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Abstract

The goal of continual learning is to improve the perfor-
mance of recognition models in learning sequentially ar-
rived data. Although most existing works are established on
the premise of learning from scratch, growing efforts have
been devoted to incorporating the benefits of pre-training.
However, how to adaptively exploit the pre-trained knowl-
edge for each incremental task while maintaining its gen-
eralizability remains an open question. In this work, we
present an extensive analysis for continual learning on a
pre-trained model (CLPM), and attribute the key challenge
to a progressive overfitting problem. Observing that selec-
tively reducing the learning rate can almost resolve this is-
sue in the representation layer, we propose a simple but ex-
tremely effective approach named Slow Learner with Clas-
sifier Alignment (SLCA), which further improves the clas-
sification layer by modeling the class-wise distributions
and aligning the classification layers in a post-hoc fash-
ion. Across a variety of scenarios, our proposal provides
substantial improvements for CLPM (e.g., up to 49.76%,
50.05%, 44.69% and 40.16% on Split CIFAR-100, Split
ImageNet-R, Split CUB-200 and Split Cars-196, respec-
tively), and thus outperforms state-of-the-art approaches by
a large margin. Based on such a strong baseline, critical
factors and promising directions are analyzed in-depth to
facilitate subsequent research. Code has been made avail-
able at: https://github.com/GengDavid/SLCA.

1. Introduction

Continual learning aims to learn effectively from se-
quentially arrived data, behaving as if they were observed

*Equal contribution.

simultaneously. Current efforts are mainly based on the
premise of learning from scratch, attempting to mitigate
catastrophic forgetting [27] of previously-learned knowl-
edge when adapting to each incremental task. However,
the success of large-scale pre-training has revolutionized
the training paradigm of deep neural networks. The pre-
training stage brings both strong knowledge transfer and
robustness to catastrophic forgetting for downstream con-
tinual learning [43], which tends to be more significant as
the scale of pre-training increases [31, 28]. Therefore, con-
tinual learning on a pre-trained model (CLPM) turns out to
be an emerging direction and receives growing attention.

For CLPM, the pre-trained knowledge is usually ex-
pressed by the representation layer, adapted to a sequence of
incremental tasks. There are two major strategies to lever-
age the pre-trained knowledge [43]: (1) fine-tune the repre-
sentations, or (2) keep the representations fixed while learn-
ing a few additional parameters (e.g., adaptor [16], prompt
[24], instruction [8], etc.). Although (2) is becoming domi-
nant in natural language processing (NLP) [18], the choice
of (1) and (2) remains an open question for continual learn-
ing in computer vision (CV). The recently proposed prompt-
based approaches, such as L2P [46] and DualPrompt [45],
followed the second strategy and reported to be far supe-
rior to the traditional continual learning baselines of fine-
tuning the representation layer. On the other hand, since
the large amount of pre-training data are typically unla-
beled and may also arrive incrementally, it seems more rea-
sonable to use self-supervised pre-training than supervised
pre-training [5, 43], also regarding that (upstream) contin-
ual learning in a self-supervised manner is generally more
robust to catastrophic forgetting [17, 26, 9].

In this work, however, we present an extensive analy-
sis to reconsider the current progress and technical route
for CLPM in CV. Specifically, CLPM poses a critical chal-
lenge for continual learning that the pre-trained knowledge
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Figure 1. Performance of continual learning with supervised pre-
training of ImageNet-21K. The proposed Slow Learner (SL) with
Classifier Alignment (SLCA) enables sequential fine-tuning (Seq
FT) to outperform prompt-based approaches such as L2P [46] and
DualPrompt [45] by a large margin.

should be adaptively exploited for the current task while
maintaining generalizability for future tasks. For traditional
continual learning baselines that sequentially fine-tune (Seq
FT) the entire model, a uniform learning rate is typically
too large for the representation layer, leading to a progres-
sive overfitting problem where the pre-trained representa-
tions overfit to each incremental task and gradually lose
generalizability. This is the major cause of their inferior-
ity to the recent prompt-based approaches. Such a phe-
nomenon is further exacerbated by using the more realistic
self-supervised pre-training, which generally requires larger
updates of the pre-trained representations to adequately ac-
commodate each incremental task.

To address the above challenges, we propose a simple
but extremely effective approach named Slow Learner with
Classifier Alignment (SLCA). First, we observe that the
progressive overfitting problem of the representation layer
can be almost avoided by selectively reducing its learning
rate (i.e., using a slow learner), which is sufficient to achieve
a good trade-off between task specificity and generalizabil-
ity in continually updating the pre-trained representations.
Based on the proposed slow learner, we further improve the
classification layer by modeling the class-wise distributions
and aligning the classification predictions, so as to properly
balance the relationships between different tasks.

Across a variety of continual learning benchmarks un-

der supervised or self-supervised pre-training, our proposal
provides substantial improvements for CLPM in CV and
dramatically fills the gap of current progress from the upper
bound performance. For example, the naive Seq FT is im-
proved by 49.76%, 50.05%, 44.69% and 40.16% on Split
CIFAR-100, Split ImageNet-R, Split CUB-200 and Split
Cars-196, respectively, thus outperforming the SOTA ap-
proaches by a large margin (summarized in Fig. 1). On Split
CIFAR-100 and Split ImageNet-R, the performance gap is
only less than 2% for supervised pre-training and less than
4% for self-supervised pre-training.

