 29.65 53.80
BN 63.34 47.31 36.29 66.09 57.85 54.12 62.22 68.93 39.29 46.27 60.73 30.19 52.72
PL 63.18 46.25 35.87 65.68 56.14 53.16 61.80 68.34 38.51 45.45 60.53 29.62 52.04

TENT† 61.47 44.33 34.82 62.75 52.22 49.16 61.60 66.19 36.26 44.66 58.08 28.14 49.97
T3A 62.29 41.41 34.11 64.65 51.05 48.91 60.61 66.96 35.69 45.69 59.22 27.64 49.85

AdaContrast 61.97 41.95 34.59 62.46 50.96 49.71 59.21 65.27 36.93 46.11 56.13 28.23 49.46
EATA† 62.86 43.64 34.43 63.37 50.91 48.70 60.77 65.91 35.99 43.30 56.40 27.84 49.43

CAFA (Ours) 59.73 42.64 34.01 61.39 51.23 47.69 60.28 63.92 35.87 42.89 54.91 27.84 48.53

Table 5. Classification error (%) on the OfficeHome [53] dataset. † denotes the results obtained from the official codes.

Method Clip. Info. Pain. Quic. Real Sket. Avg.

Source 76.53 75.38 74.29 96.69 73.16 75.18 78.54
BN 76.14 79.25 72.90 93.15 74.17 68.80 77.40
PL 75.36 78.02 72.47 93.01 73.21 68.17 76.71

TENT† 84.59 75.66 71.81 92.86 71.60 67.85 75.73
T3A 74.10 76.50 71.68 92.89 73.50 66.64 75.88

EATA† 73.88 75.26 71.16 92.37 70.69 66.86 75.04

CAFA (Ours) 73.17 74.69 71.05 92.49 69.96 66.53 74.65

Table 6. Classification error (%) on the DomainNet [40] dataset. †

denotes the results obtained from the official codes.

distinct domains: Artistic images (Ar), Clip art images (Cl),
Product images (Pr), and Real-world images (Re). Domain-
Net [40] dataset is the largest domain adaptation dataset
containing around 0.6 million images of 345 categories on
six different domains which are clipart, infograph, painting,
quickdraw, real, and sketch.
Quantitative evaluation and comparisons We evaluate
our method on 12 different adaptation scenarios of the
Office-Home [53] dataset, pretraining a model on one
source domain and adapting it to the other domains. Ta-
ble 5 shows the image classification errors (%) on different
adaptation scenarios of the OfficeHome [53] dataset. As
shown, CAFA consistently outperforms the baselines by a
large margin. Ours reduces the classification error of the
source model by around 5.3%, and that of TENT and EATA
by around 1.4% and 0.9%, respectively.

Moreover, we also make comparisons with baselines on
the DomainNet dataset, which is the largest domain adapta-
tion dataset. For the experiment, we follow a similar eval-
uation protocol to the Office-Home dataset, i.e., pretraining
a model on each source domain and adapting the pretrained
model to the other five domains. Each column denotes the
source domain, and the numbers are the averaged classifi-
cation error of the other five domains. As shown in Table 6,
CAFA outperforms the existing methods by 1.1% and 0.4%
over TENT and EATA, respectively.

4.3. Analysis

Pre-calculation of source statistics As aforementioned,
CAFA requires access to the training samples to compute
source statistics before adaptation. We demonstrate that
we can obtain robust statistics for adaptation even with a
small number of training samples, outperforming the exist-
ing methods. In Fig. 3, the red lines denote the performance
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Figure 3. The test-time adaptation performance of CAFA on the
CIFAR10-C and ImageNet-C datasets along with the percentage
of train samples for calculating the train statistics.

of CAFA (solid line) and CAFA-Oracle (dotted line) on the
CIFAR10-C dataset, and the blue lines indicate the perfor-
mance on the ImageNet-C dataset. Note that oracle perfor-
mances (i.e., applying CAFA with ground truth labels) are
measured using all training samples for obtaining statistics.
As shown, around 5% of the training samples are sufficient
to pre-calculate robust source statistics for achieving high
adaptation performance in both CIFAR10-C and ImageNet-
C datasets.

Effectiveness of
Intra-/Inter-Class Dist.

Updating Batch Norm.
vs Full Parameters

Tied vs Class-wise
Covariance

Source 29.14 Source 29.14 Source 29.14
Global FA 19.12 CAFA-Full 12.66 CAFA-Tied 12.47

Intra-Class Dist. 13.02 CAFA 12.13 CAFA 12.13
CAFA 12.13

Table 7. Our ablation results on the CIFAR10-C dataset.

