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Abstract

Automatic few-shot font generation (AFFG), aiming at
generating new fonts with only a few glyph references, re-
duces the labor cost of manually designing fonts. However,
the traditional AFFG paradigm of style-content disentan-
glement cannot capture the diverse local details of different
fonts. So, many component-based approaches are proposed
to tackle this problem. The issue with component-based
approaches is that they usually require special pre-defined
glyph components, e.g., strokes and radicals, which is in-
feasible for AFFG of different languages. In this paper, we
present a novel font generation approach by aggregating
styles from character similarity-guided global features and
stylized component-level representations. We calculate the
similarity scores of the target character and the referenced
samples by measuring the distance along the correspond-
ing channels from the content features, and assigning them
as the weights for aggregating the global style features. To
better capture the local styles, a cross-attention-based style
transfer module is adopted to transfer the styles of reference
glyphs to the components, where the components are self-
learned discrete latent codes through vector quantization
without manual definition. With these designs, our AFFG
method could obtain a complete set of component-level style
representations, and also control the global glyph charac-
teristics. The experimental results reflect the effectiveness
and generalization of the proposed method on different lin-
guistic scripts, and also show its superiority when com-
pared with other state-of-the-art methods. The source code
can be found at https://github.com/awei669/VQ-Font.

1. Introduction
Font design techniques can benefit many critical appli-

cations, such as logo designs, data augmentation for text-
related tasks, handwriting imitation and identification, etc.

*Corresponding author

However, traditional font design heavily depends on expert
designers rendering the glyph styles for each character man-
ually, making the creation of fonts extremely expensive and
labor-intensive, especially for glyph-rich scripts.

Recently, with the development of deep learning tech-
niques, many automatic few-shot font generation (AFFG)
methods have been proposed. They have been created us-
ing Convolution Neural Networks (CNNs) [22], Genera-
tive Adversarial Networks (GANs) [27], Transformers [32],
etc. The AFFG methods use only a few reference font
images for generating different glyphs automatically. The
typical strategy follows the style and content disentangle-
ment and combination paradigm [38, 23], and either adopts
global style representation or component-wise style repre-
sentation. The global style representation [13, 38] is learned
and extracted from all the references of each style, which
could capture the global characteristics, such as character
size and stroke space. However, it lacks the representation
of diverse local details, such as the shape and length of lo-
cal strokes and serif size. On the contrary, the component-
wise style representation category [11, 6, 20] generally de-
composes each reference sample sharing the same font into
pre-defined components and radicals. It either conditions
the style encoders jointly on the glyph image and the corre-
sponding component labels or adopts component-label clas-
sification losses to train the style encoder. This can be in-
feasible because each character should be manually associ-
ated with a certain set of components, which requires more
preparation when applying for new scripts. Additionally,
for different content images, their local relations with ref-
erence samples can vary. That means the local style rep-
resentations for different content characters are required to
be recomputed when given fixed reference samples, which
increases the computational cost.

To tackle the above issue, we propose a hybrid global
and local style transferring approach for AFFG in this paper.
Since the global style representation of fonts controls more
intra-style consistent properties, e.g., the locations, sizes,
stroke thickness, and spaces of characters, while the lo-
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cal style representation focuses on capturing inter-style in-
consistent component details, e.g., stroke shape, serif-ness,
stroke deformation. Therefore, we leverage both the global
and local styles for feature complementation. In order to
obtain the global style feature representation, we calculate
the similarity scores of the target glyph and the referenced
samples by measuring their content feature distances, and
then assign them as the weights for aggregating the style
features. For local style feature representation, the glyph
components are first learned automatically, which are dis-
crete latent codes decomposed from a set of glyphs by vec-
tor quantization. Then, a cross-attention transformer is em-
ployed to transfer component-wise styles, with the repre-
sentation of the learned components as the queries and the
style representations of the reference glyphs as the keys and
values. Contrastive learning is used to learn the local styles
in an unsupervised way. For each forward pass, the styles
from the reference samples can be transferred onto all the
components. So, this local style extraction process is inde-
pendent of the content glyph, avoiding multiple component-
wise representation calculations for different inputs. Fi-
nally, the global and local style representations are com-
bined with content features, and then decoded into the target
glyph. Moreover, we adopt GAN and a self-reconstruction
strategy for training the model without strong supervision.
Therefore, it can be easily applied for different script font
generation.

