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Abstract

Deep Neural Networks have exhibited considerable suc-
cess in various visual tasks. However, when applied to un-
seen test datasets, state-of-the-art models often suffer per-
formance degradation due to domain shifts. In this pa-
per, we introduce a novel approach for domain general-
ization from a novel perspective of enhancing the robust-
ness of channels in feature maps to domain shifts. We ob-
serve that models trained on source domains contain a sub-
stantial number of channels that exhibit unstable activa-
tions across different domains, which are inclined to cap-
ture domain-specific features and behave abnormally when
exposed to unseen target domains. To address the issue,
we propose a DomainDrop framework to continuously en-
hance the channel robustness to domain shifts, where a
domain discriminator is used to identify and drop unsta-
ble channels in feature maps of each network layer dur-
ing forward propagation. We theoretically prove that our
framework could effectively lower the generalization bound.
Extensive experiments on several benchmarks indicate that
our framework achieves state-of-the-art performance com-
pared to other competing methods. Our code is available at
https://github.com/lingeringlight/DomainDrop.

1. Introduction

Deep neural networks (DNNs) have shown impressive
performance in computer vision tasks over the past few
years. However, this performance often degrades when the
test data follows a different distribution from the training
data [30]. This issue, known as domain shift [39], has
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Figure 1. The robustness of channel to domain shifts. We inves-
tigate channel robustness using the histogram of activations based
on their standard deviation across different domains. We experi-
ment on PACS [30] with sketch as the target domain and analyze
the representations from the last residual block of ResNet-18. For
each channel, averaged activations are computed across all sam-
ples from each domain, and the standard deviation is calculated on
domain dimension to indicate its robustness to domain shifts.

greatly impaired the applications of DNNs [33, 61], as train-
ing and test data often come from different distributions
in reality. To address this issue, domain adaptation (DA)
has been widely studied under the assumption that some
labeled or unlabeled target domain data can be observed
during training [13, 58]. Despite their success, DA models
cannot guarantee their performance on unknown target do-
mains that have not been seen during training, which makes
them unsuitable for some real-world scenarios where tar-
get data are not always available [57]. Therefore, domain
generalization (DG) is proposed as a more challenging yet
practical setting, which aims to utilize multiple different but
related source domains to train a model that is expected to
generalize well on arbitrary unseen target domains [70, 55].

The core idea of existing DG methods is to learn domain-
invariant feature distribution P (F (X)) across domains
for the robustness of conditional distribution P (Y |F (X)),
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where F (X) denotes the extracted features from input X ,
and Y is the corresponding label. Traditional DG methods
primarily impose constraints on the whole network (i.e., the
prediction layer) to supervise the model to learn domain-
invariant features [73, 27]. However, these methods do not
explicitly guide the model to remove domain-specific fea-
tures in middle network layers, which could lead to the
model learning excessive domain-related information. In
this paper, we revisit DG issue from a novel perspective
of feature channels, which indicates that model generaliza-
tion could be related to the robustness of feature channels
to domain shifts. Specifically, we quantify the robustness
of each channel to domain shifts by computing the stan-
dard deviation of activations across different domains. As
shown in Fig. 1, we observe that models trained on source
domains often contain numerous non-robust channels that
exhibit unstable activations for different domains, indicat-
ing that they are likely to capture domain-specific features.
When domain shifts, these unstable channels are likely to
produce abnormal activations on the unseen target domain,
leading to a shift in the conditional distribution. These un-
stable channels are dubbed as “domain-sensitive channels”.

Based on the above observation, we propose Domain-
Drop, a simple yet effective framework that explicitly mutes
unstable channels across domains. Unlike previous DG
methods that seek to directly distill domain-invariant fea-
tures, our method aims to continuously guide the model
to remove domain-specific features during forward propa-
gation. To this end, we introduce a domain discriminator
to assign each channel a specific dropout rate according to
its effectiveness for the domain discrimination task. The
more the channel contributes to domain prediction, the more
likely it contains domain-specific features, and the greater
the probability of it being discarded. Moreover, we discover
that unstable channels exist at both shallow and deep net-
work layers, which contrasts with existing dropout methods
that drop either high-level or low-level features. Thus, we
propose a layer-wise training strategy that inserts Domain-
Drop at a random middle layer of the network at each itera-
tion, which can sufficiently narrow domain gaps in multiple
network layers. To further enhance the robustness of chan-
nels against domain shifts, we adopt a dual consistency loss
to regularize the model outputs under various perturbations
of DomainDrop. Furthermore, we provide theoretical evi-
dence that our method could effectively lower the general-
ization error bound of the model on unseen target domains.

Our contributions can be summarized as follows:

• We propose a novel dropout-based framework for DG,
which explicitly suppresses domain-sensitive channels
to enhance the robustness of channels to domain shifts.

• We theoretically prove that removing domain-sensitive
channels during training could result in a tighter gen-

eralization error bound and better generalizability.

• We evaluate our method on four standard datasets. The
results demonstrate that our framework achieves state-
of-the-art performance on all benchmarks.

2. Related Works

Domain generalization. Domain generalization (DG)
aims to extract knowledge from source domains that is well-
generalizable to unseen target domains. One prevalent ap-
proach is to align the distributions of source domains by
learning domain-invariant representations via adversarial
learning [73], causality learning [50, 32] or meta-learning
methods [66, 58]. Another important method is domain
augmentation, which empowers the model with general-
ization ability by enriching the diversity of source data at
image-level [71, 9] or feature-level [56, 31]. Although
demonstrating promising results, these methods may still
learn excessive domain-specific features, as they rely on
the hope that domain-specific features would be implicitly
removed by achieving the final goal of learning domain-
invariant features via image-level augmentations or model-
level constraints. Recently, some works reveal that CNNs
tend to classify objects based on features from superficial
local textures that are likely to contain domain-specific fea-
tures [54]. They propose to penalize the model from learn-
ing local representation and make the CNNs rely on global
representations for classification [54, 47]. However, the lo-
cal features may be only one kind of domain-specific fea-
ture, and there could exist other forms of domain-specific
features that lead to the overfitting issue. Different from
these methods, our framework is proposed to continuously
drop domain-sensitive channels during forward propaga-
tion, which could explicitly suppress the model learning of
generic domain-specific features.

Dropout regularization. Since our method builds on
discarding domain-specific features during training, we
here compare our method with dropout-based methods.
As one of the most widely used regularization methods,
dropout [49] aims to fight the overfitting issue by randomly
discarding neurons. SpatialDropout [51] is proposed to ran-
domly drop features across channels that capture different
patterns. DropBlock [17] is designed to mask random con-
tiguous regions within a feature map. Recently, a series of
structure-information dropout methods have also emerged,
which utilize feature-level structure information to guide
dropout operations [22, 63, 19]. DAT [29] uses adversarial
dropout based on cluster assumption to help the model learn
discriminative features. RSC [24] attempts to mute the most
predictive parts of feature maps for learning comprehensive
information. PLACE [19] seeks to activate diverse chan-
nels by randomly dropping feature channels for mitigating
model overfitting. However, these methods may not be ef-



fective in the DG task where there exists a large distribu-
tion gap between source and unseen target domains [11, 12].
Due to the lack of guidance on suppressing domain-specific
information, these methods still inevitably learn excessive
domain-specific features and suffer from the overfitting is-
sue on source domains. As a test-time adaptation method,
SWR [8] is proposed to enable rapid adaptation to target
domains during test, which reduces the update of shift-
agnostic parameters identified by specific transformations,
but could not address other sensitive parameters unaffected
by the transformations. To address these problems, we ex-
plore a novel domain discriminator guided dropout for DG,
which explicitly identifies and discards unstable channels
that are non-robust to domain shifts using domain discrim-
inators. The proposed method works only during training,
relying on no target data or specific transformations. Be-
sides, different from the most related works that solely em-
ploy dropout on either low-level [12, 47] or high-level fea-
tures [24, 32], our method involves muting domain-specific
information across all network layers, which effectively
combats the overfitting issue of the model.

3. Methodology

3.1. Setting and Overview

Assuming that we are given K observed source domains
Ds = {D1

s , D
2
s , ..., D

K
s } that follow different disrtibutions.