Our contributions include three aspects: (1) We present
an extensive analysis of continual learning on a pre-trained
model (CLPM), and demonstrate that the progressive over-
fitting problem is the key challenge for traditional continual
learning baselines. (2) We propose a simple but effective
approach to address this problem, which provides substan-
tial improvements for CLPM and clearly outperforms the
state-of-the-art approaches, serving as a strong baseline to
re-evaluate the current progress and technical route. (3) Our
results further identify critical factors and promising direc-
tions for CLPM, such as pre-training paradigm and down-
stream granularity, so as to facilitate subsequent research.

2. Related Work
Existing work on continual learning mainly focuses

on sequential training of deep neural network(s) from
scratch, seeking to effectively learn each new task with-
out severely forgetting the old tasks. Representative strate-
gies include regularization-based approaches [19, 1, 51,
25, 41, 7], which preserve the old model and selectively
stabilize changes of parameters or predictions; replay-
based approaches [49, 30, 3, 44, 40, 39], which approxi-
mate and recover the previously-learned data distributions;
architecture-based approaches [34, 33, 42, 50], which allo-
cate dedicated parameter sub-spaces for each incremental
task; etc.

Recent works have increasingly explored the benefits
of pre-training for continual learning. For example, the
representations obtained from supervised pre-training have
been shown to facilitate not only knowledge transfer but
also robustness to catastrophic forgetting for downstream
continual learning [31, 28, 57]. Also, learning a large
number of base classes in the initial training phase allows
class-incremental learning with small adaptations [48]. In-
spired by the techniques of using pre-trained knowledge
in NLP, L2P [46] employed an additional set of learnable
parameters called “prompts” that dynamically instruct a
pre-trained representation layer to learn incremental tasks.
DualPrompt [45] extended this idea by attaching comple-
mentary prompts to the pre-trained representation layer for
learning task-invariant and task-specific instructions. Such
prompt-based approaches were reported to be far superior



to traditional continual learning baselines, which potentially
challenges the current paradigm of using pre-trained knowl-
edge in CV.

Since the large amount of training samples required to
construct a pre-trained model are typically unlabeled and
may also arrive incrementally, self-supervised pre-training
emerges as a more preferable choice than supervised pre-
training. Several recent works discovered that contin-
ual learning in a self-supervised manner suffers from less
catastrophic forgetting [17, 26, 9]. Indeed, self-supervised
paradigms have been shown to be better adapted to up-
stream continual learning [5]. However, the effectiveness
of self-supervised pre-training for downstream continual
learning remains to be investigated.

3. Continual Learning on a Pre-trained Model
In this section, we introduce the problem formulation of

continual learning on a pre-trained model (CLPM), perform
an extensive analysis, and then present our approach.

3.1. Problem Formulation

Let’s consider a neural network Mθ(·) = hθcls(fθrps(·))
with parameters θ = {θrps, θcls} for classification tasks,
consisting of a representation layer fθrps(·) that projects in-
put images to feature representations, and a classification
layer hθcls(·) that projects feature representations to out-
put predictions. θrps is initialized on a pre-training dataset
Dpt in a supervised or self-supervised manner (labels are
not necessary for the latter). Then, Mθ needs to learn
a sequence of incremental tasks from their training sets
Dt, t = 1, ..., T and tries to perform well on their test sets.
Following previous works of CLPM in CV [46, 45], we
mainly focus on the class-incremental scenario of contin-
ual learning [37]. In details, Dt =

⋃
c∈Ct

{(xc,n, yc,n)}Nc
n=1

introduces a set of new classes Ct, where Nc denotes the
number of training samples (xc,n, yc,n) for class c, and all
the classes ever seen are evaluated without task labels.

To achieve this aim, the network needs to (1) effectively
transfer the pre-trained knowledge to each incremental task
while maintaining its generalizability for future tasks, and
(2) properly balance learning plasticity of new tasks with
memory stability of old tasks. A naive baseline is to se-
quentially fine-tune the entire model Mθ on each Dt, where
fθrps and hθcls are updated in a similar speed (i.e., using
the same learning rate). However, due to the lack of Dpt

and D1:t−1 =
⋃t−1

i=1Di, the performance of Mθ is severely
limited by a progressive overfitting problem in both aspects.
Specifically, (1) the knowledge of Dpt is interfered by Dt,
as θrps is continually updated to accommodate incremen-
tal tasks while the generalizability obtained from the pre-
training stage is progressively lost; and (2) the knowledge
of D1:t−1 is interfered by Dt, as θcls (and θrps) catastroph-
ically forgets the old tasks when learning each new task.

Figure 2. Slow Learner (SL) can greatly enhance continual learn-
ing performance on a pre-trained model. Here we adopt ImageNet-
21K supervised pre-training for all baselines with default per-
formance referenced from [46, 45], including prompt-based ap-
proaches (L2P [46] and DualPrompt [45]), regularization-based
approaches (EWC [19] and LwF [25]), and replay-based ap-
proaches (GDumb [30], DER++ [3] and BiC [49]).

Most continual learning approaches [19, 25, 30, 49, 3]
are established on the premise of learning from scratch and
focus on improving the second aspect. We call them “tra-
ditional baselines”. To address the first aspect, the newly
proposed prompt-based approaches [46, 45] fixed the repre-
sentation layer and employed an additional set of learnable
parameters to instruct the pre-trained model, which reported
significantly better performance for CLPM than other tradi-
tional baselines that update the representation layer.