We demonstrate the effectiveness of the proposed
method on the Chinese mainly. The experimental results
reflect the necessity of combing global and local representa-
tions, and also tell that our method outperforms other state-
of-the-art (SOTA) AFFG methods given very limited refer-
ence examples.

In summary, the contributions of this paper are as fol-
lows:

• We propose a novel AFFG method leveraging comple-
mentary global and local representations, which is able
to capture intra-style consistent properties and intra-
style inconsistent structures of reference glyphs.

• Similarity of content is used to obtain global styles.
It takes a similar degree of glyph structures into con-
sideration. This strategy can better transfer styles for
glyphs owning the same components with reference.

• Pre-trained Vector Quantization-based Variational Au-
toencoder (VQ-VAE) is adopted to extract components
automatically, component labels are not required. The
local styles can be transferred to all the components
via cross-attention in one-forward pass. it is efficient
for font library creation because it is content irrelevant.
A style contrastive loss is proposed to unsupervised
transfer the component-level styles.

• Experimental results show great generalizability of our
model for unseen fonts, unseen characters, and differ-
ent scripts. It achieves SOTA performance for font
generation even with very limited reference samples.
Additionally, it can transfer styles onto cross-linguistic
in the zero-shot manner.

2. Related Works
Image-to-Image Translation. Image-to-image (I2I)

translation aims to learn a mapping between source and
target domains while retaining the content of the source.
GAN-based methods [12, 7, 16] were widely used in this
field. Pix2pix [12] first adopted conditional GAN into the
I2I task with paired data. CycleGAN [39] introduced circu-
lar consistency loss for unsupervised I2I translation [5, 39].
Recently, several I2I methods [2, 4] were proposed to tackle
multi-class unsupervised I2I translation problems, aiming
to simultaneously generate multiple style outputs given the
same input.

Font generation belongs to the typical I2I translation
task, so the generic I2I translation approaches could be
adaptively modified for font generation [17, 9].

Character Style Transfer. Character style transfer
mainly focused on typography transfer. Traditional meth-
ods constructed the transformation through shape model-
ing [31] and statistical modeling [30]. Recent approaches
applied deep learning techniques for character synthesis [3].
Some methods were able to synthesize glyphs as well as the
textural effects [1, 36, 8]. However, the font generation task
emphasizes more on the consistency of character shape in-
stead of text effects.

Global Style-content Disentanglement for Font Gen-
eration. Global style-content disentanglement and recom-
bination is a popular strategy for font generation. It mod-
els each font style as a universal representation. EMD [35]
proposed a network architecture with two encoders, one for
content and the other for style. They generated arbitrary
fonts by mixing the content and style features, followed by
decoding the mixed features. MDM [37] built a framework
to disentangle the text images into three factors: text con-
tent, font, and style features, and then remixed the factors
of different images to transfer a new style. ELDF [15] uti-
lized new consistency losses that forced any combination of
encoded features of the stacked inputs to own the consistent
features of text contents and font styles.

However, the local details for the font are more diverse
and are hard to capture only by global style representation.

Component-based Font Generation. Since charac-
ters such as Chinese characters can be decomposed, some
component-based font generation methods [6, 19, 20] have
emerged recently. They do not encode the entire image to
extract style information, but instead extract style informa-
tion for each component that makes up a syllable and use it
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Figure 1. The architecture of our model. The generator consists of five parts: a pre-trained content encoder, a reference style encoder
(marked in dark green), a local style aggregator via CAM (marked in yellow), a global style aggregator with content similarity guidance
(marked in pink), and a decoder combining content and style features and style features for font generation (marked in gray). A discrimi-
nator (marking green) is followed to distinguish the real and fake images, and it simultaneously classifies the content and style category of
the generated character.