For each domain, Dk
s = {(xk

i , y
k
i )}

nk
i=1, where nk is the

number of samples in Dk
s , and (xk

i , y
k
i ) denotes the sample-

label pair for the i-th sample in the k-th domain. The goal
of domain generalization is to use the source domains Ds to
train a model F that is expected to perform well on unseen
target domain Dt. In general, the model F can be divided
into a feature extractor Ff and a classifier Fc, respectively.

With training data of source domains, our framework
trains the model with the standard classification loss. How-
ever, unlike previous DG methods, we aim to explicitly
remove domain-specific features while enhancing domain-
invariant ones. To this end, we propose a novel technique,
called DomainDrop, which uses a domain discriminator
to distinguish and remove domain-sensitive channels. Be-
sides, we observe that domain-sensitive channels exist in
each network layer, thus designing a layer-wise training
scheme that applies DomainDrop to both high-level and
low-level layers. Moreover, we add a dual consistency loss
to reach consensuses between predictions derived by the
model under different perturbations of DomainDrop, which
could further reduce channel instability to domain shifts and
enhance the model learning of domain-invariant features.
The overview of our framework is illustrated in Fig. 2. Be-
low we introduce the main components of our framework
and provide a theoretical analysis of its effectiveness.

3.2. Suppressing Domain-Sensitive Channels

To clearly inform the model to remove domain-specific
features during training, we introduce domain discrimina-
tors to multiple middle layers for locating domain-sensitive
channels, which consists of a Global Average Pooling
(GAP) layer and a Fully-Connected (FC) layer. Given an
input xk

i from source domain Dk and its label yki , we first
extract the feature Fl(x

k
i ) ∈ RC×H×W that is yielded by

the l-th middle layer, where C is the number of channels,
H and W denote the height and width dimensions, respec-
tively. The feature map Fl(x

k
i ) is fed to domain discrimina-

tor F l
d to predict domain labels and compute discrimination

loss. To avoid the negative impact of domain discrimina-
tors on the main network , we use a gradient reversal layer
(GRL) [34] before the domain discriminator to truncate the
gradients of minimizing discrimination loss:

Ll
domain = − 1

K

K∑
k=1

 1

nk

nk∑
i=1

K∑
j=1

1[j=k] logFd(Fl(x
k
i ))

 .

(1)
Distinguish domain-sensitive channels. To determine

which channels contain domain-specific information, we
use the performance of the domain discriminator in the mid-
dle layer as an indicator of channel importance. Specifi-
cally, we hypothesize that channels that contribute the most
to domain prediction are likely to contain domain-specific
information. We quantify the correlation between each
channel and domain-specific information by computing the
weighted activations for the correct domain prediction. For
an input xk

i and the feature extractor Fl(·), we define the
score of the j-th channel in the feature map Fl(x

k
i ) as:

sj = W yd

j · GAP(Fl(x
k
i ))j , (2)

where W yd ∈ RC is the FC layer weight of the domain dis-
criminator Fd(·) for the true domain yd, and C is the chan-
nel number. The higher the weighted activation value, the
more contribution of the channel to the true domain predic-
tion. Thus, we aim to reduce the impact of domain-sensitive
channels on the classification task by constraining domain-
specific information used by the domain discriminator.

Dropping domain-sensitive channels. To explicitly re-
duce domain-specific information in the feature maps, we
propose to select and drop the most domain-sensitive chan-
nels during training. Specifically, with score sj , we first
calculate the probability pj of discarding the j-th channel:

pj = sj/

C∑
c=1

sc. (3)

Subsequently, we generate a binary mask m ∈ RC based
on the probability of each channel, i.e., mj has the proba-
bility pj of being set to 1, with channels with relatively high
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Figure 2. An overview of the proposed framework. Our framework contains three key components, including the DomainDrop, the layer-
wise training scheme, and the dual consistency loss. At each iteration, we randomly select one middle layer to apply DomainDrop, which
uses a domain discriminator to locate and drop domain-sensitive channels. To further enhance channel stability to domain shifts, we utilize
the dual consistency loss that aligns the model predictions for the same sample under different perturbations generated by DomainDrop.

sj more likely to be discarded. To ensure the regularization
effect of dropout, we attempt to drop a certain number of
domain-specific channels by probability pj . The naive al-
gorithm to achieve this has been analyzed in [15], but it
suffers a high time complexity of O(C × M), where C is
the number of channels and M is the number of discarded
channels. To reduce computation cost, we employ weighted
random selection (WRS) algorithm [15, 22] to generate the
binary mask m, which enjoys the time complexity as O(C).
Specifically, for the j-th channel with sj , we first gener-
ate a random number rj ∈ (0, 1) and compute a key value
kj = r

1/sj
j . Then we select M items with the largest key

values and set the corresponding mj of the mask m to 0:

mj =

{
0, if j ∈ TOP({k1, k2, ..., kC},M)

1, otherwise
, (4)

where j is the channel index, TOP({k1, k2, ..., kC}, M ) de-
notes the M items with the largest key value k. Addition-
ally, the hyper-parameter Pdrop = M

C indicates the number
of channels to discard. In practice, we use a hyperparame-
ter Pactive to control the activation probability of Domain-
Drop in the forward pass, which can narrow the domain gap
by preserving the original feature maps while meantime re-
ducing domain-specific information. During inference, Do-
mainDrop is closed as conventional dropout [49].

Remark. Note that DomainDrop differs significantly
from previous DG methods that focus on constraining the
network to extract domain-invariant information during the
backpropagation stage. In contrast, our DomainDrop op-
erates during the feature forward propagation stage, which
continuously filters out domain-sensitive channels to pre-
vent the model from retaining too many domain-related
features. The process could also be regarded as a guided
feature-level augmentation that effectively disturbs domain-
specific features while preserving domain-invariant fea-
tures. Compared to previous dropout methods, we ad-
dress the DG issue from a novel perspective, considering
enhancing channel robustness to domain shifts. By drop-
ping generic domain-sensitive channels during training, our
method reduces channel instability caused by domain shifts
and promotes the learning of domain-invariant features.

3.3. Layer-wise Training Scheme

Prior research has revealed that CNNs encode informa-
tion across multiple stages, with shallow layers capturing
more generic patterns and deep ones encoding more seman-
tic features [62, 65]. Traditional dropout techniques focus
on removing information from high-level semantic layers
that contain crucial classification information [29, 24, 63,
32]. Recently, some studies suggest that features extracted
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Figure 3. The accuracy of domain discriminator in each network
layer. We test the discrimination accuracies of the baseline and the
models with DomainDrop in different layers. The experiment is
conducted on the PACS dataset with ResNet-18 backbone.

from shallow layers exhibit more distinct domain-specific
characteristics, and thus propose gating low-level informa-
tion to mitigate domain gaps [47, 12]. However, previous
methods are typically designed for a specific single layer,
either low-level or high-level, which may not be optimal
for DG task. In contrast, we propose gating feature maps
from all network layers, recognizing that features extracted
from each layer may contain domain-specific characteris-
tics. To validate the statement, an experiment is conducted
on the PACS dataset, in which we insert multiple domain
discriminators with GRL (i.e., truncate gradients) in each
layer and train them with the backbone network. The ac-
curacy of each discriminator indicates how many domain-
specific features are contained in the corresponding layer.

As shown in Fig. 3, there are several observations: (1)
The domain discriminator in each layer has relatively good
performance, indicating that considerable domain gaps ex-
ist in every network layer. (2) The discrimination accuracy
drops while inserting DomainDrop into the corresponding
layer, suggesting that DomainDrop can effectively narrow
the domain gap in the inserted layer. Hence, the proposed
DomainDrop focuses on removing domain-specific features
in both high-level and low-level layers. Since discarding
features at multiple layers simultaneously may lead to ex-
cessive information absence and hinder model convergence
[40], we propose a layer-wise training scheme that ran-
domly selects a middle layer of the network and performs
DomainDrop on its feature maps at each iteration. This
scheme enables DomainDrop to effectively reduce channel
sensitivity to domain shifts in multiple network layers.

3.4. Enhancing Domain-Invariant Channels

In the training stage, DomainDrop is employed to re-
move domain-sensitive channels by probability, which can
be approximated as applying Gaussian multiplicative noise
to domain-specific features [49, 40]. In light of the output
inconsistency that arises from different perturbations of Do-
mainDrop, we propose a dual consistency loss that enhances

model robustness to domain-specific feature perturbations
and facilitates the learning of domain-invariant features.