3.2. Slow Learner is (Almost) All You Need?

Implementation of Slow Learner: However, we ar-
gue that the performance of traditional baselines reported
in [46, 45] is severely limited by using a uniform learning
rate (e.g., 0.005) for both θrps and θcls. Through extensive
experiments, we observe that using a much smaller learn-
ing rate (0.0001) for θrps and a slightly larger learning rate
(0.01) for θcls can greatly enhance the performance of tra-
ditional baselines (Fig. 2).1 The reported performance of
sequential fine-tuning (Seq FT) is improved by more than

1A comprehensive analysis of the effect of learning rate can be found
in the appendix.



Figure 3. Comparison of pre-training paradigms on ImageNet-1K.
DeiT [36] is a strong supervised method for (pre-)training vision
transformer, while MoCo v3 [4], MAE [13] and BEiT [2] are rep-
resentative self-supervised methods. The pre-trained checkpoints
are obtained from their official release.

40% for challenging continual learning benchmarks such as
Split CIFAR-100 and Split ImageNet-R, respectively, thus
clearly outperforming the prompt-based approaches such as
L2P [46] and DualPrompt [45].2 We call this simple but
surprisingly effective strategy “Slow Learner (SL)”, corre-
sponding to slowing down the updating speed of the rep-
resentation layer. In contrast to previous works of using
different learning rates for transfer learning [10, 53, 14],
the benefit of our proposal is specific to continual learn-
ing, as the upper bound performance (i.e., joint training) is
only marginally improved by the SL while the performance
gap between continual learning and joint training is greatly
filled (e.g., only 4.36% on Split CIFAR-100 and 7.80% on
Split ImageNet-R for Seq FT w/ SL).

Effect of Pre-training Paradigm: We then evaluate the
effect of pre-training paradigms (i.e., supervised or self-
supervised) on downstream continual learning. Here we fo-
cus on ImageNet-1K as the pre-training dataset, since most
self-supervised methods only release checkpoints on it.
Considering architectural consistency with previous works
of CLPM [46, 45], we select representative self-supervised
methods (i.e., MoCo v3 [4], MAE [13] and BEiT [2]) that
release checkpoints on ViT-B/16 in our comparisons. We
further compare DeiT [36], a strong supervised method for

2Please note that the prompt-based approaches [46, 45] use a fixed rep-
resentation layer, so our proposal is not applicable for them.

Figure 4. Similarity of the pre-trained representations (1) before
and after joint training (left Y-axis, yellow dot), and (2) after joint
training and after continual learning (right Y-axis, column). We
adopt Centered Kernel Alignment (CKA) [20] as the similarity
metric. Best viewed in color.

(pre-)training vision transformer. As shown in Fig. 3, self-
supervised pre-training, while more realistic regarding la-
beling requirements and upstream continual learning, typ-
ically results in a larger performance gap between Seq FT
and joint training than supervised pre-training. Similarly,
the use of SL can effectively reduce this gap. Interestingly,
the performance of Seq FT w/ SL for MoCo v3 [4] far
exceeds that of the more recent MAE [13], although their
joint training performance is comparable. This is possi-
bly because the pre-trained representations of MoCo v3 [4]
require remarkably smaller updates to learn all tasks well
(Fig. 4, left Y-axis), thus alleviating the progressive overfit-
ting problem. Meanwhile, the use of SL allows MoCo v3
[4] to learn representations much closer to that of the joint
training (Fig. 4, right Y-axis). The above results suggest a
new direction for the design of self-supervised paradigms,
i.e., how to effectively perform downstream continual learn-
ing and combine the advantages of SL.

Evaluation of Representation: So, why is the Slow
Learner such effective, and what accounts for the remaining
performance gap? We perform a linear probing experiment
[13] to evaluate the performance of the representation layer.
Specifically, after learning each incremental task (e.g., 10
classes per task for 10 tasks in Split CIFAR-100) via Seq FT
w/ SL, we fix the representation layer and employ an extra
classification layer, called a linear probe, to learn all classes
of the corresponding benchmark dataset (e.g., a total of 100
classes in CIFAR-100 dataset). The performance of these
linear probes is presented in Fig. 5, which tends to grow
with learning more tasks, indicating that the representation
layer is accumulating knowledge for better adaptation. Af-
ter learning all incremental tasks, it can be clearly seen that
using the continually-learned representation layer to jointly
train an extra classifier for all classes can almost reach the



Figure 5. Linear probing results of Slow Learner. All experiments are based on ImageNet-21K supervised pre-training. We report the
averaged accuracy of all classes in the corresponding benchmark dataset (e.g., a total of 100 classes in CIFAR-100 dataset). The dark red
arrow represents the performance gap caused by a sub-optimal classification layer.
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Figure 6. Slow Learner with Classifier Alignment (SLCA). Ht is
the logit of predicting the current training data in Dt.

joint training performance of the entire model, and far out-
perform its counterpart with a continually-learned classifier
(i.e., Seq FT w/ SL in Fig. 5). Therefore, the proposed SL
can almost address the problem of the representation layer,
yet the classification layer remains sub-optimal. In partic-
ular, the problem of classification layer becomes more se-
vere for fine-grained continual learning benchmarks such as
Split CUB-200 and Split Cars-196.