to generate fonts. For instance, CalliGAN [28] decomposed
characters into components and offered low-level structure
information, including the order of strokes, to guide the
generation process. SA-VAE [24] disentangled the style
and content as two irrelevant domains with encoding Chi-
nese characters into high-frequency character structure con-
figurations and radicals. Tang et al. [25] proposed FS-Font
model that adopted a cross-attention mechanism to aggre-
gate the reference styles into a fine-grained style represen-
tation. XMP-Font [18] proposed a self-supervised cross-
modality pre-training cross-modality transformer network
to model style representations of stroke-level, component-
level, and character-level.

The component-based font generation methods signifi-
cantly improve the generated glyphs’ quality with few-shot
references. However, most of them require you to pre-
define the radicals or components manually.

3. Method
In this section, we introduce the overall framework, dif-

ferent modules and the training strategy in details.

3.1. Overall Pipeline

Given a content image xc and a set of reference character
images y = {y1, y2, . . . , yK} sharing the same font, our
model aims to generate the character yc owning the same
content with xc and the font style of the reference images.

The overall framework is displayed in Fig. 1. It consists of
a generator G and a multi-task discriminator D.

The generator G contains five parts as illustrated in
Fig. 1. The content-encoder Ec takes the content image as
input to extract its structural representation fc. It is pre-
trained via VQ-VAE to obtain the component-wise latent
codes ec. The style encoder is designed to learn the style
representations from reference images y. Specifically, it in-
puts each reference image independently to map them to
the style latent vector fs = {f1, f2, . . . , fK}. A Local
Style Aggregator (LSA) is followed afterward to transfer
the styles onto the learned components. It works through
a cross-attention module (CAM) with all the component-
wise latent codes ec as queries and the representations of
the reference characters fs as the keys and values. After the
stylization of components, the content-related local styles
fsr−L can be obtained by searching the most similar codes
in ec = {e1c , e2c , . . . , eNc } with its representation fc spatially.
The Global Style Aggregator (GSA) re-weights the style
representations fs and sums up all of them channel-wisely
to get the global representation fsr−G. The weight is the
normalized distance of the content representations between
each reference character and the input character, as shown
f c
r = {f c

1 , f
c
2 , . . . , f

c
K} and fc in Fig. 1, respectively. Af-

terwards, a decoder is employed to generate target image yc
with the concatenation features of the content features fc,
local style representation fsr−L and global style represen-



Figure 2. The glyph feature decomposing network for pre-training
the content encoder and obtaining component representation.

tation fsr−G as input.
During training, a multi-task discriminator is adapted to

play the min-max game with the generator for distinguish-
ing the real ŷc from a fake yc. To make sure the generated
glyph has the correct style with reference samples and still
retains the structure of the input content character, the dis-
criminator outputs a binary classification of each character’s
style and content category.

3.2. Glyph Encoders and Component Decomposi-
tion

The content encoder is pre-trained on the feature decom-
posing network and kept frozen for the font generation task.
In the pre-training step, it is used to decompose the glyph
images into component-wise latent codes, and trained on a
certain set of character templates for reconstruction. The
overview of the feature decomposing network is shown in
Fig. 2. It contains a content encoder and a reconstruction
decoder, connected by a discrete latent space using a latent
codebook ec ∈ RN×d.

The encoder is built on CNNs and maps an input glyph
image into latent representations, ze ∈ Rw×h×d, where d is
the number of channels, and h and w represent the height
and width of the feature maps, respectively. Subsequently,
vector quantization [26] is used to discrete ze as follows:

zie = enc , s.t. n = argmin
n∈{1,2,...,N}

∥zie − enc ∥22, (1)

where each spatial-wise elemental vector zie ∈ Rd in ze
is replaced with the closest code vector by executing a
nearest-neighbor lookup on codebook ec, comprised of d-
dimensional n code vectors. Finally, the reconstruction de-
coder uses the matched codes zq ∈ Rw×h×d as an input and
outputs a reconstructed glyph.