Specifically, for a given input data xk
i , denoted as x for

simplicity, we apply DomainDrop twice at each training
step to obtain two sets of class predictions denoted as F̂ (x)1
and F̂ (x)2, respectively. According to Eqs. (3) and (4), the
masks m generated by DomainDrop could be different for
the same input, leading to different predictions F̂ (x)1 and
F̂ (x)2. To ensure consistency between these two outputs
for the same input, we introduce the following constraint:

Lcons =
1

2
(KL[σ(F̂ (x)1/T )||σ(F̂ (x)2/T )]

+ KL[σ(F̂ (x)2/T )||σ(F̂ (x)1/T )]),

(5)

where σ denotes a softened softmax at a temperature T , and
KL is Kullback-Leibler divergence [21]. With this con-
sistency constrain, our framework encourages the model to
improve the robustness of channels to domain shifts and ex-
tract domain-invariant features from perturbed representa-
tions. Moreover, Since DomainDrop only operates during
training, the loss could also reduce the inconsistency exist-
ing in the training and inference stages [60], thus improving
the generalization ability of the model to target domains.

3.5. Theoretical Analysis of DomainDrop

Previous DG methods mainly train the model to directly
distill domain-invariant features, which could still retain
excessive domain-specific features and perform inferiorly
when domain shifts. We here theoretically prove that re-
moving the domain-sensitive channels during training can
improve the generalizability in DG task. Given a hypothesis
h : X → Y , where h comes from the space of the candidate
hypothesis H, X and Y are the input space and the label
space, respectively. Let ϕ(·) : X → Rn be the feature ex-
tractor that maps the input images into the n-dimentional
feature space. Following the popular Integral Probability
Metrics (IPMs) [16, 64], we first define the channel-level
maximum mean discrepancy (CMMD) that estimates the
distribution gap between different domains by channels.

Definition 1. Let n denote the number of channels in the ex-
tracted features of ϕ(·). Given two different distribution of
Ds and Dt, the channel-level maximum mean discrepancy
(CMMD) between ϕ(Ds) and ϕ(Dt) is defined as:

dCMMD(Ds, Dt) =
1

n

n∑
i=1

sup
ϕi∈Φi

||
∫
x

k(x, ·)d(ϕi(Ds)

− ϕi(Dt))||Hk
,

(6)

where Φ is the space of candidate hypothesis for each chan-
nel, ϕi(D) is the distribution of the i-th channel for the do-
main D, and Hk is a RKHS with its associated kernel k.



Based on the above definition, we derive the theorem that
provides an upper bound on the generalization risk of the
hypothesis h on the target domain Dt. First, we define the
risk of h on a domain D as: R[h] = Ex∼Dℓ[h(x), f(x)],
where ℓh,f : x → ℓ[h(x), f(x)] is a convex loss-function
defined for ∀h, f ∈ H, and assume that ℓ obeys the trian-
gle inequality. Following [11, 69], for the source domains
Ds = {D1

s , D
2
s , ..., D

K
s }, we define the convex hull Λs as

a set of mixture of source domain distributions: Λs = {D̄ :

D̄(·) =
∑K

i=1 πiD
i
s(·), πi ∈ ∆K}, where π is non-negative

coefficient in the K-dimensional simplex ∆K . We define
D̄t ∈ Λs as the closest domain to the target domain Dt.

Theorem 1 (Generalization risk bound). With the previ-
ous settings and assumptions, let Si and T be two samples
of size m drawn i.i.d from Di

s and Dt, respectively. Then,
with the probability of at least 1 − δ (δ ∈ (0, 1)) for all
h ∈ F , the following inequality holds for the risk Rt[h]:

Rt[h] ≤
N∑
i=1

πiRi
s[h] + dCMMD(D̄t, Dt)

+ sup
i,j∈[K]

dCMMD(D
i
s, D

j
s) + λ+ ϵ,

(7)

where λ = 2

√
log( 2

σ )

2m + 2
m (

∑N
i=1 πiEx∼Di

s
[
√
tr(KDi

s
)]+

Ex∼Dt
[
√
tr(KDt

)]), KDi
s

and KDt
are kernel functions

computed on samples from Di
s and Dt, respectively. tr(·)

is the trace of input matrix and ϵ is the combined error of
ideal hypothesis h∗ on Dt and D̄t. Let γ = dCMMD(D̄t, Dt)
and β = supi,j∈[K]dCMMD(D

i
s, D

j
s), respectively.

Proof. See in Supplementary Material. ■

Theorem 1 indicates that the upper bound of generaliza-
tion risk on target domain depends mainly on: 1) γ that
measures the maximum discrepancy between different acti-
vations for the same channel in source and target domains;
2) β that presents the maximum pairwise activation discrep-
ancy among source domains at channel level. Recall that
our DomainDrop actively removes domain-sensitive chan-
nels during training, which can effectively restrict the size
of the hypothesis space Φ and promote the model learn-
ing of domain-invariant channels. Consequently, the fea-
tures extracted by the DomainDrop model from source do-
mains would exhibit a smaller distribution gap than the orig-
inal model, i.e., effectively reducing β in Eq. (7). More-
over, after removing domain-sensitive channels, the features
extracted from target domain would become more simi-
lar to those of source domains, thus potentially reducing
γ in Eq. (7). Concerning Theorem 1, by explicitly remov-
ing domain-sensitive channels, we can obtain a lower error
bound and expect a better generalization ability. The con-
clusion is also proved in the experiment section (Sec. 4.4).

4. Experiment
4.1. Datasets

We evaluate our method on four conventional DG bench-
marks: (1) PACS [30] consists of images from 4 domains:
Photo, Art Painting, Cartoon, and Sketch, including 7 ob-
ject categories and 9, 991 images total. We adopt the offi-
cial split provided by [30] for training and validation. (2)
Office-Home [53] contains around 15, 500 images of 65
categories from 4 domains: Artistic, Clipart, Product and
Real-World. As in [3], we randomly split each domain into
90% for training and 10% for validation. (3) VLCS [52]
comprises of 5 categories selected from 4 domains, VOC
2007 (Pascal), LabelMe, Caltech and Sun. We use the same
setup as [3] and divide the dataset into training and valida-
tion sets based on 7 : 3. (4) DomainNet [42] is a large-
scale dataset, consisting of about 586, 575 images with 345
categories from 6 domains, i.e., Clipart, Infograph, Paint-
ing, Quickdraw, Real, and Sketch. Following [18], we split
source data into 80% for training and 20% for validation.

4.2. Implementation Details

Basic details. For PACS and OfficeHome, we use
the ImageNet pre-trained ResNet-18 and ResNet-50 as our
backbones following [66, 35]. For VLCS, we follow
[67, 66] and use the ResNet-18 as backbone. The batch size
is 128. We train the network using SGD with momentum of
0.9 and weight decay of 0.0005 for 50 epochs. The initial
learning rate is 0.002 and decayed by 0.1 at 80% of the total
epochs. For the large-scale DomainNet, we use ResNet-50
pre-trained on ImageNet as backbone and train the network
using Adam optimizer for 5000 iterations following [5, 18].
The initial learning rate is 5e− 5 and the batch size is 64.

Method-specific details. For all experiments, we the
dropout ratio Pdrop of DomainDrop to 0.33. We set the
weight of gradient reversal layers [34] before domain dis-
criminators to 0.25. The weight of the dual consistency loss
is set to 1.5 and the temperature T in Eq. (5) is set to 5 for all
datasets. For layer-wise training scheme, we select all the
middle layers of the network (i.e., the 1st, 2nd, 3rd, and 4-th
residual blocks) as the candidate set. At each iteration, we
randomly select a residual block from the set and perform
DomainDrop on its feature maps. We apply the leave-one-
domain-out protocol for all benchmarks. We select the best
model on the validation splits of all source domains and re-
port the top-1 accuracy. All results are reported based on
the averaged accuracy over five repetitive runs.

4.3. Comparison with SOTA Methods

Evaluation on PACS. We evaluate our framework on
PACS with ResNet-18 and ResNet-50 as our backbones.
We compare with several dropout-based methods (i.e., I2-
drop [47], RSC [24], PLACE [19], CDG [12]), augmenta-



Table 1. Performance (%) comparisons with the start-of-the-art
DG approaches on the PACS dataset with ResNet-18 and ResNet-
50 backbones. The best performance is marked as bold.