3.3. Slow Learner with Classifier Alignment

To further improve the classification layer, we propose
to align the statistics of previously-learned classes in a
post-hoc fashion (see Fig. 6 and Algorithm 1). Specifi-
cally, when learning each incremental task, only the pa-
rameters corresponding to the classes of the current task
are trained together with the representation layer. After
learning each task, we collect feature representations Fc =
[rc,1, ..., rc,Nc

] for each class c ∈ Ct of the current task,
where rc,n = fθrps(xc,n) and Nc denotes its amount. In-
stead of saving the extracted features Fc of training samples,
CA preserves their mean µc ∈ Rd and covariance Σc ∈
Rd×d for each class c (d denotes the feature dimension).
Since the use of pre-training provides well-distributed rep-
resentations, each class tends to be single-peaked and can

be naturally modelled as a Gaussian N (µc,Σc).
Whenever the model needs to be evaluated, the classifi-

cation layers are further aligned as follows. We first sam-
ple generated features F̂c = [r̂c,1, ..., r̂c,Sc

] from the dis-
tribution N (µc,Σc) of each class c ∈ C1:T ever seen in
C1:T =

⋃T
i=1 Ci, where Sc is the amount of generated fea-

tures for each class (Sc = 256 in our experiments), and the
task amount T can be any positive integer without being
known in advance. Next, we apply a widely-used cross-
entropy loss to adjust the classification layer hθcls by feed-
ing F̂1:T = [F̂1, ..., F̂[C1:T ]] as the input of the classification
layer, where [C1:T ] denotes the number of classes in C1:T .

Algorithm 1 Slow Learner with Classifier Alignment (SLCA)
Inputs: Pre-training dataset Dpt; training dataset Dt for
task t = 1, ..., T ; network Mθ(·) = hθcls(fθrps(·)) with pa-
rameters θ = {θrps, θcls}; learning rates α for θrps and β
for θcls (α < β); temperature hyperparameter τ .
Initialization: Initialize θrps by pre-training on Dpt; ini-
tialize θcls randomly.

1: # sequential tasks.
2: for task t = 1, ..., T do
3: # different learning rates for θrps and θcls.
4: while not converged do
5: Train Mθ with cross-entropy loss on Dt.
6: end while
7: Collect Fc = [rc,1, ..., rc,Nc

] for c ∈ Ct.
8: Save mean µc and covariance Σc of Fc for c ∈ Ct.
9: end for

10: # classifier alignment.
11: Sample F̂c from N (µc,Σc) for c ∈ C1:T .
12: while not converged do
13: Compute logit H1:T and its magnitude ∥H1:T ∥.
14: Train hθcls with normalized logit in Eqn. 1.
15: end while

However, a prolonged training of the classification layer
can lead to an overconfidence issue, which potentially im-
pairs generalizability to the test set(s). To overcome this, we



Method Memory-Free Pre-trained Split CIFAR-100 Split ImageNet-R
Last-Acc (%) Inc-Acc (%) Last-Acc (%) Inc-Acc (%)

Joint-Training - IN21K-Sup 93.22±0.16 - 79.60±0.87 -
GDumb [30] IN21K-Sup 81.92±0.15 89.46±0.94 24.23±0.35 43.48±0.49

DER++ [3] IN21K-Sup 84.50±1.67 91.49±0.61 67.75±0.93 78.13±1.14

BiC [49] IN21K-Sup 88.45±0.57 93.37±0.32 64.89±0.80 73.66±1.61

L2P [46] ✓ IN21K-Sup 82.76±1.17 88.48±0.83 66.49±0.40 72.83±0.56

DualPrompt [45] ✓ IN21K-Sup 85.56±0.33 90.33±0.33 68.50±0.52 72.59±0.24

EWC [19] ✓ IN21K-Sup 89.30±0.23 92.31±1.66 70.27±1.99 76.27±2.13

LwF [25] ✓ IN21K-Sup 87.99±0.05 92.13±1.16 67.29±1.67 74.47±1.48

Seq FT ✓ IN21K-Sup 88.86±0.83 92.01±1.71 71.80±1.45 76.84±1.26

SLCA (Ours) ✓ IN21K-Sup 91.53±0.28 94.09±0.87 77.00±0.33 81.17±0.64

Joint-Training - IN1K-Self 89.11±0.06 - 72.80±0.23 -
GDumb [30] IN1K-Self 69.72±0.20 80.95±1.19 28.24±0.58 43.64±1.05

DER++ [3] IN1K-Self 63.64±1.30 79.55±0.87 53.11±0.44 65.10±0.91

BiC [49] IN1K-Self 80.57±0.86 89.39±0.33 57.36±2.68 68.07±0.22

EWC [19] ✓ IN1K-Self 81.62±0.34 87.56±0.97 64.50±0.36 70.37±0.41

LwF [25] ✓ IN1K-Self 77.94±1.00 86.90±0.90 60.74±0.30 68.55±0.65

Seq FT ✓ IN1K-Self 81.47±0.55 87.55±0.95 64.43±0.44 70.48±0.54

SLCA (Ours) ✓ IN1K-Self 85.27±0.08 89.51±1.04 68.07±0.21 73.04±0.56

Table 1. Experimental results for continual learning on Split CIFAR-100 and Split ImageNet-R. IN21K-Sup: supervised pre-training on
ImageNet-21K. IN1K-Self: self-supervised pre-training on ImageNet-1K with MoCo v3 [4]. All other fine-tuning based methods are
reproduced according to their officially-released codes with the proposed Slow Learner implemented.