Intra-/Inter-Class BN vs Full Param. Tied vs Class-wise Cov.

CIFAR10-C
Global FA 19.12 Source 29.14 Source 29.14
Intra-Class 13.02 CAFA-Full 12.66 CAFA-Tied 12.47

CAFA 12.13 CAFA 12.13 CAFA 12.13

ImageNet-C
Global FA 72.38 Source 81.99 Source 81.99
Intra-Class 59.12 CAFA-Full 55.24 CAFA-Tied 56.00

CAFA 55.24 CAFA 55.24 CAFA 55.24

Office-Home
Global FA 55.35 Source 53.80 Source 53.80
Intra-Class 49.50 CAFA-Full 48.47 CAFA-Tied 48.53

CAFA 48.27 CAFA 48.27 CAFA 48.27

Table 8. Our ablation results on the CIFAR10-C, ImagNet-C, and
Office-Home datasets.

Effectiveness of Intra-/Inter-Class Distance To further
validate our motivation for considering intra- and inter-class
distances, we conduct ablation studies on the CIFAR10-C,
ImageNet-C, and Office-Home datasets. As reported in the



left group of Table 8, Global FA performs poorly in TTA
since it does not consider the class information. In the case
of reducing the intra-class distance only, it improves the
classification errors over the source model, which is also
effective. However, considering both intra- and inter-class
distances (CAFA) achieves the lowest classification errors.
Such results demonstrate our initial intuition is valid, which
is elaborated on in Section 1. Note that we obtain consis-
tent results on the CIFAR100-C dataset, as presented in the
supplementary material.
Updating the entire parameters of feature extractor In
our main experiments, we only update the modulation pa-
rameters β, γ of batch normalization layers in the networks,
following Wang et al. [55]. In this ablation study, we fur-
ther validate CAFA by updating the entire parameters of
the feature extractor. Note that the classifier h(·) cannot
be updated by our loss since CAFA performs alignments at
a feature level. CAFA-Full in the middle group of Table 8
shows the result of updating the full parameters when utiliz-
ing CAFA. While it shows superior performance compared
to the baselines, updating the batch normalization layers
outperforms the case of updating the full parameters except
for the ImageNet-C dataset. In the case of the ImageNet-C
dataset, no difference in their performance is observed. As
pointed out in Wang et al. [55], updating the full model may
cause the model to diverge from what they learned from
training. Furthermore, we conjecture that the number of
samples during test-time adaptation may be not sufficient to
optimize the entire parameters to converge.
Impact of using tied covariance We adopt the class-wise
covariance matrices for CAFA in the main experiments.
However, in Gaussian discriminant analysis (GDA), it is as-
sumed that all the class-conditional Gaussian distributions
share the same covariance matrix (i.e., tied covariance). We
conduct an ablation study regarding such an issue in the
right group of Table 8. We observe that CAFA with tied co-
variance shows less performance improvement than utiliz-
ing the class-wise covariances. We conjecture that it is be-
cause class-wise covariances represent the statistics of each
class of the source distributions more precisely than the tied
covariance. Moreover, as pointed out in Lee et al. [28], deep
networks are not trained to share the same covariance ma-
trix for all class-conditional distributions. However, regard-
less of the covariance types, our method still outperforms
the existing baselines.
Effectiveness of Mahalanobis distance To provide con-
crete background on the choice of Mahalanobis distance,
we conduct experiments along with different distance or di-
vergence types as in Table 9. As shown in the CIFAR10-C
experiments, CAFA achieves the best accuracy while class-
aware KL-divergence also improves the source performance
by a large margin. However, it is not applicable to the
ImageNet-C dataset since each test batch does not have

enough samples to estimate the distribution for each class.
On the other hand, Mahalanobis distance robustly outper-
forms other types since it measures the distance between a
distribution and a sample.

Alignment types Methods CIFAR10-C ImageNet-C

Class agnostic Global FA 19.12 72.38
KL-divergence 13.23 N/A

Class aware
KL-divergence 12.53 N/A

Euclidean 13.20 56.30
CAFA 12.13 55.24

Table 9. Ablation study on different distance types. Note that Eu-
clidean distance is a special case of Mahalanobis distance.

Conditions TENT† CAFA (Ours)

Batch Size

BS = 8 14.47 13.02
BS = 4 14.52 13.05
BS = 2 15.10 13.43
BS = 1 17.66 15.00

Source 29.14

Label Shifts

s = 0.1 14.92 13.32
s = 0.3 15.80 13.40
s = 0.5 17.15 13.83
s = 0.7 19.68 14.73
s = 0.9 23.70 16.47
s = 1.0 26.01 17.61

Source 29.14

Table 10. Classification error (%) on the CIFAR10-C dataset with
severity level 5 corruptions with small batch sizes (upper group)
and label shifts (lower group).