Methods Art Cartoon Photo Sketch Avg.
ResNet-18

DeepAll [71] (AAAI’20) 80.31 76.65 95.38 71.67 81.00
I2-Drop [47] (ICML’20) 80.27 76.54 96.11 76.38 82.33
DMG [6] (ECCV’20) 80.38 76.90 93.35 75.21 81.46
RSC [24] (ECCV’20) 83.43 80.31 95.99 80.85 85.15
NAS-OoD [1] (ICCV’21) 83.74 79.69 96.23 77.27 84.23
MixStyle [72] (ICLR’21) 84.10 78.80 96.10 75.90 83.70
LDSDG [57] (ICCV’21) 81.44 79.56 95.51 80.58 84.27
PLACE [19] (arXiv’21) 82.60 78.33 95.65 81.47 84.51
FACT [61] (CVPR’21) 85.37 78.38 95.15 79.15 84.51
StableNet [67] (CVPR’21) 81.74 79.91 96.53 80.50 84.69
EFDMix [68] (CVPR’22) 83.90 79.40 96.80 75.00 83.90
StyleNeophile [25] (CVPR’22) 84.41 79.25 94.93 83.27 85.47
COMEN [7] (CVPR’22) 82.60 81.00 94.60 84.50 85.70
I2-ADR [35] (ECCV’22) 82.90 80.80 95.00 83.50 85.60
CDG [12] (IJCV’22) 83.50 80.10 95.60 83.80 85.80
ALOFT [20] (CVPR’23) 84.81 79.05 96.11 80.55 85.13
DomainDrop (Ours) 84.47± 0.77 80.50± 0.56 96.83± 0.21 84.83± 0.67 86.66

ResNet-50
DeepAll [71] (AAAI’20) 81.31 78.54 94.97 69.76 81.15
RSC [24] (ECCV’20) 87.89 82.16 97.92 83.85 87.83
FACT [61] (CVPR’21) 89.63 81.77 96.75 84.46 88.15
PLACE [19] (arXiv’21) 87.55 83.11 97.19 83.48 87.83
COPA [59] (ICCV’21) 83.30 79.80 94.60 82.50 85.10
SWAD [4] (NeurIPS’21) 89.30 83.40 97.30 82.50 88.10
EFDMix [68] (CVPR’22) 90.60 82.50 98.10 76.40 86.90
StyleNeophile [25] (CVPR’22) 90.35 84.20 96.73 85.18 89.11
I2-ADR [35] (ECCV’22) 88.50 83.20 95.20 85.80 88.20
PTE [36] (ECCV’22) 87.90 78.40 98.20 75.70 85.10
CDG [12] (IJCV’22) 88.90 83.50 97.60 84.90 88.70
ALOFT [20] (CVPR’23) 89.26 83.11 97.96 84.04 88.59
DomainDrop (Ours) 89.82± 0.44 84.22± 0.37 98.02± 0.24 85.98± 1.14 89.51

tion based methods (i.e., MixStyle [72], LDSDG [57], EFD-
Mix [68], StyleNeophile [25], ALOFT [20]), feature decor-
relation methods (i.e., StableNet [67], I2-ADR [35]), meta-
learning method (i.e., COMEN [7]) and neural search (i.e.,
NAS-OoD [1]). As presented in Tab. 6, our framework ob-
tains the highest average accuracy among all the compared
methods on both backbones. Specifically, compared with
existing dropout-based DG methods, our DomainDrop can
surpass the SOTA approach CDG by a considerable margin
by 0.86% (86.66% vs. 85.80%) on ResNet-18 and 0.81%
(89.51% vs. 88.70%) on ResNet-50. It is because Domain-
Drop can explicitly reduce the domain-specific features in
every middle layer of the network, instead of only applying
dropout in a single layer and narrowing the domain gap im-
plicitly. Besides, our method achieves the best performance
on most domains and our overall performance exceeds other
SOTA DG methods. The encouraging results demonstrate
the superiority of our method in fighting the overfitting is-
sue of the model on source domains.

Evaluation on OfficeHome. We also compare our
method with SOTA DG methods on OfficeHome to demon-
strate the adaptation of our method to the dataset with
a large number of categories and samples. We perform
the evaluation on both ResNet-18 and ResNet-50 back-
bones. The results are reported in Tab. 2. Our method
can still achieve the best performance among the compared

Table 2. Performance (%) comparisons with the SOTA DG meth-
ods on the OfficeHome dataset with ResNet-18 and ResNet-50
backbones. The best performance is marked as bold.

Methods Art Clipart Product Real Avg.
ResNet-18

DeepAll [71] (AAAI’20) 56.98 50.14 72.85 74.39 63.59
RSC [24] (ECCV’20) 57.70 48.58 72.59 74.17 63.26
MixStyle [72] (ICLR’21) 58.70 53.40 74.20 75.90 65.50
SagNet [38] (CVPR’21) 60.20 45.38 70.42 73.38 62.34
COPA [59] (ICCV’21) 59.40 55.10 74.80 75.00 66.10
FACT [61] (CVPR’21) 60.34 54.85 74.48 76.55 66.56
StyleNeophile [25] (CVPR’22) 59.55 55.01 73.57 75.52 65.89
CDG [12] (IJCV’22) 59.20 54.30 74.90 75.70 66.00
DomainDrop (Ours) 59.62± 0.40 55.60± 0.31 74.50± 0.53 76.64± 0.35 66.59

ResNet-50
DeepAll [71] (AAAI’20) 61.30 52.40 75.80 76.60 66.50
RSC [24] (ECCV’20) 57.70 51.40 74.80 75.10 65.50
SelfReg [26] (ICCV’21) 63.60 53.10 76.90 78.10 67.90
SagNet [38] (CVPR’21) 63.40 54.80 75.80 78.30 68.10
SWAD [4] (NeurIPS’21) 66.10 57.70 78.40 80.20 70.60
Fishr [43] (ICML’22) 63.40 54.20 76.40 78.50 68.20
PTE [36] (ECCV’22) 66.30 55.80 78.20 80.40 70.10
DomainDrop (Ours) 67.33± 0.45 60.39± 0.48 79.05± 0.29 80.22± 0.22 71.75

Table 3. Performance (%) comparisons with the SOTA DG meth-
ods on VLCS with ResNet-18 backbone. The best is bolded.

Methods Caltech LabelMe Pascal Sun Avg.
DeepAll [71] (AAAI’20) 96.98 62.00 73.83 68.66 75.37
JiGen [3] (CVPR’19) 96.17 62.06 70.93 71.40 75.14
MMLD [34] (AAAI’20) 97.01 62.20 73.01 72.49 76.18
RSC [24] (ECCV’20) 95.83 63.74 71.86 72.12 75.89
StableNet [67] (CVPR’21) 96.67 65.36 73.59 74.97 77.65
DomainDrop (Ours) 98.94± 0.19 63.97± 1.33 76.36± 0.93 73.74± 1.17 78.25

DG methods, e.g., outperforming the state-of-the-are DG
method COPA [59] by 0.49% (66.59% vs 66.10%). Be-
sides, our method precedes the best method SWAD [4] on
ResNet-50, which proposes an ensemble learning method
that seeks flat minima for DG, with a significant improve-
ment of 1.14% (71.75% vs. 70.60%). The above results
further demonstrate the effectiveness of our framework.

Evaluation on VLCS. To verify the trained model can
also generalize to unseen target domains with a relatively
small domain gap to source domains, we conduct the exper-
iments on VLCS with ResNet-18. The results are portrayed
in Tab. 3. Among all the competitors, our DomainDrop
achieves the best performance, exceeding the second-best
method StableNet [67] by 0.60% (78.25% vs. 77.65%) on
average. Our method also exceeds the advanced dropout
method RSC [24], which removes over-dominate features
according to gradients, by 2.36% (78.25% vs. 75.89%).
The results prove the effectiveness of our method again.

Evaluation on DomainNet. Tab. 4 shows the results on
the large-scale DomainNet. On the challenging benchmark,
our method performs better in the averaged accuracy than
existing methods and improves top-1 accuracy by 3.87%
(44.37% vs. 40.50%) from ResNet-50 baseline, proving the
effectiveness of our method on the large-scale dataset. All
the comparisons prove that suppressing domain-sensitive
channels can effectively improve model generalizability.