draw inspirations from out-of-distribution (OOD) detection
[47] and normalize the magnitude of network outputs when
computing the cross-entropy. Let H1:T = hθcls(F̂1:T ) =

[hθcls(F̂1), ..., hθcls(F̂[C1:T ])] := [l1, ..., l[C1:T ]] denote the
logit (i.e., pre-softmax output) of F̂1:T , which can be
re-written as the product of two components: H1:T =
∥H1:T ∥ · H⃗1:T , where ∥ · ∥ denotes L2-norm. ∥H1:T ∥ =√∑

c∈C1:T
∥lc∥2 represents the magnitude of H1:T , and

H⃗1:T represents its direction. Then we adopt a modified
cross-entropy loss with logit normalization to perform clas-
sifier alignment:

L(θcls; F̂1:T ) = − log
ely/(τ∥H1:T ∥)∑

c∈C1:T
elc/(τ∥H1:T ∥) , (1)

where ly denotes the y-th element of H1:T corresponding
to the ground-truth label y. τ is a temperature hyperpa-
rameter. The intuition is that normalizing H1:T with an
input-dependent constant τ∥H1:T ∥ will not change the re-
sult of softmax prediction argmaxc∈C1:T

(lc), while forcing
the magnitude ∥H1:T ∥ before softmax becomes 1

τ can make
the criterion only adjust the direction H⃗1:T [47]. Therefore,
the normalization in Eqn. 1 can alleviate the overconfidence
issue in classifier alignment. In practice, we observe that the
temperature hyperparameter is not sensitive and empirically
find τ = 0.1 to be a reasonable choice.

4. Experiments

In this section, we first briefly describe the experimental
setups, and then present the experimental results.

4.1. Experimental Setups

Benchmark: Following L2P [46] and DualPrompt [45],
we adopt pre-training from ImageNet-21K dataset [32], also
known as the full ImageNet [6] consisting of 14,197,122
images with 21,841 classes. We also consider pre-training
from ImageNet-1K dataset [23], a subset of ImageNet-21K
introduced for the ILSVRC2012 visual recognition chal-
lenge, consisting of 1000-class images.

To evaluate the performance of downstream contin-
ual learning, we consider four representative benchmark
datasets and randomly split each of them into 10 disjoint
tasks: The first two follow previous works [46, 45] and are
relatively coarse-grained in terms of classification, while
the last two are relatively fine-grained. Specifically, CIFAR-
100 dataset [22] consists of 100-class natural images with
500 training samples per class. ImageNet-R dataset [15]
contains 200-class images, spliting into 24,000 and 6,000
images for training and testing (similar ratio for each class),
respectively. Note that although the image categories of
ImageNet-R are overlapped with ImageNet-21K, all images
are out-of-distribution samples for the pre-train dataset, i.e.,
hard examples from ImageNet or newly collected data of
different styles. It requires considerable adaptations of the
pre-trained model, therefore serving as a challenging bench-
mark for continual learning. CUB-200 dataset [38] includes
200-class bird images with around 60 images per class, 30
of which are used for training and the rest for testing. Cars-
196 dataset [21] includes 196 types of car images, split into
8,144 and 8,040 images for training and testing (similar ra-
tio for each class), respectively. We present the average ac-
curacy of all classes after learning the last task, denoted as
Last-Acc (equivalent to “Avg. Acc” in [46, 45]). We also



Method Memory-Free Pre-trained Split CUB-200 Split Cars-196
Last-Acc (%) Inc-Acc (%) Last-Acc (%) Inc-Acc (%)

Joint-Training - IN21K-Sup 88.00±0.34 - 80.31±0.13 -
GDumb [30] IN21K-Sup 61.80±0.77 79.76±0.18 25.20±0.84 49.48±0.74

DER++ [3] IN21K-Sup 77.42±0.71 87.61±0.09 60.41±1.76 75.04±0.57

BiC [49] IN21K-Sup 81.91±2.59 89.29±1.57 63.10±5.71 73.75±2.37

L2P [46] ✓ IN21K-Sup 62.21±1.92 73.83±1.67 38.18±2.33 51.79±4.19

DualPrompt [45] ✓ IN21K-Sup 66.00±0.57 77.92±0.50 40.14±2.36 56.74±1.78

EWC [19] ✓ IN21K-Sup 68.32±2.64 79.95±2.28 52.50±3.18 64.01±3.25

LwF [25] ✓ IN21K-Sup 69.75±1.37 80.45±2.08 49.94±3.24 63.28±1.11

Seq FT ✓ IN21K-Sup 68.07±1.09 79.04±1.69 49.74±1.25 62.83±2.16

SLCA (Ours) ✓ IN21K-Sup 84.71±0.40 90.94±0.68 67.73±0.85 76.93±1.21

Joint-Training - IN1K-Self 79.55±0.04 - 74.52±0.09 -
GDumb [30] IN1K-Self 45.29±0.97 66.86±0.63 20.95±0.42 45.40±0.66