Impact of small batch sizes and label shifts To show the
wide applicability of CAFA to various deployment scenar-
ios, we conduct ablation studies on 1) small batch sizes and
2) label shifts. In the experiment on small batch sizes (<
10), we show that test-time adaptation approaches that as-
sume a batch of test instances can still be effective in such
scenarios, even when the batch size is equal to 1. To tackle
this challenge, we modify how we compute the batch statis-
tics. As pointed out in Schneider et al. [46], an effective
solution is inferring test batch normalization statistics by
leveraging the training batch statistics. Based on such intu-
ition, we apply Schneider et al. [46] to CAFA and TENT
and measure the performance with batch sizes less than
10. As reported in the upper group of Table 10, CAFA
and TENT maintain reasonable performance even when the
batch size equals 1, improving the source model by 14.1%
and 11.5% respectively.

Additionally, we conduct an experiment assuming the la-
bel distribution of each test batch changes (i.e., label shifts).
To simulate the label shift, we sample the test instances
from the multinomial distribution and change the distri-
bution for each batch. With the given severity s and the
number of classes c, we change the multinomial distribu-
tion from [s+ 1−s

c , 1−s
c , ..., 1−s

c ] to [ 1−s
c , 1−s

c , ..., s+ 1−s
c ],

where each element of the array is the probability of the
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Figure 4. (a) illustrates the change of intra-class distance (dotted lines) and inter-class distance (solid line) as adaptation proceeds. (b-d)
show the t-SNE visualizations of applying (b) intra-class distance only, (c) TENT [55], and (d) ours. All visualizations are obtained from
the Gaussian noise corruption in the CIFAR10-C dataset.

corresponding class being sampled. For example, when the
severity s = 1, the multinomial distribution changes from
[1, 0, 0, ..., 0] to [0, 0, 0, ..., 1]. Based on the same intuition
from the experiment regarding the batch sizes, we apply
Schneider et al. [46] to CAFA and TENT methods. As
shown in the lower group of Table 10, CAFA maintains rea-
sonable performance even when the label shift happens at
the most by improving the source model by 11.5%. TENT
also improves the source model under all label shift sever-
ities, but the performance gains are less than CAFA. We
conjecture that this is because CAFA takes benefits of the
feature alignment. Adapting a model without alignments
may result in divergence from the source distribution and
may collapse to trivial solutions under severe label shifts.
On the other hand, in the case of CAFA, it aligns the target
features to the source class-conditional distributions, which
is more robust to such divergence.
Visualizations To further validate our intuition, we visu-
alize the change of the intra- and inter-class distances in
Fig. 4 (a): intra-class distance only (green line), TENT [55]
(red line), and CAFA (blue line). As shown in Fig. 4 (a),
reducing the intra-class distance alone also decreases the
inter-class distance, which harms the class-discriminability.
In the case of TENT [55], we observe that the intra-class
distance does not decrease. On the other hand, CAFA de-
sirably reduces the intra-class distance while enlarging the
inter-class distance. Such improved class-discriminability
is also shown in the t-SNE visualization in Fig. 4 (d). Ours
shows more well-separated representation space in a class-
wise manner compared to other methods (Fig. 4 (b) and (c)).

5. Discussion
In this work, we proposed a simple yet effective fea-

ture alignment that considers both intra- and inter-class dis-
tances, noting the importance of considering them for test-
time adaptation. Most of the existing feature alignments
are generally conducted along with training on the source

data, which allows a model to learn target distributions in a
class-discriminative manner. However, in the case of test-
time adaptation where access to the source data is prohibited
during adaptation, a model does not have a chance to learn
test features in such a manner. Our simple feature align-
ment that considers both intra- and inter-class distances ef-
fectively addresses such a challenge as shown in our analy-
ses and extensive experiments. However, there still remains
room for improvements: 1) better pseudo-labeling method
and 2) better learnable parameters than BN layers. We hope
our work inspires the following researchers to investigate
more effective test-time adaptation methods.
Pseudo labeling One limitation of our work is that we re-
sort to using the predicted labels when assigning a class to
each test sample. This could be problematic in the early
phase of adaptation since the model encounters samples
from different distributions, achieving low classification ac-
curacy. Along with our novel perspective to consider both
intra- and inter-class distance, we believe that replacing
such a pseudo-labeling approach with advanced methods
would further boost the adaptation performance of CAFA.
Finding better learnable parameters than BN layers In
our work, we only updated the modulation parameters in
batch normalization layers. Despite its demonstrated effec-
tiveness, batch normalization parameters only take less than
1% of the model parameters. If we can find better learn-
able model parameters, it may further improve the adapta-
tion performance of our proposed loss CAFA.
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7. Appendix
This supplementary material presents details about ex-