Table 4. Performance (%) comparisons with the SOTA DG meth-
ods on DomainNet with ResNet-50 backbone. The best is bolded.

Methods Clipart Infograph Painting Quickdraw Real Sketch Avg.
DeepAll [71] (AAAI’20) 62.20 19.90 45.50 13.80 57.50 44.40 40.50
RSC [24] (ECCV’20) 55.00 18.30 44.40 12.20 55.70 47.80 38.90
SagNet [38] (CVPR’21) 57.70 19.00 45.30 12.70 58.10 48.80 40.30
SelfReg [26] (ICCV’21) 60.70 21.60 49.40 12.70 60.70 51.70 42.80
I2-ADR [35] (ECCV’22) 64.40 20.20 49.20 15.00 61.60 53.30 44.00
PTE [36] (ECCV’22) 62.40 21.00 50.50 13.80 64.60 52.40 44.10
DomainDrop (Ours) 62.93± 0.25 21.63± 0.07 50.67± 0.15 14.83± 0.30 62.70± 0.08 53.46± 0.59 44.37

Table 5. Comparisons with the SOTA dropout-based methods on
PACS dataset with ResNet-18 backbone. The best is bolded.

Methods Art Cartoon Photo Sketch Avg.
Baseline (AAAI’20) 80.31 76.65 95.38 71.67 81.00
Cutout [10] (ArViv’17) 79.60 77.20 95.90 71.60 80.60
C-Drop [37] (ICCV’17) 79.64 76.49 95.93 72.37 81.11
DropBlock [17] (NeurIPS’18) 80.30 77.50 95.60 76.40 82.50
AdvDrop [41] (AAAI’18) 82.40 78.20 96.10 75.90 83.00
WCD [22] (AAAI’19) 81.56 78.24 94.99 75.53 82.58
DMG [6] (ECCV’20) 80.38 76.90 93.35 75.21 81.46
I2-Drop [47] (ICML’20) 80.27 76.54 96.11 76.38 82.33
RSC [24] (ECCV’20) 83.43 80.31 95.99 80.85 85.15
PLACE [19] (arXiv’21) 82.60 78.33 95.65 81.47 84.51
CDG [12] (IJCV’22) 83.50 80.10 95.60 83.80 85.80
DomainDrop (Ours) 84.47± 0.77 80.50± 0.56 96.83± 0.21 84.83± 0.67 86.66

Comparison with SOTA dropout methods. We here
compare DomainDrop with the SOTA dropout-based meth-
ods, including the traditional approaches designed for su-
pervised learning (i.e., Cutout [10], C-Drop [37], Drop-
Block [17], AdvDrop [41], WCD [22]) and the methods
proposed for domain generalization (i.e., DMG [6], I2-Drop
[47], RSC [24], PLACE [19], CDG [12]). The results
are summarized in Tab. 5. We observe that the traditional
dropout methods cannot adequately combat the overfitting
issue of the model on source domains, which is caused
by the large discrepancy between source domains and un-
seen target domains. Besides, DMG [6] that assumes some
domain-specific features provide useful information for the
target domain achieves a slight improvement, which may be
because the assumption cannot always be guaranteed since
the target domain is unseen. I2-Drop [47] aims to penal-
ize the model from learning superficial local textures, but
there could also exist other forms of domain-specific fea-
tures. PLACE [19] attempts to activate diverse channels
by randomly discarding channels, but it inevitably activates
channels that capture domain-specific information, imped-
ing the model generalization. Although RSC [24] and CDG
[12] have shown promising performance, these methods are
only suitable for a single network layer, which prevents
them from sufficiently reducing domain-specific informa-
tion. In general, our framework obtains the best perfor-
mance among existing dropout methods, which proves its
effectiveness in enhancing model generalization.

4.4. Analytical Experiments

In this paragraph, we conduct extensive ablation stud-
ies of our framework, including the impact of each com-

Table 6. Ablation study on different components of our frame-
work: DomainDrop (DD), layer-wise training scheme (LT), and
dual consistency loss (CL). The experiment is conducted on PACS
and OfficeHome with ResNet-18. The best is bolded.

PACS
Methods DD LT CL Art Cartoon Photo Sketch Avg.
Baseline - - - 80.31± 1.54 76.65± 0.48 95.38± 0.12 71.67± 1.49 81.00
Variant 1 ✓ - - 82.37± 0.78 79.27± 0.26 95.45± 0.27 83.15± 0.73 85.06
Variant 2 ✓ ✓ - 83.84± 0.12 79.69± 0.29 96.47± 0.36 83.74± 0.39 85.94
Variant 3 ✓ - ✓ 83.32± 0.76 80.09± 0.91 95.85± 0.33 83.71± 0.61 85.74
DomainDrop ✓ ✓ ✓ 84.47± 0.77 80.50± 0.56 96.83± 0.21 84.83± 0.67 86.66

OfficeHome
Methods DD LT CL Art Clipart Product Real Avg.
Baseline - - - 56.98± 0.47 50.14± 0.88 72.85± 0.35 74.39± 0.32 63.59
Variant 1 ✓ - - 57.49± 0.37 53.69± 0.58 73.82± 0.14 76.18± 0.20 65.30
Variant 2 ✓ ✓ - 59.46± 0.28 53.86± 0.57 74.23± 0.29 76.31± 0.24 65.96
Variant 3 ✓ - ✓ 58.17± 0.29 54.96± 0.40 73.95± 0.35 76.42± 0.49 65.88
DomainDrop ✓ ✓ ✓ 59.62± 0.40 55.60± 0.31 74.50± 0.53 76.64± 0.35 66.59

ponent and the parameter sensitivity. We also analyze the
discrepancy among source and target domains to prove that
our framework can effectively reduce domain divergence.
Moreover, we validate the orthogonality of our Domain-
Drop on other DG SOTA methods. More experiments can
be found in the Supplementary Material.

Ablation study on each component. We here conduct
the ablation study to investigate the efficacy of DomainDrop
(DD), Layer-wise Training Scheme (LT), and Consistency
Loss (CL) in our framework. Tab. 6 presents the results of
different variants of DomainDrop with ResNet-18 on both
PACS and OfficeHome. Notably, for Variant 1, we apply
DomainDrop to all layers, activating it with a probability of
0.5 for each layer, which aligns with [72, 68]. As shown in
Tab. 6, variant 1 exhibits significant improvement over the
baseline, i.e., 4.06% (85.06% vs. 81.00%) on PACS and
1.71% (65.30% vs. 63.59%) on OfficeHome, proving the
effectiveness of DomainDrop in reducing channel sensitiv-
ity to domain changes and narrowing domain gap. Besides,
comparing variant 1 with variant 2, we observe that com-
bining both DomainDrop and layer-wise training scheme
leads to better performance than using DomainDrop alone,
indicating that alternating use of DomainDrop at multiple
layers can maximize regularization effect while avoiding
losing too much information. Furthermore, the improved
performance of variant 3 over variant 1 suggests that the
consistency loss contributes to enhancing domain-invariant
features. Finally, DomainDrop performs the best, verifying
that the three modules complement and promote mutually,
and none of them is dispensable for achieving the superior
generalization ability of the model.

Parameter sensitivity. We conduct experiments to in-
vestigate the sensitivity of DomainDrop to hyper-parameter
Pactive and Pdrop as shown in Fig. 4(a) and 4(b). Specifi-
cally, Papply denotes the probability of applying Domain-
Drop to the network at each iteration, varying from 0.1
to 1.0. The results in Fig. 4(a) show that DomainDrop
achieves competitive performance robustly with a relatively
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Figure 4. Effects of hyper-parameters including the probability of
applying DomainDrop and the dropout ratio in DomainDrop. The
experiments are conducted on PACS with ResNet-18 backbone.

Table 7. Comparisons of source and source-target domain diver-
gences (×10) for different methods on PACS with ResNet-18.