DER++ [3] IN1K-Self 61.47±0.32 77.15±0.61 50.64±0.70 67.64±0.45

BiC [49] IN1K-Self 74.39±1.12 82.13±0.33 65.57±0.93 73.95±0.29

EWC [19] ✓ IN1K-Self 61.36±1.43 72.84±2.18 53.16±1.45 63.61±1.06

LwF [25] ✓ IN1K-Self 61.66±1.95 73.90±1.91 52.45±0.48 63.87±0.31

Seq FT ✓ IN1K-Self 61.67±1.37 73.25±1.83 52.91±1.61 63.32±1.31

SLCA (Ours) ✓ IN1K-Self 73.01±0.16 82.13±0.34 66.04±0.08 72.59±0.04

Table 2. Experimental results for continual learning on Split CUB-200 and Split Cars-196. IN21K-Sup: supervised pre-training on
ImageNet-21K. IN1K-Self: self-supervised pre-training on ImageNet-1K with MoCo v3 [4]. The results of all fine-tuning based base-
lines are reproduced according to their officially-released codes with the proposed Slow Learner implemented.

compute the average accuracy of the classes ever seen after
learning each incremental task and then present their aver-
age, denoted as Inc-Acc.

Implementation: Following previous works [46, 45],
we adopt a pre-trained ViT-B/16 backbone for all baselines.
In addition to supervised pre-training, we consider repre-
sentative self-supervised paradigms that provide pre-trained
checkpoints on ViT-B/16, i.e., MoCo v3 [4], BEiT [2] and
MAE [13]. For continual learning of downstream tasks, we
follow the previous implementation that employs an Adam
optimizer for L2P [46] and DualPrompt [45] while a SGD
optimizer for other baselines, with the same batch size of
128. Our Slow Learner adopts a learning rate of 0.0001 for
the representation layer and 0.01 for the classification layer,
different from [46, 45] using 0.005 for the entire model.

Baseline: We adopt joint training as the upper bound
performance and consider continual learning baselines with
or without replaying old training samples. As for the for-
mer, a memory buffer of 1000 images is maintained, and
we evaluate three representative replay-based approaches
such as BiC [49], GDumb [30] and DER++ [3]. As for
the latter, we evaluate representative regularization-based
approaches such as EWC [19] and LwF [25], and prompt-
based approaches such as L2P [46] and DualPrompt [45].
Note that sequential fine-tuning usually serves as the lower
bound performance of continual learning, but we observe
that simply adjusting the learning rate (i.e., using the Slow
Learner) makes it a surprisingly strong baseline.

4.2. Experimental Results

Overall Performance: All baseline approaches in Ta-
ble 1, 2 are trained with our Slow Learner for a fair

comparison, except the prompt-based approaches that keep
the representation layer fixed. For continual learning of
relatively coarse-grained classification tasks, such as Split
CIFAR-100 and Split ImageNet-R in Table 1 (also shown in
Fig. 2), the SL can substantially enhance the performance
of continual learning. With the help of Classifier Align-
ment (CA) and its Logit Normalization (LN), our approach
clearly outperforms L2P [46] and DualPrompt [45], and al-
most reach the joint training upper bound (the performance
gap is less than 2% for supervised pre-training and 4%
for self-supervised pre-training). As for fine-grained con-
tinual learning benchmarks in Table 2, SLCA achieves the
strongest performance for supervised pre-training, while for
self-supervised pre-training the performance is comparable
or slightly inferior to the SL version of BiC [49], which ad-
ditionally employs some old training samples. Please note
that the presented implementation of SLCA can be seen as
adding CA+LN together with SL to the simplest sequential
fine-tuning (Seq FT) baseline. In fact, the proposed SLCA
can be naturally plug-and-play with other continual learning
approaches. We leave it as a further work.

It is worth noting that different replay-based approaches
(w/ SL) behave differently in CLPM. In general, BiC [49],
which updated the entire model with the old training sam-
ples in a similar way to learning the new ones and added a
bias correction layer to mitigate imbalance between old and
new classes, receives the most substantial improvements.
While GDumb [30], which simply used the old training
samples to train a new model from scratch at test time, has
difficulty to adapt the pre-trained model with limited train-
ing samples and thus performs the worst.

Ablation Study: We present an extensive ablation study



Method Pre-trained Split CIFAR-100 Split ImageNet-R Split CUB-200 Split Cars-196

Baseline Seq FT † IN21K-Sup 41.77±13.8 26.95±11.8 40.02±1.08 27.57±1.79

w/ Fixed θrps IN21K-Sup 63.75±0.67 34.64±14.3 60.44±1.80 24.51±6.90

Ours

w/ SL IN21K-Sup 88.86±0.83 71.80±1.45 68.07±1.09 49.74±1.25

w/ Fixed θrps+CA IN21K-Sup 75.64±0.26 50.73±0.21 82.71±0.14 54.45±0.16

w/ Fixed θrps+CA+LN IN21K-Sup 75.62±0.21 51.83±0.34 83.65±0.18 53.43±0.09

w/ SL+CA IN21K-Sup 90.70±0.52 74.41±0.51 83.20±0.19 67.90±0.53

w/ SL+CA+LN IN21K-Sup 91.53±0.28 77.00±0.33 84.71±0.40 67.73±0.85

Baseline Seq FT IN1K-Self 27.99±5.16 45.84±4.19 45.35±1.38 35.96±2.04

w/ Fixed θrps IN1K-Self 77.30±0.56 51.97±0.17 55.54±1.55 43.16±0.12

Ours

w/ SL IN1K-Self 81.47±0.55 64.43±0.44 61.67±1.37 52.91±1.61

w/ Fixed θrps+CA IN1K-Self 81.83±0.12 55.59±0.21 70.67±0.02 57.01±0.07

w/ Fixed θrps+CA+LN IN1K-Self 81.95±0.17 56.47±0.23 72.97±0.17 63.00±0.21

w/ SL+CA IN1K-Self 84.64±0.21 67.54±0.29 72.52±0.06 64.80±0.20

w/ SL+CA+LN IN1K-Self 85.27±0.08 68.07±0.21 73.01±0.16 66.04±0.08

Table 3. Ablation study. Here we present the Last-Acc (%) after continual learning of all classes. †The reproduced performance of Seq FT
is slightly different from the reported one in [46, 45] due to the use of different random seeds. SL: Slow Learner; LN: Logit Normalization;
CA: a naive implementation of Classifier Alignment without LN.