To optimize this process, the encoder and codebooks are
updated to minimize an objective Lpre in Eq. (2), which
refers to L1-based reconstruction loss and latent loss Llat

as follows:

Lpre = L1 + Llat

= ∥xc − x̂c∥1 + α∥sg[ze]− ec∥22 + β∥ze − sg[ec]∥22,
(2)

where sg is a stop-gradient operator that is defined as an
identity at forward computation time and has zero partial
derivatives. α and β are the balancing hyperparameters. Ex-
perimentally, we set them as 1 and 0.1, respectively. The
first term in Eq. (2) makes sure no information gets lost
in the forward pass. The second term updates the code-
book variables by moving the embedding vectors ec towards
the encoder outputs ze. Meanwhile, the third term encour-
ages the encoder output to match the targeted code vectors.
There are no bypass connections between the encoder and
decoder, so all the component-wise information of the glyph
set processed by the encoder can be compressed in the latent
space [21].

After this pre-training task, we fix the content encoder
Ec as well as the component codebook ec to build the font
generation model. The style encoder Es has the same archi-
tecture as Ec, but it is trained from scratch.

3.3. Local Style Aggregator

Most recently proposed methods [18, 19] extract local
style representation of characters by gaining attention from
input content and reference styles. It is inefficient, espe-
cially for creating a new font library that contains a large
number of glyphs. Since each of the glyphs must go through
the attention model for feature aggregation once. However,
most of them actually share some local representation if
they have the same strokes or radicals. Starting from this
point, we design an LSA module, the core is a CAM block
to transfer the styles onto all the component-wise codes ec
instead of the input glyph.

The CAM block is built upon stacked multi-head trans-
formers with component codes ec as queries and reference
style vectors fr as keys and values. Formally, the feature
maps fk ∈ Rw×h×d of k-th reference samples are reshaped
along the channel axis, respectively, forming the sequential
reference tokens f̃r ∈ Rk·w·h×d. For ith head, two linear
projections W i

k ∈ Rc×d and W i
v ∈ Rc×d are applied on it

to get the keys Ki =f̃rW iT
k and values Vi=f̃rW iT

v , respec-
tively. Meanwhile, we acquire the query matrix Qi by linear
projecting ec with a learning weight W i

e ∈ Rc×d.
The attention module operates on the queries Qi, keys

Ki, and values Vi and generates weighted average vectors
V̂i, which can be formulated as:

V̂ = Attention(Qi,Ki, Vi) = softmax

(
QiK

T
i√
c

)
Vi.

(3)
After obtaining the representations in each head, we con-

catenate all V̂i along the channel dimension, and employ a



linear projection to get the multi-head attention result es, as
follows:

es = Multi−head(Q,K, V ) = concat
(
V̂1, V̂2, ,̇V̂m

)
Wo,

(4)
where m is the number of total attention head, and Wo is
the learning weight.

After we get the stylized component-wise codes es =
{e1s, e2s, . . . , eNs }. For each input glyph, its local represen-
tation fsr−L can be aggregated from es by searching for
the closest label n in ec for each spatial element in fc as
expressed in Eq. (1), and then selecting the corresponding
style representation ens for replacement.

3.4. Global Style Aggregator

The original style representation fk for each reference
sample is able to provide more global information for the
font generation, which can control the size, the stroke space,
etc. So, we aggregate their features directly as the global
representation.

As illustrated in [36], the style features and content fea-
tures of references are not entirely independent. From a hu-
man’s perceptual observation, there are some correlations
that exist between different characters. If the input glyph
has exactly the same radical or structure with some refer-
ences, their style representations should be highly referred
to during the transfer process. Therefore, we re-weight the
individual style features fk of each reference glyph based
on the content feature similarity. We extract the content fea-
tures f c

r = {f c
1 , f

c
2 , . . . , f

c
K} ∈ Rw×h×d of each reference

and reshape them to f̃ c
k ∈ Rw·h×d, meanwhile, the content

featuresfc ∈ Rw×h×d of content image are reshaped into
f̃c ∈ Rw·h×d. The glyph similarity is determined by the
normalized cross-correlation measurement as:

Wkj =
f̃ c
k · f̃c∥∥∥f̃ c

k

∥∥∥ ∗ ∥∥∥f̃c∥∥∥ , j ∈ {1, 2, . . . , d}. (5)

Wkj is a scalar that represents the similarity between kth
reference and the input glyph on jth channel. Then, we
normalize it by considering k samples on each channel as:

W kj = softmax

(
exp(aWkj)∑K
k=1 exp(Wkj)

)
. (6)

This weight is then applied to the reference style repre-
sentations fr, where jth channel feature f j

k is weighted by
W kj , to aggregate the global representation fsr−G as ex-
pressed in:

fsr−G = concatj

(
K∑

k=1

W kjf
j
k

)
. (7)

This global style representation fsr−G is concatenated with
the content features fc and local style representation fsr−L,
and then input to the decoder to generate the target font.

3.5. Training

We train our model to generate the image yc from an
input content image xc and a set of reference glyph im-
ages y = {y1, y2, . . . , yK}. The content encoder is pre-
trained and kept fixed during this period. The losses consist
of three parts, an adversarial loss, a matching loss, and a
style contrast loss. The adversarial loss and matching loss
are used between the generated results yc and the ground
truth ŷc. While the style contrast loss is designed to learn
distinguished styles for components.

Adversarial loss. To make the model generate plausible
images, we employ a multi-head projection discriminator
Ds,c for style label s and character label c in our frame-
work. The loss function is implemented as the hinge GAN
loss [33]:

LD
adv =− Eŷc∼pdata

min(0,−1 +Ds,c(ŷc))

− Eyc∼pG
min(0,−1−Ds,c(yc))

LG
adv =− Eyc∼pG

Ds,c(yc),

(8)

where pG denotes the set of generated images, and pdata
denotes the set of real glyph images.

Matching loss. To make the generated character yc learn
pixel-level and feature-level consistency with ground truth
ŷc, we employ an L1 loss on both image and image features
as follows:

Limg = E[∥yc − ŷc∥1]

Lfeat = E[
L∑

l=1

∥∥∥f (l)(yc)− f (l)(ŷc)
∥∥∥
1
],

(9)

where fl(yc) and fl(ŷc) represent the intermediate features
in the lth layer of D.

Style contrast loss. Given two different reference sets
but sharing the same font style, the associated stylized com-
ponents for these sets should be the same. However, if the
reference character sets have different font styles, the com-
ponent styles should be distinguished. So, we formulate our
style contrastive loss as follows:

Lcst =

−log


exp

(
N∑

n=1
enTs ens+

)
exp

(
N∑

n=1
enTs ens+

)
+
∑
N−

s

exp
(∑N

n=1 e
nT
s ens−

)
 ,

(10)

In detail, for each certain font style s and is corresponding
codebook es, where es+ is the positive codebook pair of



es whose references have the same font style but different
content, and es− is the negative codebook pair share differ-
ent font style. N−

s is the number of negative style samples,
for n-th codebook entries ens in codebook es ∈ RN×d, We
can always find the positive pair ens+ and negative pair set
{ens1−, e

n
s2−, . . . , e

n
sneg−} in the corresponding position.

Overall objective loss. Finally, we optimize the whole
model by the following full objective function:

min
Es,G

max
D

LD
adv+LG

adv+λ1Limg+λ2Lfeat+λ3Lcst. (11)

The λ1, λ2 and λ3 is weighting hyperparameter. We set
them to 1, 1, and 0.1, respectively.

4. Experimental Results

4.1. Experiment Setup

Dataset. We collected 386 Chinese fonts and generated
3,500 Chinese characters for each font according to the first-
level Chinese Character Table. All character pictures are
normalized to 128×128. A font template is randomly se-
lected from the 386 fonts for extracting the glyph content
features and kept fixed throughout the training and test [1].
This font set is also used for pre-training the VQ-VAE to
get a set of common parts codebooks.