Methods Source Divergence Source-Target Divergence
Baseline 9.38 7.25
MixStyle [72] 7.53 6.23
FACT [61] 9.00 7.27
I2-Drop [35] 7.11 6.44
RSC [24] 8.81 7.20
PLACE [19] 6.45 6.17
DomainDrop (Ours) 5.15 4.09

large probability (i.e., Pactive ≥ 0.7), verifying the sta-
bility of our method. Moreover, we also examine the im-
pacts of the dropout ratio on model performance, which
vary {0.16, 0.20, 0.25, 0.33, 0.50, 0.67} as in [24]. Fig. 4(b)
shows that our framework consistently exceeds the baseline
by a large margin (i.e., more than 4%) with different dropout
ratios, and the highest accuracy is reached at Pdrop = 0.33,
which is adopted as default in all our experiments.

Discrepancy among source and target domains. To
verify the effectiveness of our method to channel deviation
across domains, we here measure the estimated channel-
level maximum mean discrepancy (CMMD) among source
and target domains. Based on the definition of CMMD in
Eq. (6), given a trained feature extractor ϕ : X → Rn, we
estimate the CMMD between pairwise domains Di

s and Dj
s:

d̂CMMD(Di
s, D

j
s) =

1

n

n∑
k=1

||ϕk(D
i
s)− ϕk(D

j
s)||2. (8)

Then we estimate the source domain divergence β by β̂ =
supi,j∈[K]d̂CMMD(D

i
s, D

j
s). We utilize the averaged diver-

gence between target domain and each source domain to
estimate the source-target domain gap γ, defined as γ̂ =
1
K

∑K
k=1 d̂CMMD(D

k
s , Dt). The results are shown in Tab. 7.

Notably, both the SOTA DG methods, MixStyle [72] and
FACT [61], present lower source domain divergence due
to their ability to diversify the source data. However, they
do not explicitly remove domain-specific features, leading
to limited reduction of the source-target domain divergence.
RSC [24] regularizes the model to learn comprehensive rep-
resentations but still cannot adequately narrow the domain

Table 8. Effect (%) of DomainDrop on other SOTA DG meth-
ods. The experiments are conducted on the PACS dataset. We
select ResNet-18 as the backbone architecture for RandAug [9]
and FACT [61]. We also validate the effectiveness of our Domain-
Drop on the SOTA MLP-like model, i.e., GFNet [44].

Methods Art Cartoon Photo Sketch Avg.
RandAug [9] 82.90± 0.49 76.89± 0.75 96.17± 0.46 78.55± 0.54 83.63
+ DomainDrop 84.62± 0.59 80.25± 0.51 96.27± 0.40 85.62± 0.60 86.69
FACT [61] 85.64± 0.57 77.94± 0.83 95.45± 0.78 79.41± 1.30 84.61
+ DomainDrop 86.52± 0.83 80.86± 0.49 95.81± 0.23 85.75± 1.02 87.24
GFNet [44] 89.37± 0.60 84.74± 0.59 97.94± 0.25 79.01± 0.77 87.76
+ DomainDrop 92.38± 0.69 87.24± 0.71 98.26± 0.36 86.18± 1.02 91.02

gap across source and target domains. I2-Drop [47] pe-
nalizes superficial local features that may contain domain-
specific information, but it only applies to shallow layers
and cannot suppress other forms of domain-specific fea-
tures. PLACE [19] generates a regularization effect to fight
the overfitting, but it cannot prevent channels from learning
domain-specific information. In contrast, the lowest source
and source-target domain gaps achieved by DomainDrop
prove its effectiveness in reducing domain-specific features,
highlighting its superiority over existing methods. More-
over, the results align well with the theoretical analysis in
Sec. 3.5 and prove that DomainDrop effectively lowers the
generalization risk bound by reducing β and γ.

Orthogonality to other DG methods. We investigate
the effectiveness of DomainDrop in improving the perfor-
mance of other DG methods. We selected two representa-
tive DG methods, i.e., RandAug [9] and FACT [61], both
using ResNet-18 as the backbone. We also verify the ef-
fectiveness of DomainDrop on the SOTA MLP-like model
GFNet [44]. As shown in Tab. 8, our method can signifi-
cantly improve the SOTA DG methods, e.g., boosting Ran-
dAug by 3.06% (87.24% vs. 84.18%) and FACT by 2.63%
(87.24% vs. 84.61%). These experiments demonstrate that
our DomainDrop is orthogonal to other SOTA DG methods,
and a new SOTA performance can be achieved by combin-
ing our approach with existing methods. Moreover, our Do-
mainDrop also achieves a considerable improvement on the
MLP-like model, enhancing the performance of GFNet by
3.26% (91.02% vs. 87.76%), which indicates the general-
ization of our methods on different network architectures.

5. Conclusion
In this paper, we study the model generalizability from a

novel channel-level perspective and find that the overfitting
issue could be caused by substantial domain-sensitive chan-
nels in the model. To tackle this issue, we propose a novel
DG framework that explicitly suppresses domain-specific
features by removing the domain-sensitive channels. We
also theoretically prove the effectiveness of our framework
to generate a tight generalization error bound. Experiments
show that our framework achieves strong performance on
various datasets compared with existing DG methods.
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A. Theoretical Proof of Theorem 1
A.1. Notations

Given K source domains Ds = {D1
s , D

2
s , ..., D

K
s }, we

indicate that each domain Dk
s contains nk input and labels

{(xk
i , y

k
i )}

nk
i=1, where x ∈ X and y ∈ Y . The target domain

is denoted as Dt. Given a hypothesis h : X → Y , where
h is from the space of the candidate hypothesis H. The
expected risk of h on a domain D is defined as: R[h] =
Ex∼Dℓ[h(x), f(x)], where ℓh,f : x → ℓ[h(x), f(x)] is
a convex loss-function defined for ∀h, f ∈ H and as-
sumed to obey the triangle inequality. Under the DG set,
y = f(x) represents the input label. We also denote
the feature extractor of the network as ϕ(·) : X → Rn,
which maps the input images into the n-dimentional fea-
ture space. Following [11, 69], for the source domains
Ds = {D1

s , D
2
s , ..., D

K
s }, we define the convex hull Λs as

a set of mixture of source domain distributions: Λs = {D̄ :

D̄(·) =
∑K

i=1 πiD
i
s(·), πi ∈ ∆K}, where π is non-negative

coefficient in the K-dimensional simplex ∆K . We define
D̄t ∈ Λs as the closest domain to the target domain Dt.

A.2. Definitions and Lemmas

Definition 1 [45]. Let F = {f ∈ Hk : ||f ||Hk
≤ 1} be

a function class, where Hk be a RKHS with its associated
kernel k. Given two different distributions of Ds and Dt,
the maximum mean discrepancy (MMD) distance is:

dMMD(Ds, Dt) = ||
∫
x

k(x, ·)d(ϕ(Ds)− ϕ(Dt))||Hk
.

(9)
Based on the MMD distance, we now introduce learning

bounds for the target error where the divergence between
distributions is measured by the MMD distance. We first
introduce a lemma that indicates how the target error can
be bounded by the empirical estimate of the MMD distance
between an arbitrary pair of source and target domains.
Lemma 1 [45]. Let F = {f ∈ Hk : ||f ||Hk

≤ 1} denote
a function class, where Hk be a RKHS with its associated
kernel k. Let ℓh,f : x → ℓ[h(x), f(x)] be a convex loss-
function with a parameter form |h(x)−f(x)|q for some q >
0, and defined ∀h, f ∈ F , ℓ obeys the triangle inequality.
Let S and T be two samples of size m drawn i.i.d from Ds

and Dt, respectively. Then, with probability of at least 1−δ
(δ ∈ (0, 1)) for all h ∈ F , the following holds:

Rt[h] ≤Rs[h] + dMMD(Dt, Ds) +
2

m
(Ex∼Ds

[
√
tr(KDs

)]

+ Ex∼Dt
[
√
tr(KDt

)]) + 2
log( 2σ )

2m
+ ϵ,

(10)
where KDs and KDt are kernel functions computed on

samples from Ds and Dt, respectively. ϵ is the combined
error of the ideal hypothesis h∗ on Ds and Dt.

Then, to investigate the effect of channel robustness to
domain shifts on the generalization error bound, we define
the channel-level maximum mean discrepancy (CMMD)
distance to estimate the channel-level distribution gap be-
tween different domains, which is formulated as:
Definition 2. Let n denote the number of channels in the ex-
tracted features of ϕ(·). Given two different distribution of
Ds and Dt, the channel-level maximum mean discrepancy
(CMMD) between ϕ(Ds) and ϕ(Dt) is defined as:

dCMMD(Ds, Dt) =
1

n

n∑
i=1

sup
ϕi∈Φi

||
∫
x

k(x, ·)d(ϕi(Ds)

− ϕi(Dt))||Hk
,
(11)

where Φ is the space of candidate hypothesis for each chan-
nel, ϕi(D) is the distribution of the i-th channel for the do-
main D, and Hk is a RKHS with its associated kernel k.