perimental settings, additional experimental results, and vi-
sualizations of our method, which are not included in the
main paper due to the page limit. Section 7.1 elaborates
on the details about baselines, and Section 7.2 describes
additional experimental results including ablation studies.
Finally, Section 7.3 presents the t-SNE visualizations of
CAFA and TENT [55].

7.1. Baselines

Baselines For fair comparisons, we consider the following
baselines in our experiments:

• Source: Evaluating the pretrained network on the test
data without any adaptation.

• Test-time normalization (BN) [38] updates the batch
normalization statistics [22] on test data at test time.

• Pseudo label (PL) [29] utilizes the predicted label as a
label for optimizing the main task loss during testing.
To be specific, we optimize the model by minimizing
the cross-entropy loss with the pseudo labels.

• Test-time entropy minimization (TENT) [55] updates
the modulation parameters (i.e., β and γ) of batch nor-
malization [22] layers in the network by minimizing
entropy on test data.

• Efficient anti-forgetting test-time adaptation
(EATA) [39] applies efficient sample selection to
filter out redundant samples for adaptation and regu-
larizes important weights using the Fisher matrix to
prevent catastrophic forgetting.

• Marginal entropy minimization with one test point
(MEMO) [59] adapts a model to a single test point us-
ing test-time augmentation and minimizing marginal
entropy.

• Feature Restoration (FR-Online) [12] pre-calculates
the approximated training feature distributions and
adapts a model to test domains by aligning the target
feature distributions to the pre-obtained training fea-
ture distributions.

• Test-time template adjuster (T3A) [23] calculates a
pseudo-prototype vector for each class on test time and
classifies images using the distance between each in-
stance and pseudo-prototype vectors.

• Contrastive test-time adaptation (AdaContrast) [5] ap-
plies contrastive learning along with online refinement
of pseudo labels during test time.

• Test-time training (TTT) [50] first pre-trains the model
with a self-supervision loss (i.e., rotation prediction)
and adapts the pretrained model to test domains by
minimizing the self-supervision loss as a proxy of the
main task loss function.

• Test-time feature alignment (TFA-Online) [33] aligns
the source and target distributions by matching the
first- and second-order statistics of outputs from both
the penultimate layer and self-supervised task branch.

• Test-time training++ (TTT++-Online) [33] updates the
model by jointly aligning the first- and second-order
statistics between the source and target distributions
and optimizing the proxy loss (i.e., contrastive loss for
self-supervision task) at test time.

7.2. Additional Experimental Results

Methods Inference Time (ms) FPS

Source 17.82 77.97
BN 17.45 57.31

TENT 40.47 24.71
CAFA 41.65 24.01

Table 11. Measured inference time (ms) and FPS for each method.
We measure the inference time using a NVIDIA A100 GPU with
an image resolution of 224×224. The number is an averaged value
of 300 trials.

7.2.1 Inference Time

To show the efficiency of CAFA, we measure the inference
time on a single NVIDIA A100 GPU and average the in-
ference time over 300 trials with an image resolution of
224 × 224 in Table 11. Our model shows around 24.01
frames per second (FPS). Since CAFA and TENT opti-
mize model parameters by minimizing the loss using gra-
dient descent, those methods have a longer inference time
than Source and BN methods. We believe that such a re-
sult demonstrates that CAFA not only improves the test
time adaptation performance but also maintains a reason-
able level of efficiency.

7.2.2 Further Ablation Studies

Effectiveness of
Intra-/Inter-Class Dist.

Updating Batch Norm.
vs Full Parameters

Tied vs Class-wise
Covariance

Source 29.14 Source 29.14 Source 29.14
Global FA 19.12 CAFA-Full 12.66 CAFA-Tied 12.47

Intra-Class Dist. 13.02 CAFA 12.13 CAFA 12.13
CAFA 12.13

Source 60.35 Source 60.35 Source 60.35
Global FA 51.41 CAFA-Full 38.31 CAFA-Tied 38.19

Intra-Class Dist. 41.51 CAFA 37.31 CAFA 37.31
CAFA 37.31

Table 12. Our ablation results on the CIFAR10-C (upper group)
and CIFAR100-C (lower group) datasets. The left group shows
the effectiveness of considering intra- and inter-class distances, the
middle group presents the comparison of updating the batch nor-
malization parameters and full parameters in the feature extractor,
and the right group describes the effects of using a tied covariance.