The Chinese training set contains 370 fonts and 3,000
Chinese characters, denoted as the seen font seen charac-
ter (SFSC) set. To verify our method, we evaluate the font
generation ability on two test sets: One is the rest of the 15
unseen fonts with 3,000 seen characters per font, denoted as
the seen font unseen character (UFSC) set; the other is the
remaining 15 unseen fonts with 500 unseen characters per
font, denoted as the unseen font unseen character (UFUC)
set.

Implementation details. The main training process of
our method is divided into two parts. First, a component-
wise codebook is trained with 3,000 Chinese characters
sharing the same font. We set the embedding dimension
d to 256, the batch size to 256, and the iteration steps to
50,000. Then, for training the whole font generation model,
we set the batch size to 48, the number of attention heads to
8 in three stacked transformer layers, and iteration steps to
500,000.

Evaluation metrics. To evaluate the font generation
quality, we use the following five metrics [14], root-mean-
square deviation (RMSE), structural similarity (SSIM),
learned perceptual image patch similarity (LPIPS) [34],
Fréchet inception distance (FID) [10], and User Study. The
User Study is conducted by 10 volunteers, who observe the
reference samples and vote for the best generation result
from all the comparison methods.

Table 1. Ablation study of component codebooks.
Codebook size SSIM↑ RMSE↓ LPIPS↓ FID↓

50 0.512 0.422 0.343 144.2
80 0.546 0.407 0.296 120.7

100 0.566 0.390 0.282 110.1
120 0.568 0.392 0.278 109.5
150 0.567 0.388 0.282 112.4

Figure 3. The visualization of latent codes.

4.2. Ablation Studies

We perform three ablation studies to evaluate the effec-
tiveness of our proposed models on the few-shot Chinese
font generation task. These experiments are conducted on
the UFUC dataset.

4.2.1 The effect of component codebook size

The component codebook size reflects the complexity of the
script. We set it as different values for training the con-
tent encoder and acquiring component-wise representation
in VQ-VAE. Then, they are fixed for font generation. The
results are displayed in Tab. 1. We can see that when the
codebook size exceeds 100, the performance on each metric
has limited improvement. That illustrates using 100 com-
ponents is sufficient to depict the Chinese characters. When
we train the model on English script, we find that by only
using 15 codes, the model can generate very good results.
Therefore, the size of the component codebook has a re-
lationship with the scripts. More complex scripts require
larger codebook sizes. In the following experiments, We set
the Chinese component codebook size to 100.

We select a certain code from the codebook to compute
its similarity with features of different glyphs spatially. The
visualization results of the 32th code and 44th code are
present in Fig. 3. We can see the 32th code mainly extracts
vertical components and 44th extracts horizontal compo-
nents. It demonstrates the VQ-VAE strategy can generate
“components” automatically.

4.2.2 The effect of each module

To illustrate the influence of the GSA and LSA modules of
our method, we conduct the ablation study with and with-
out it in the model. By removing the LSA, the component-
wise representation is not required. The model degrades to a
global content-style disentanglement architecture, with the
aggregated style representation only conditioned on content
similarity. When removing the GSA part, the model focuses
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Figure 4. Qualitative font generation results with and without LSA
and GSA modules. The first and last rows are the three references
and the ground truth per font, respectively. The middle rows are
generated results correspondingly. The red dashed boxes point out
details that were better generated by our full proposed model.

more on the details of the stroke but loses the global style
control.

We evaluate the two models and the proposed full model
on our collected UFUC dataset. Fig. 4 displays some com-
parison results. The results with and without these modules
have obvious differences. The model with LSA could bet-
ter capture the details of reference strokes, while the sizes
of generated characters and the inner spaces are not al-
ways consistent with the given references. The model with
only GSA has the opposite functions. Most strokes are not
generated well. The full model combines LSA and GSA,
which achieves better performance (see the details in red
dash boxes of Fig. 4). Quantitative results in Tab. 3 fur-
ther confirm the importance of the two modules. The LSA
model assists more than GSA, which demonstrates that the
style of glyphs mainly lies in the local details. From these
results, we conclude that LSA and GSA are both essential
in our model and they enable the model to capture diverse
local styles and also control the global styles.