The CMMD distance could be regarded as a channel-
level version of the MMD distance, which represents the
maximum value of the difference in channel activation for a
given two domains in the model, thus reflecting the channel
robustness to domain shifts. Based on the CMMD distance
and Lemma 1, we derive a generalization error boundary of
the model in the multi-source domain scenario (i.e., Theo-
rem 1), and provide the detailed proof below.

A.3. Proof

Theorem 1 (Generalization risk bound). With the previ-
ous settings and assumptions, let Si and T be two samples
of size m drawn i.i.d from Di

s and Dt, respectively. Then,
with the probability of at least 1 − δ (δ ∈ (0, 1)) for all
h ∈ F , the following inequality holds for the risk Rt[h]:

Rt[h] ≤
N∑
i=1

πiRi
s[h] + dCMMD(D̄t, Dt)

+ sup
i,j∈[K]

dCMMD(D
i
s, D

j
s) + λ+ ϵ,

(12)

where λ = 2

√
log( 2

σ )

2m + 2
m (

∑N
i=1 πiEx∼Di

s
[
√

tr(KDi
s
)]+

Ex∼Dt [
√
tr(KDt)]), KDi

s
and KDt are kernel functions

computed on samples from Di
s and Dt, respectively. ϵ is the

combined error of ideal hypothesis h∗ on Dt and D̄t.
Proof. Consider the closest domain D̄t to target domain
Dt as a mixture distribution of K source domains where
the mixture weight is given by π, i.e., D̄t =

∑K
i=1 πiD

i
s(·)

with
∑K

i=1 πi = 1. For a pair of source domain Di
s and the

target domain Dt, the following inequality holds:

dCMMD(Dt, D
i
s) ≤ dCMMD(Dt, D̄t) + dCMMD(D̄t, D

i
s).
(13)

According to Definition 2, we could derive the weighted
sum of the CMMD distance between source domains and



the target domain, which is formulated as:

N∑
i=1

πidCMMD(Dt, D
i
s)

≤ dCMMD(Dt, D̄t) +

N∑
i=1

πidCMMD(D̄t, D
i
s)

≤ dCMMD(Dt, D̄t) + sup
i,j∈H

dCMMD(D
i
s, D

j
s).

(14)

Moreover, we also investigate the relationship between the
MMD and CMMD distances based on Definitions 1 and 2:

dMMD(D
i
s, Dt) = ||

∫
x

k(x, ·)d(ϕ(Di
s)− ϕ(Dt))||Hk

= ||
∫
x

k(x, ·)d( 1
n

n∑
i=1

(ϕi(D
i
s)− ϕi(Dt)))||Hk

≤ ||
∫
x

k(x, ·)
n∑

i=1

sup
ϕi∈Φi

d(ϕi(D
i
s)− ϕi(Dt))||Hk

= dCMMD(D
i
s, Dt).

(15)
Based on the above preparations, we now derive the gen-

eralization error bound of the model on the unseen target do-
main. Recalling that Lemma 1 indicates the generalization
error bound between two different distributions. Consider-
ing the pair of the i-th source domain and the target domain,
the following holds with the probability of at least 1− δ:

Rt[h] ≤Ri
s[h] + dCMMD(Dt, D

i
s) +

2

m
(Ex∼Di

s
[
√
tr(KDi

s
)]

+ Ex∼Dt
[
√
tr(KDt

)]) + 2
log( 2σ )

2m
+ ϵ.

(16)
We then generalize the above inequality to the multi-source
scenario, where the ideal target domain could be expressed
as a weighted combination of different source domains. We
weight the generalization error of each source-target pair
with π where

∑K
i=1 πi = 1 and calculate their sum:

Rt[h] ≤
N∑
i=1

πiRi
s[h] +

N∑
i=1

πidCMMD(Dt, D
i
s)

+
2

m
(

N∑
i=1

πiEx∼Di
s
[
√
tr(KDi

s
)]

+ Ex∼Dt [
√
tr(KDt)]) + 2

log( 2σ )

2m
+ ϵ.

(17)

By replacing the CMMD distance in Eq. (17) with the re-
tracted CMMD distance in Eq. (14), we arrive at Theorem 1.

B. Additional Experiments
We conduct additional experiments to verify the effec-

tiveness of our DomainDrop, including: 1) The effects of

Table 9. Effect (%) on different inserted posotions of Domain-
Drop. B1 − 4 represent four residual blocks of the ResNet ar-
chitecture. The experiment is conducted on PACS dataset with
ResNet-18 backbone. The best performance is marked as bold.

Position PACS
B1 B2 B3 B4 Art Cartoon Photo Sketch Avg.
- - - - 80.31± 1.54 76.65± 0.48 95.38± 0.12 71.67± 1.49 81.00
✓ - - - 81.10± 0.76 78.88± 0.69 94.72± 0.45 81.92± 0.69 84.15
- ✓ - - 80.71± 0.71 79.25± 0.44 94.85± 0.35 82.16± 1.35 84.24
- - ✓ - 82.52± 0.72 79.44± 0.46 95.76± 0.16 79.35± 1.17 84.27
- - - ✓ 81.15± 0.98 78.58± 0.81 95.39± 0.40 79.74± 1.47 83.72
✓ ✓ - - 81.15± 1.03 79.44± 0.30 95.99± 0.49 83.13± 0.48 84.93
✓ ✓ ✓ - 83.84± 0.70 80.02± 0.37 96.29± 0.23 83.23± 0.53 85.87
✓ ✓ ✓ ✓ 84.47± 0.77 80.50± 0.56 96.83± 0.21 84.83± 0.67 86.66

Table 10. Performance (%) comparisons with the start-of-the-art
DG approaches on the DomainBed benchmark. We compare with
12 DG algorithms on the following five multi-domain datasets:
VLCS [52], PACS [30], OfficeHome [53], TerraInc [2], and Do-
mainNet [42]. The network architecture is ResNet-50. We use the
validation set from source domains for the model selection.

Method Venue VLCS PACS OfficeHome TerraInc DomainNet Avg.
ERM [18] ICLR’20 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 63.3
RSC [24] ECCV’20 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 46.6 ± 1.0 38.9 ± 0.5 62.7
SagNet [38] CVPR’21 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 64.2
SelfReg [26] ICCV’21 77.5 ± 0.0 86.5 ± 0.3 69.4 ± 0.2 51.0 ± 0.4 44.6 ± 0.1 65.8
FISH [48] ICLR’21 77.8 ± 0.3 85.5 ± 0.3 68.6 ± 0.4 45.1 ± 1.3 42.7 ± 0.2 63.9
W2D [23] CVPR’22 - 83.4 ± 0.3 63.5 ± 0.1 44.5 ± 0.5 - -
XDED [27] ECCV’22 74.8 ±0.0 83.8 ± 0.0 65.0 ± 0.0 42.5 ± 0.0 - -
GVRT [36] ECCV’22 79.0 ± 0.2 85.1 ± 0.3 70.1 ± 0.1 48.0 ± 0.2 44.1 ± 0.1 65.2
MIRO [5] ECCV’22 79.0 ± 0.0 85.4 ± 0.4 70.5 ± 0.4 50.4 ± 1.1 44.3 ± 0.2 65.9
PTE [36] ECCV’22 79.0 ± 0.2 85.1 ± 0.3 70.1 ± 0.1 48.0 ± 0.2 44.1 ± 0.1 65.2
EQRM [14] NeurIPS’22 77.8 ± 0.6 86.5 ± 0.2 67.5 ± 0.1 47.8 ± 0.6 41.0 ± 0.3 64.1
DAC-SC [28] CVPR’23 78.7 ± 0.3 87.5 ± 0.1 70.3 ± 0.2 44.9 ± 0.1 46.5 ± 0.3 65.6
DomainDrop Ours 79.8 ± 0.3 87.9 ± 0.3 68.7 ± 0.1 51.5 ± 0.4 44.4 ± 0.5 66.5

different inserted positions of DomainDrop in the network;
2) The experiments on the DomainBed benchmark.