Ablation studies on the CIFAR100-C dataset Along with
the ablation studies in the main paper, we apply the same
variants of our methods to the CIFAR100-C dataset. Ta-
ble 12 shows the ablation studies on both CIFAR10-C (up-
per group) and CIFAR100-C (lower group) datasets. Over-
all, we observe the similar results to the ablation studies in
our main paper.

Methods Classification Error (%)

CIFAR10-C CIFAR100-C ImageNet-C

Source 29.14 60.35 81.99
CAFA-Variance 12.46 37.46 55.47

CAFA 12.13 37.31 55.24

Table 13. Effectiveness of using variance in the CIFAR10-C,
CIFAR100-C, and ImageNet-C datasets.

Effectiveness of using variance Another variant of our loss
is using variances of each class-conditional Gaussian dis-
tribution instead of using the full covariance. While us-
ing variances does not consider the covariance between fea-
ture dimensions, it is still distinct for each class-conditional
Gaussian distribution. As reported in the upper group of
Table 13, adopting class-wise variances also improve the
source model significantly. That is, variances can repre-
sent the class-conditional Gaussian distributions reasonably
well. However, using full covariance reaches the top perfor-
mance in all three datasets.

7.2.3 Different Corruption Severity Levels

We compare CAFA with the baselines on the CIFAR10-
C and CIFAR100-C datasets with different severity levels.
As reported in Tables 14-17, CAFA outperforms baselines
on all severity levels of the CIFAR10-C and CIFAR100-C
datasets. Furthermore, we present the classification errors
along with independent trials using different random seeds
in Table 18. As shown, CAFA shows minimal performance
variation considering the small standard deviation.

7.3. Visualizations

For the qualitative analysis, we visualize the representa-
tion space of test samples from our method and TENT [55]
by using the t-SNE algorithm. Fig. 5 shows the t-SNE
results on different corruption types in the CIFAR10-C
dataset, and Fig. 6 illustrates the change of representation
space of test samples from our method as adaptation pro-
ceeds. As shown, the representations of test samples are
well-separated, and they desirably converge in a class-wise
manner as adaptation proceeds.



Method Gaus. Shot Impu. Defo. Glas. Moti. Zoom Snow Fros. Fog Brig. Cont. Elas. Pixe. Jpeg. Average

Source 43.31 34.34 43.78 8.32 52.34 16.72 8.12 19.31 20.07 13.02 5.88 7.45 13.04 26.45 17.12 21.95
BN 15.97 13.14 22.03 8.30 25.85 12.42 7.23 16.99 11.70 13.07 7.49 7.49 13.57 9.25 12.38 13.13
PL 15.81 13.03 21.66 8.21 25.62 12.23 7.18 16.84 11.64 12.88 7.55 7.39 13.59 9.27 12.28 13.01

FR-Online† 15.93 13.15 21.87 8.27 25.61 12.38 7.26 16.98 11.72 13.05 7.52 7.50 13.56 9.26 12.37 13.10
TFA-Online† 14.69 12.29 18.03 7.57 22.84 11.19 6.59 14.77 10.48 10.62 6.68 6.89 11.90 9.08 11.03 11.64

TTT++-Online† 15.20 12.57 17.33 7.61 23.07 10.72 6.62 13.31 10.63 9.87 6.14 6.29 12.13 8.95 11.92 11.49
EATA† 15.52 12.73 21.08 8.16 24.72 12.07 7.12 16.50 11.54 12.62 7.42 7.41 13.34 9.07 12.04 12.76
TENT† 14.51 11.98 19.12 7.69 22.81 10.96 7.10 15.26 11.18 11.03 7.05 7.03 12.69 8.75 11.64 11.92

CAFA (Ours) 12.73 10.51 16.71 6.66 20.34 9.73 6.07 12.82 9.51 8.98 6.14 6.35 11.25 7.76 10.31 10.39

Source 76.96 69.67 79.91 32.50 82.34 46.32 32.75 50.96 51.77 44.18 26.44 32.44 41.08 52.03 46.34 51.05
BN 44.93 40.95 52.39 31.68 57.40 37.53 30.28 45.78 38.16 41.63 30.30 31.13 40.37 32.93 37.22 39.51
PL 44.54 40.42 51.50 31.63 56.51 37.05 29.95 45.38 37.78 40.93 30.16 30.82 40.04 32.56 36.85 39.07