4.2.3 The effect of reference numbers

Intuitively, given more reference samples, the generated
font better resembles a realistic one. Fig. 5 shows the effect
of reference numbers. We can see that when the number of
references increases from 1 to 8, the generated characters
have an incremental performance improvement. The figure
shows that it becomes stable when given more references.
However, there are diminishing returns after the first few
references. More details can be found in Appendix.

4.3. Comparing with SOTA Methods

We compare our method with five SOTA AFFG meth-
ods. 1) FUNIT [17] used two different encoders with the
AdaIN module to generate a new image with mixed content
and style. It belongs to the global style-content disentan-
glement FFG method. 2) MX-Font [20] extracts multiple
style features not explicitly conditioned on component la-
bels, but is automatically by designed multiple experts to
represent different local concepts, e.g., left-side sub-glyph.

Figure 5. Performance changes of our model by varying numbers
of the reference samples.

It shows good generalization ability to unseen languages.
3) LF-Font [19] proposed localized style representation in-
spired by low-rank matrix factorization, which also extracts
component-wise features. 4) DG-Font [29] is an unsuper-
vised network that used a Deformable Convolution in the
Generator to deform and transform the character of one font
to another. It achieved a good effect on cursive characters.
5) AGIS-net [8] used two different decoders to generate im-
ages with character shapes and then the texture information
successively. It can transfer the font as well as the text ef-
fects. 6) FS-Font [25] requires fixed content-reference map-
ping to transfer Fine-Grained local styles. We retrain all the
models by our dataset using their original training hyper-
parameters and strategies. The reference samples are set to
3 in the training and test phases for all the methods. The
qualitative and quantitative comparison results are shown in
Fig. 6 and Tab. 2, respectively.

Tab. 2 shows that our method outperforms previous
SOTA methods with significant gaps in all the metrics. We
can observe that FUNIT fails to capture diverse styles. Only
when the content and reference styles are visually close, it
can generate a structured character. That illustrates the uni-
versal style representation strategy is not a good choice for
AFFG. LF-Font generates fonts with worse visual quality
since the reference numbers are very limited. Its perfor-
mance is unstable as they are prone to loss of strokes or dis-
tortion of components for certain styles. DG-Font may fail
to perform style transfer especially when the reference style
significantly differs from that of the content. Additionally, it
generates glyphs containing characteristic artifacts. AGIS-
Net is more stable to generate the font of different styles and
complement structures. It could better transfer the global
features such as the size and the thickness of strokes. MX-
Font generates better stylized characters than other meth-
ods, but it has a higher probability of failing to generate
fine-grained style features compared with our method. The
generation results of FS-Font are also unsatisfactory, espe-
cially on unseen references, due to the randomly selected
content-reference pairs.



Table 2. Quantitative comparison results on UFSC and UFUC datasets
Dataset Method SSIM↑ RMSE↓ LPIPS↓ FID↓ User Study↑

UFSC

FUNIT [17] 0.512 0.426 0.361 161.8 1.2%
LF-FONT [19] 0.548 0.406 0.334 123.9 3.9%
AGIS-NET [8] 0.529 0.409 0.302 145.0 10.3%
DG-FONT [29] 0.517 0.419 0.312 149.0 11.6%
MX-FONT [20] 0.523 0.407 0.297 94.5 14.4%
FS-FONT [25] 0.570 0.379 0.327 172.6 21.5%

Ours 0.636 0.341 0.225 93.7 58.6%

UFUC

FUNIT [17] 0.468 0.472 0.379 153.4 3.4%
LF-FONT [19] 0.481 0.462 0.377 136.7 4.8%
AGIS-NET [8] 0.550 0.400 0.310 137.2 11.5%
DG-FONT [29] 0.493 0.397 0.312 136.7 10.8%
MX-FONT [20] 0.478 0.447 0.333 114.8 15.2%
FS-FONT [25] 0.418 0.474 0.377 173.7 19.5%

Ours 0.566 0.390 0.282 110.1 54.3%

Reference

FUNIT

LF-Font

MX-Font

Ours

GT

DG-Font

AGIS-Net

FS-Font

Dataset UFUC UFSC

Figure 6. FFG results of each method on UFUC and UFSC dataset. We represent the generated samples of five different kinds of fonts,
given three references and three content images per font. The red boxes represent the better generation details.