of our approach in Table. 4.2. To demonstrate the necessity
of the proposed Slow Learner (SL), we consider two base-
lines: (1) sequential fine-tuning (Seq FT), which adopts a
uniform learning rate of 0.005; and (2) Seq FT with fixed
θrps, which keeps the representation layer fixed and contin-
ually adjusts the classification layer. Seq FT with fixed θrps
is generally superior to Seq FT while significantly inferior
to Seq FT w/ SL, indicating the necessity of updating the
representation layer (but with a properly reduced learning
rate to mitigate the progressive overfitting problem).

We further validate the effectiveness of the proposed
Classifier Alignment (CA) and its Logit Normalization
(LN). In particular, as the fine-grained continual learning
benchmarks severely exacerbate the problem of classifica-
tion layer (Fig. 5), the benefits of SL are still significant but
slightly reduced (e.g., for ImageNet-21K supervised pre-
training, the improvements of SL are 47.09%, 44.85%,
28.05% and 22.17% on Split CIFAR-100, Split ImageNet-
R, Split CUB-200 and Split Cars-196, respectively), while
the benefits of CA+LN are greatly enhanced (e.g., the
improvements of CA+LN are 2.67%, 5.20%, 19.64%
and 17.99% on Split CIFAR-100, Split ImageNet-R,
Split CUB-200 and Split Cars-196, respectively for IN21K-
Sup pre-train). We also evaluate CA with fixed represen-
tations θrps, which gain consistent improvements as well.
Please note that our CA or CA+LN is operated in a post-hoc
fashion rather than aligning the classifier during representa-
tion learning [56, 11, 12], as the latter would even worsen
the performance (e.g., by 27.89% on Split CIFAR-100).

Pre-training Paradigm and Downstream Granular-
ity: Here we analyze two critical factors for CLPM iden-
tified in our results. Compared to supervised pre-training,
self-supervised pre-training usually results in larger perfor-
mance gaps between continual learning baselines and joint
training (Fig. 3, Table 1, 2). Although our proposal can
greatly improve the performance of continual learning, the

effectiveness varies with the choice of self-supervised meth-
ods (Fig. 3). This is because they differ in the magnitude of
updates required to learn all tasks well (Fig. 4), resulting
in different degrees of difficulty in refining the represen-
tation layer. Given that the large amount of data required
for pre-training is typically unlabeled and incrementally
collected, we suggest subsequent works to develop self-
supervised pre-training paradigms that are more suitable for
downstream continual learning, and potentially use this as
a criterion to evaluate the progress of self-supervised learn-
ing. On the other hand, the performance gap is increased as
downstream continual learning becomes more fine-grained
(Table 1, 2, 4.2). This is primarily due to the sub-optimal
classification layer (Fig. 5), which can be greatly improved
by our classifier alignment strategy (Table 4.2).

Scalability: We further discuss the scalability of our
method. First, the generated features are only used to align
the output layer at test time rather than training the entire
backbone, thus the computation is efficient and not accumu-
lated in continual learning (e.g., ranging from only 0.67%
to 5% of the total running time for various benchmarks).
Second, the covariance Σc can be further simplified as the
variance σ2

c ∈ Rd with tolerable performance degradation
(e.g., up to only 0.61% on Split CIFAR-100 and 0.83% on
Split ImageNet-R). In this way, the storage of µc and σ2

c for
100 classes corresponds to only 0.18% parameters of the
ViT-B/16 backbone, which is clearly lightweight.

5. Conclusion
Continual learning on a pre-trained model (CLPM) re-

quires effective transfer of pre-trained knowledge to each
incremental task while maintaining its generalizability for
future tasks. However, using a uniform learning rate to up-
date the entire model makes traditional continual learning
baselines fail to accommodate both objectives. Observing
that using a slow learner can almost address this challeng-



ing issue in the representation layer, we further improve the
classification layer through a classifier alignment strategy.
Across a variety of upstream and downstream scenarios, our
proposal enables the simplest sequential fine-tuning base-
line to almost reach the joint training upper bound, far be-
yond the current state-of-the-art performance. Such a sim-
ple but extremely effective approach provides a strong crite-
rion to re-evaluate the current progress and technical route
for CLPM in CV. In addition, our empirical study demon-
strates two critical factors for CLPM, such as pre-training
paradigm and downstream granularity. Subsequent works
could further explore these directions and develop more
powerful strategies based on our proposal, so as to better
leverage pre-trained knowledge for continual learning.