FR-Online† 44.92 40.99 52.39 31.72 57.38 37.55 30.33 42.01 38.14 41.62 30.32 31.17 40.36 32.90 37.19 39.27
TFA-Online† 42.39 37.82 48.26 30.03 54.24 34.70 28.41 41.59 35.60 36.74 28.27 29.78 36.50 31.93 35.62 36.79

TTT++-Online† 41.16 37.15 47.38 28.74 53.18 32.81 27.95 40.65 34.85 34.30 27.34 27.83 35.41 30.59 34.99 35.62
EATA† 42.74 38.76 48.48 30.56 53.87 35.45 29.31 43.17 36.66 38.38 29.30 30.04 38.25 31.75 35.72 37.50
TENT† 41.28 37.10 46.18 29.06 51.82 33.62 28.08 41.18 35.33 35.01 27.68 28.48 36.12 30.63 34.40 35.73

CAFA (Ours) 39.11 35.71 44.17 27.83 49.22 32.16 27.56 39.36 34.05 33.22 26.61 27.49 34.97 29.68 33.47 34.31

Table 14. Classification error (%) on the CIFAR10-C (upper group) and CIFAR100-C (lower group) datasets with severity level 4 corrup-
tions. † denotes the results obtained from the official codes.

Method Gaus. Shot Impu. Defo. Glas. Moti. Zoom Snow Fros. Fog Brig. Cont. Elas. Pixe. Jpeg. Average

Source 36.96 28.00 26.86 5.73 35.53 16.68 7.54 16.89 18.54 8.98 5.64 6.47 7.69 13.10 15.54 16.68
BN 13.75 11.97 16.01 7.39 16.74 12.36 7.33 14.89 11.63 10.41 7.03 7.23 9.50 8.43 11.51 11.08
PL 13.59 11.90 15.81 7.35 16.58 12.23 7.44 14.75 11.41 10.36 6.97 7.13 9.41 8.32 11.48 10.98

FR-Online† 13.70 11.98 16.01 7.40 16.73 12.31 7.38 14.88 11.61 10.40 7.04 7.26 9.45 8.43 11.47 11.07
TFA-Online† 12.71 11.00 13.56 6.65 14.96 10.96 6.72 12.76 10.30 8.77 6.35 6.49 8.33 7.81 10.42 9.85

TTT++-Online† 13.41 11.16 12.71 6.18 15.14 10.55 6.45 11.87 10.32 7.78 5.80 6.11 8.38 7.36 10.80 9.60
EATA† 13.32 11.79 15.51 7.35 16.41 12.07 7.19 14.47 11.37 10.09 6.96 7.10 9.30 8.34 11.22 10.83
TENT† 12.47 11.29 14.12 6.86 15.47 11.26 6.95 13.40 10.81 9.09 6.52 6.87 8.99 7.93 10.84 10.19

CAFA (Ours) 10.90 10.01 11.89 5.95 13.23 9.77 5.99 11.38 9.47 7.54 5.93 6.28 8.00 7.19 9.60 8.88

Source 71.80 63.00 65.65 26.15 73.00 46.43 31.03 48.51 48.84 35.35 25.45 28.77 30.76 38.34 43.74 45.12
BN 41.70 38.35 43.93 29.59 44.93 37.70 29.89 42.60 37.45 37.00 29.72 30.52 34.24 31.80 35.40 36.32
PL 41.26 38.08 43.45 29.59 44.68 37.35 29.69 42.33 37.33 36.50 29.55 30.21 33.80 31.58 35.11 36.03

FR-Online† 41.70 38.36 43.94 29.57 44.88 37.67 29.91 42.62 37.46 37.04 29.72 30.50 34.23 31.81 35.42 36.32
TFA-Online† 39.27 35.77 40.52 27.98 42.05 34.99 28.51 38.72 35.01 32.90 27.83 28.81 31.43 30.60 34.38 33.92

TTT++-Online† 38.39 34.51 38.95 26.52 41.53 33.65 27.64 37.75 34.06 31.32 26.78 27.22 30.18 29.46 33.26 32.75
EATA† 40.00 36.57 40.94 28.82 42.28 35.85 28.96 40.43 36.06 34.53 29.06 29.44 32.90 30.56 34.25 34.71
TENT† 38.37 34.72 39.50 27.41 40.91 33.81 27.99 39.10 34.69 31.97 27.36 27.94 31.80 29.09 32.94 33.17

CAFA (Ours) 36.97 33.53 37.41 26.21 38.96 32.46 27.26 36.82 33.64 30.13 26.53 27.07 30.20 28.23 32.05 31.83

Table 15. Classification error (%) on the CIFAR10-C (upper group) and CIFAR100-C (lower group) datasets with severity level 3 corrup-
tions. † denotes the results obtained from the official codes.