Different inserted positions of DomainDrop. We here
investigate where to insert DomainDrop in the network.
Given a standard ResNet with four residual blocks, we train
different models by taking different blocks as candidates
and randomly selecting a block to activate DomainDrop at
each iteration. The results are reported in Tab. 9. The first
line represents the results of the baseline model, which is
trained using all source domains directly on the ResNet-18
(i.e., DeepAll [71]). We observe that no matter where Do-
mainDrop is inserted, the model consistently outperforms
the baseline model by a significant margin, e.g., 3.15%
(84.15% vs. 81.00%) with DomainDrop in Block 1. The
results indicate that our DomainDrop is effective in enhanc-
ing the robustness of channels to domain shifts at differ-
ent network layers. Furthermore, we find that inserting Do-
mainDrop into all blocks of the network leads to the high-
est performance, exceeding the baseline model by 5.66%
(86.66% vs. 81.00%), indicating that suppressing domain-
sensitive channels in all training stages will result in the best
generalization ability. Based on the analysis, we insert Do-
mainDrop into all network blocks in our all experiments.

Experiments on DomainBed. We conducted exper-
iments on the DomainBed benchmark [18], including
VLCS, PACS, OfficeHome, TerraInc, and DomainNet. The



network is trained using Adam optimizer for 5000 itera-
tions with a learning rate of 5e − 5 and batch size of 64.
The experiments are repeated three times, and the averaged
accuracy is reported in Tab. 10. We observe that our Do-
mainDrop can consistently achieve better performance than
ERM (a strong baseline in DomainBed) on all datasets, e.g.,
outperforming ERM by 2.4% (87.9% vs. 85.5%) on PACS
and 5.4% (51.5% vs. 46.1%) on TerraInc. The experimen-
tal results demonstrate the effectiveness of our method on
various DG benchmark datasets. Moreover, DomainDrop
obtained the highest average accuracy among all the com-
pared methods, exceeding the SOTA method DAC-SC [28]
by 0.9% (66.5% vs. 65.6%), indicating that our method can
significantly improve the model generalization ability.

C. Analytical Experiments

We conduct experiments to analyze the effectiveness of
our method, including: 1) We discuss why tackle the DG is-
sue on feature channels; 2) We quantify the channel robust-
ness to domain shifts in each network layer; 3) We measure
the domain gap of feature maps extracted by the model; 4)
We provide visual explanations of our DomainDrop.

Why tackle DG on feature channels. Different from
traditional DG methods that constrain the entire network,
recent methods have focused on learning domain-invariant
features in middle layers via domain augmentations [56, 72]
or local penalizations [47, 54]. However, recent work [11]
has indicated that these methods typically perturb or penal-
ize specific pre-defined features, e.g., style statistics [72]
or local textures [47], which could neglect other domain-
specific features and affect model generalization. In this
paper, we propose to analyze the DG issue from a novel
perspective of channel robustness to domain shifts. Our key
insight is that if a channel captures domain-invariant pat-
terns, its activations should remain stable across different
domains. As shown in Fig. 5, we observe that numerous
channels exhibit limited robustness to domain shifts (i.e.,
the red bars). The findings motivate us to focus on enhanc-
ing channel robustness to domain shifts.

Channel robustness to domain shifts. To enhance the
generalization ability of the models to the unseen target do-
main, we wish the model to learn general and comprehen-
sive domain-invariant features from source domains. Ide-
ally, we hope each channel of the representations is acti-
vated by category-related information while being invariant
across domains, making the whole representation sufficient
for classification. Inspired by previous work [56], we ex-
ploit the averaged activation for each class in each domain
to estimate the robustness of each channel to domain shifts.
Specifically, for the i-th channel in the l-th middle layer, we
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Figure 5. The activation value of the channels 1 − 32 in the last
block of ResNet-18 across different domains. The experiment is
conducted on the PACS dataset with Art as the target domain.

Table 11. The standard deviation of channel activations for sam-
ples from different domains. Block. 1−4 represent four residual
blocks of the ResNet architecture. The lower the standard devia-
tion, the more robust the channel is to domain shifts.

Sensitivity Block. 1 Block. 2 Block. 3 Block. 4
Baseline 4.43 2.06 1.54 7.84
RSC [24] 4.22 1.94 1.63 7.23
I2-Drop [47] 4.03 1.89 1.58 7.42
MixStyle [72] 4.30 2.03 1.51 7.16
FACT [61] 4.83 2.07 1.57 7.52
DomainDrop (Ours) 3.85 1.56 1.04 5.94

first calculate its averaged activation in the k-the domain:

ali =
1

nk

nk∑
j=1

GAP (Fl(xj))i, (18)

where Fl(·) is the feature maps in the l-th middle layer and
GAP (·) denotes the global average pooling layer. Then we
compute the standard deviation of the i-th channel activa-
tion among different domains. We present the results in
Tab. 11. We observe that compared with Baseline, RSC
[24] and I2-Drop [47] present lower channel sensitivity to
domain shifts in the last layer (i.e., Block. 4) since they can
regularize the model to learning domain-invariant features.
However, since these methods are only suitable for specific
layers (i.e., RSC for the deepest layer and I2-Drop for the
shallowest layer), they cannot adequately counter the over-
fitting issue. The SOTA DG methods MixStyle [72] can in-
crease the feature diversity at multiple layers, but it does not
explicitly remove domain-specific features, thus failing to
reduce channel sensitivity adequately. In contrast, the low-
est standard deviation that DomainDrop achieves indicates
that our method can learn more domain-invariant represen-
tations, showing the superiority of our framework.

Domain gap of extracted features maps. To investigate
the influence of our framework, we also calculate the inter-
domain distance (across all source domains) of the feature
maps extracted by the model on various datasets, includ-



Table 12. The inter-domain distribution gap (×100) of the ex-
tracted features by our method. For PACS, we take Art Painting as
the target domain and the others as all source domains. For Office-
Home, the target domain is Real-World and the others are source
domains. For VLCS, we adopt Sun as the target domain and the
others as source domains. The smaller the inter-domain distance,
the better the generalization performance of the model.

Method PACS OfficeHome VLCS
Baseline 17.57 11.56 16.65
DomainDrop (Ours) 11.82 8.58 14.21

dog giraffe“Photo”

giraffe dog“Cartoon”

dog horse“Sketch”

giraffe elephant“Photo”

Baseline OursFilteredBaseline OursFiltered

Figure 6. Visualization of attention maps of the last convolutional
layer on PACS with Art Painting as the target domain. The back-
bone used in the experiment is ResNet-18. For each sample, the
first column is the category attention map of baseline, the middle
column is the domain attention map generated by domain discrim-
inator, and the last column is the attention map of DomainDrop.

ing PACS, OfficeHome, and VLCS. Following previous DG
method [56], we calcute the inter-domain gap as:

d =
2

K(K − 1)

K∑
k1=1

K∑
k2=k1+1

||F k1
− F k2

||2, (19)

where K is the number of source domains, F k1 and F k2

denote the averaged feature maps of all samples from the
k1-th and k2-th domain, respectively. As shown in Tab. 12,
we can observe that compared to the baseline, DomainDrop
can effectively narrow the inter-domain gap among source
domains on all datasets, indicating that our method can sup-
press domain-specific features and encourage the model to
learn domain-invariant features during training.

Visual explanations. To provide visual evidence of the
effectiveness of DomainDrop in reducing domain-specific
features, we utilized GradCAM [46] to generate attention
maps of the last conventional layer for both the baseline
(DeepAll) and DomainDrop models. The results are pre-
sented in Fig. 6. As we can see, the baseline model captures
a considerable amount of domain-specific information, as
indicated by the overlap between the category attention map
(column 1) and the domain attention map (column 2). On
the other hand, DomainDrop can discard domain-specific
features while retaining domain-invariant features, leading
to more generalized attention maps that focus on represen-
tative information for object classification (column 3). For

instance, in the case of the dog image, the model needs to
focus on the dog’s face as one of the representative fea-
tures to classify, which is precisely captured by Domain-
Drop. In contrast, the baseline focuses on spot texture fea-
tures, which results in misclassification. These results sug-
gest that DomainDrop can effectively reduce the sensitivity
of the model to domain shifts and learn more generalized
features, making it a promising method for DG tasks.