Discussion of Limitations. Although we argue that self-
supervised pre-training enjoys an advantage of less forget-
ting in upstream continual learning and propose an effective
approach to overcome its shortcomings in downstream con-
tinual learning, how to perform upstream and downstream
continual learning together remains to be explored. Be-
sides, our results are based on a pre-trained ViT backbone
for a fair comparison with previous works [46, 45], with-
out considering other representative architectures such as
ResNet and other CL applications on downstream computer
vision tasks such as object detection [35], image segmenta-
tion [54, 55, 52]. We leave the exploration of our work in
the mentioned aspects to future works.
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A. More Details and Results.

Implementation Details. All baselines follow an imple-
mentation similar to the one described in [46, 45]. Specifi-
cally, we adopt a pre-trained ViT-B/16 backbone. We use
an Adam optimizer for prompting-based approaches that
keep the representation layer fixed, while a SGD optimizer
for other baselines that update the entire model, with the
same batch size of 128. The original implementation of
[46, 45] adopts a constant learning rate of 0.005 for all base-
lines, while our slow learner using 0.0001 for the represen-
tation layer and 0.01 for the classification layer. In practice,
we observe that supervised pre-training usually converges
faster than self-supervised pre-training in downstream con-
tinual learning. Therefore, for supervised pre-training, we
train all baselines for 20 epochs on Split CIFAR-100 and
50 epochs on other benchmarks. For self-supervised pre-
training, we train all baselines for 90 epochs on all bench-
marks.

Extended Analysis. In this section, we provide ex-
tended results to support the main claims in our paper. First,
we present the CKA similarity of pre-trained representation
(1) before and after learning downstream tasks in Fig. 7, and
(2) after joint training and after continual learning in Fig. 8.

Results on Additional Dataset. Except CIFAR-100,
CUB-200-2011, ImageNet-R and Cars-196, we further con-
sider a subset of DomainNet with 345-class sketch images
(for short, Sketch-345). Our SLCA delivers consistently
strong performance as shown in Table 4.

Combine with other methods. In the main text, the effi-
cacy of SL has been widely validated by combining it with
all baseline methods. We have further validated the effi-
cacy of CA, presenting representative non-replay and replay
methods on IN21K-Sup as shown in Table 5.

Sketch-345, IN21K-Sup Sketch-345, IN1K-Self
Method Last-Acc (%) Inc-Acc (%) Last-Acc (%) Inc-Acc (%)
Joint-Training 72.18±0.03 - 66.04±0.07 -
Seq FT 40.40±14.87 46.91±24.25 12.98±4.09 38.80±5.49

w/ SL 63.41±0.53 71.24±0.67 56.94±0.05 66.07±0.38

w/ SL+CA 64.92±0.81 72.69±0.57 59.88±0.06 67.99±0.54

Table 4. Results on Sketch-345, a subset of DomainNet
dataset [29].

Method CIFAR-100 ImageNet-R CUB-200 Cars-196
EWC 47.01±0.29 35.00±0.43 51.28±2.37 47.02±3.90

EWC w/ SL 89.30±0.23 70.27±1.99 81.62±0.34 64.50±0.36

EWC w/ SL+CA 90.61±0.17 71.48±0.31 84.29±0.37 69.61±0.29

BiC 66.11±1.76 52.14±1.08 78.69±1.97 55.03±3.27

BiC w/ SL 88.45±0.57 64.89±0.80 81.91±2.59 63.10±5.71

BiC w/ SL+CA 91.57±0.13 74.49±0.08 86.82±0.69 73.90±0.38

Table 5. Ablations for CA combining with EWC and BiC.



Figure 7. CKA similarity of pre-trained representations before
and after learning downstream tasks.

Figure 8. CKA similarity of pre-trained representations after
joint training and after continual learning.

Benchmark Pre-trained 0.005† 0.001 0.0001 0.00001 0.000001 Fixed θrps
Split CIFAR-100 IN21K-Sup 44.77 ±13.8 83.04±1.46 88.86±0.83 88.81±0.46 85.11±0.42 63.75±0.67

Split ImageNet-R IN21K-Sup 26.95 ±11.8 70.38±0.80 71.80±1.45 62.64±2.35 53.57±4.33 34.64±14.3

Split CUB-200 IN21K-Sup 40.02 ±1.08 60.02±1.24 68.07±1.09 66.58±3.93 64.38±3.36 60.44±1.80

Split Cars-196 IN21K-Sup 27.57 ±1.79 15.74±26.3 49.74±1.25 30.66±9.01 24.85±7.90 24.51±6.90

Split CIFAR-100 IN1K-Self 27.99 ±5.16 81.49±0.75 81.47±0.55 81.57±0.14 78.61±0.29 77.30±0.56

Split ImageNet-R IN1K-Self 45.84 ±4.19 68.72±0.48 64.43±0.44 59.19±0.33 54.54±0.32 51.97±0.17

Split CUB-200 IN1K-Self 45.35 ±1.38 68.58±1.16 61.67±1.37 56.46±1.86 55.10±2.13 55.54±1.55

Split Cars-196 IN1K-Self 35.96 ±2.04 58.39±2.31 52.91±1.61 43.64±0.73 41.74±0.23 43.16±0.12

Table 6. Continual learning performance with different learning rates of the representation layer. Here we present the Last-Acc (%)
after continual learning of all classes. IN21K-Sup: supervised pre-training on ImageNet-21K. IN1K-Self: self-supervised pre-training on
ImageNet-1K with MoCo v3 [4]. The column labeled by † uses the same learning rate of 0.005 for the entire model, while the others use a
learning rate of 0.01 for the classification layer.