Method Gaus. Shot Impu. Defo. Glas. Moti. Zoom Snow Fros. Fog Brig. Cont. Elas. Pixe. Jpeg. Average

Source 24.43 14.91 18.87 5.32 37.16 11.58 6.75 18.33 11.29 6.76 5.38 5.94 7.06 10.35 14.42 13.24
BN 11.24 8.92 12.66 7.13 16.28 10.17 7.08 12.77 9.45 8.43 7.02 7.14 9.50 8.35 10.71 9.79
PL 11.17 8.81 12.71 6.92 16.27 10.10 7.15 12.67 9.43 8.41 7.02 6.96 9.45 8.31 10.66 9.74

FR-Online† 11.21 8.91 12.61 7.11 16.26 10.18 7.10 12.77 9.46 8.41 7.04 7.14 9.49 8.35 10.66 9.78
TFA-Online† 10.29 8.09 10.85 6.35 14.87 8.97 6.43 11.29 8.27 7.47 6.21 6.40 8.39 7.42 9.61 8.73

TTT++-Online† 10.47 7.96 10.16 5.89 14.92 8.63 6.26 10.40 8.26 6.80 5.78 5.86 7.84 7.07 9.75 8.40
EATA† 11.12 8.83 12.36 7.00 15.86 9.83 7.01 12.52 9.29 8.30 6.91 7.01 9.25 8.27 10.38 9.60
TENT† 10.52 8.15 11.45 6.65 15.03 9.64 6.67 11.18 8.69 7.44 6.50 6.72 8.80 7.82 9.85 9.01

CAFA (Ours) 9.22 7.51 9.65 5.78 13.22 8.20 5.86 9.71 7.57 6.55 5.87 6.02 7.64 6.95 8.90 7.91

Source 59.17 44.40 54.99 24.91 73.55 37.45 28.70 49.25 37.83 29.75 25.01 26.84 29.35 34.25 41.17 39.77
BN 37.60 33.23 39.55 29.11 44.32 33.91 29.63 38.89 33.89 33.74 29.05 29.74 33.21 30.94 34.03 34.06
PL 37.40 32.92 39.01 28.88 43.91 33.56 29.45 38.67 33.68 33.42 28.86 29.48 32.90 30.71 33.82 33.78

FR-Online† 37.61 33.23 39.56 29.11 44.34 33.91 29.62 38.89 33.94 33.69 29.05 29.75 33.21 30.91 34.05 34.06
TFA-Online† 35.27 31.10 36.71 27.86 42.04 32.00 28.65 36.03 31.18 30.22 27.60 28.32 30.65 29.30 33.11 32.00

TTT++-Online† 33.60 29.74 34.88 25.90 41.21 30.64 26.97 34.86 30.17 28.89 26.19 26.68 29.57 28.29 31.84 30.63
EATA† 36.01 32.23 37.20 28.17 41.81 32.72 28.73 37.01 32.60 32.17 28.13 28.88 31.80 29.69 32.92 32.67
TENT† 34.29 30.72 35.37 27.22 40.35 31.03 27.54 35.55 31.05 29.80 26.84 27.60 30.54 28.43 31.82 31.21

CAFA (Ours) 33.02 29.38 33.75 26.09 38.34 29.63 26.73 33.47 29.79 28.18 25.94 26.45 29.58 27.64 30.95 29.93

Table 16. Classification error (%) on the CIFAR10-C (upper group) and CIFAR100-C (lower group) datasets with severity level 2 corrup-
tions. † denotes the results obtained from the official codes.

Method Gaus. Shot Impu. Defo. Glas. Moti. Zoom Snow Fros. Fog Brig. Cont. Elas. Pixe. Jpeg. Average

Source 14.00 10.09 11.62 5.24 38.69 7.75 7.40 9.48 8.14 5.74 5.37 5.47 7.69 6.69 10.51 10.26
BN 8.89 8.08 10.17 7.04 16.16 8.55 7.55 9.44 7.66 7.47 7.00 6.92 9.81 7.50 8.76 8.73
PL 8.83 7.90 10.17 6.94 16.05 8.42 7.59 9.40 7.54 7.41 6.93 6.81 9.77 7.38 8.70 8.66