Table 3. Ablation study of different models on UFUC dataset.
Methods SSIM↑ RMSE↓ LPIPS↓ FID↓ User Study↑
w/o LSA 0.496 0.422 0.318 145.0 7.3%
w/o GSA 0.532 0.402 0.293 132.1 20.3%

Full model 0.566 0.390 0.282 110.1 72.4%

4.4. Applying to Other Languages

To verify the generalization of our method for other lan-
guages, we collected 60 fonts of 125 Japanese characters.
50 fonts with 100 glyphs per font are randomly selected for
training, and the rest for test. Some results are displayed
in Fig. 7. Since the character structures of the Japanese are
much simpler than Chinese, the generated results approach
the ground truth more. Additionally, our method can trans-
fer styles onto unseen content, including cross-linguistic
glyphs as shown in Fig. 8.

5. Conclusion

We present a novel AFFG approach in this paper, which
could aggregate global and local styles of limited refer-
ences. The designed LSA and GSA modules were assigned

Figure 7. FFG results of Japanese scripts. For each style, the upper
and lower rows respectively represent the model generation results
and GT.

different tasks to capture the local details and global struc-
tures of the font, respectively. The LSA adopted a cross-
attention mechanism for transferring styles onto all of the
self-learned components without manual definition. While
the GSA utilized the similarity of different glyphs, and then
used it to guide the global styles combination of all refer-
ences. Experiments demonstrated the effectiveness of both
modules, and also showed our proposed method signifi-
cantly outperformed other methods quantitatively and qual-
itatively. However, our method is limited to two aspects. If



(a)

Reference Generated Chinese samples Generated Japanese samples

(c)

Content
Reference

Content
Reference

(b)

Figure 8. Cross-language inference on (a) Japanese glyphs and (b)
Korean glyphs. (c) Chinese results generated under few-shot and
Japanese generated results under zero-shot manner.

given only one reference or very fancy font, e.g., decoration,
or shadow, the generated results are unsatisfactory.
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Appendix
Besides the results and discussions presented in the orig-

inal paper, we provide more experiments and results in this
appendix, which further explain the effectiveness and gen-
erality of our method.

The effect of different reference characters on the
generated results

The font style is an aesthetic concept and has nothing to
do with specific characters. In the process of few shot font
generation, given reference characters with different con-
tent, the provided style representation should be the same.
In our training process, we randomly select k style reference

Reference
GT

Reference
GT

Figure 9. Generating the same target character, referring to char-
acters with different contents from the same style font.

GT

Ref1

Ref1-3

Ref1-5

Ref1-7

Ref1-9

1 2 3 4 5 6 7 8 9Ref sets

Figure 10. Generated samples by varying reference set size. Each
middle row shows the samples generated by given different num-
ber (1, 3, 5, 7, 9) of references. The number (1 to 9) represents the
order of each character to be used. The target glyphs are displayed
in the bottom row.

characters for generating characters each time. During the
inference phase, we select characters with different content
in the same style as the reference set. The generated results
are shown in Fig. 9. There is a subtle difference between
the overall style and the local style of the generated results.

The qualitative results using different numbers of
references

Intuitively, the larger the number of given reference char-
acters, the richer and more accurate the extracted style fea-
tures should be. In the inference stage, we change the num-
ber of reference characters and observe the impact on the
generated results. It can be observed from Fig. 10 that the
overall and local quality of generated characters is roughly
positively correlated with the number of reference charac-
ters. The quality improvement is more obvious when the
number increases from 1 to 5, and the improvement beyond
this number is limited. In our paper, the number of reference
images is set to 3, and the model training and qualitative and
quantitative comparisons with other methods are completed
with this setting.
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