FR-Online† 8.92 8.08 10.19 7.03 16.12 8.57 7.53 9.48 7.67 7.49 7.00 6.92 9.80 7.47 8.77 8.74
TFA-Online† 7.94 7.24 8.95 6.26 14.38 7.63 7.11 8.37 7.10 6.45 6.23 6.02 8.64 6.75 7.69 7.79

TTT++-Online† 8.23 6.97 8.52 5.61 15.17 7.43 6.84 7.66 6.55 5.95 5.61 5.80 8.39 6.65 7.86 7.55
EATA† 8.81 7.86 10.12 6.99 15.70 8.43 7.54 9.31 7.52 7.40 6.91 6.81 9.60 7.38 8.61 8.60
TENT† 8.25 7.50 9.71 6.54 14.75 7.94 7.15 8.71 6.94 6.62 6.43 6.48 9.35 7.29 8.37 8.14

CAFA (Ours) 7.37 6.54 8.36 5.80 13.07 6.99 6.34 7.84 6.38 6.04 5.70 5.76 8.03 6.35 7.44 7.20

Source 42.81 35.37 40.39 24.70 74.15 31.29 29.80 35.16 31.07 25.20 24.79 25.23 30.04 28.64 34.83 34.23
BN 32.74 30.64 34.21 28.69 44.57 32.11 30.34 33.10 30.59 29.69 28.55 28.90 34.23 29.94 31.52 31.99
PL 32.61 30.50 33.70 28.52 44.10 31.83 30.19 32.82 30.52 29.25 28.46 28.61 33.84 29.72 31.27 31.73

FR-Online† 32.74 30.67 34.22 28.71 44.58 32.15 30.35 33.08 30.62 29.68 28.58 28.92 34.21 29.95 31.53 32.00
TFA-Online† 30.64 28.78 31.88 27.43 41.80 30.58 29.04 30.70 29.27 27.84 27.31 27.56 31.11 28.58 30.29 30.19

TTT++-Online† 29.63 28.25 30.33 25.63 41.00 29.07 27.36 29.76 27.81 26.35 26.17 26.14 30.11 27.34 29.15 28.94
EATA† 31.73 29.93 32.78 27.82 42.00 31.03 29.45 31.99 29.76 28.40 27.89 28.01 32.85 29.01 30.53 30.88
TENT† 30.07 28.53 31.01 26.84 40.33 29.45 28.18 30.56 28.49 27.14 26.71 27.07 31.33 27.76 29.12 29.51

CAFA (Ours) 28.82 27.70 30.09 25.84 38.38 28.02 27.09 29.06 27.36 26.23 25.80 25.91 30.33 26.94 28.63 28.41

Table 17. Classification error (%) on the CIFAR10-C (upper group) and CIFAR100-C (lower group) datasets with severity level 1 corrup-
tions. † denotes the results obtained from the official codes.

Trial Gaus. Shot Impu. Defo. Glas. Moti. Zoom Snow Fros. Fog Brig. Cont. Elas. Pixe. Jpeg. Average

0 14.05 13.06 21.35 8.07 20.45 11.10 6.96 11.92 11.31 13.22 7.06 7.14 16.05 9.65 11.70 12.21
1 13.79 12.90 21.05 8.13 21.08 10.85 6.92 11.92 11.20 13.10 6.83 7.22 16.03 9.63 11.57 12.15
2 14.07 12.60 21.01 7.89 20.73 10.71 6.86 11.87 11.24 13.46 6.92 6.94 16.16 9.80 11.55 12.12
3 13.80 12.99 20.83 8.00 20.62 10.55 6.71 11.89 11.64 13.68 7.11 7.04 16.22 9.82 11.25 12.14
4 13.70 12.71 21.07 8.09 20.94 10.68 6.87 11.96 11.41 13.82 7.04 7.05 15.90 9.67 11.68 12.17

std 0.17 0.19 0.19 0.09 0.25 0.21 0.10 0.03 0.18 0.30 0.11 0.11 0.12 0.09 0.18 0.03

Table 18. Classification error (%) on the severity level 5 corruptions in the CIFAR10-C dataset with different random seeds.



(b) Elastic Transform(a) Fog
TENT CAFA TENT CAFA

Figure 5. t-SNE visualizations of ours (CAFA) and TENT from (a) Fog and (b) Elastic Transform corruptions with severity level 5 in the
CIFAR10-C dataset.

Adaptation Proceeds

Figure 6. Change of the representation space of test samples from our method as adaptation proceeds. Representation space is visualized
by the t-SNE algorithm, and visualizations are obtained from the Fog corruption with severity level 5 in the CIFAR10-C dataset.
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