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Figure 1: Language Embedded Radiance Fields (LERF). LERF grounds CLIP representations in a dense, multi-scale 3D field. A
LERF can be reconstructed from a hand-held phone capture within 45 minutes, then can render dense relevancy maps given textual
queries interactively in real-time. LERF enables a broad range of concepts to be queried via natural language, from abstract queries like
“Electricity”, visual properties like “Yellow”, long-tail objects such as “Waldo”, and even reading text like “Boops” on the mug. For each
prompt, an RGB image and relevancy map are rendered focusing on the location with maximum relevancy activation.

Abstract
Humans describe the physical world using natural lan-

guage to refer to specific 3D locations based on a vast range
of properties: visual appearance, semantics, abstract asso-
ciations, or actionable affordances. In this work we propose
Language Embedded Radiance Fields (LERFs), a method
for grounding language embeddings from off-the-shelf mod-
els like CLIP into NeRF, which enable these types of open-

*Equal contribution, corresponding authors.

ended language queries in 3D. LERF learns a dense, multi-
scale language field inside NeRF by volume rendering CLIP
embeddings along training rays, supervising these embed-
dings across training views to provide multi-view consis-
tency and smooth the underlying language field. After opti-
mization, LERF can extract 3D relevancy maps for a broad
range of language prompts interactively in real-time, which
has potential use cases in robotics, understanding vision-
language models, and interacting with 3D scenes. LERF
enables pixel-aligned, zero-shot queries on the distilled 3D
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CLIP embeddings without relying on region proposals or
masks, supporting long-tail open-vocabulary queries hier-
archically across the volume. See the project website at:
https://lerf.io.

1. Introduction
Neural Radiance Fields (NeRFs) [24] have emerged as a

powerful technique for capturing photorealistic digital rep-
resentations of intricate real-world 3D scenes. However, the
immediate output of NeRFs is nothing but a colorful density
field, devoid of meaning or context, which inhibits building
interfaces for interacting with the resulting 3D scenes.

Natural language is an intuitive interface for interacting
with a 3D scene. Consider the capture of a kitchen in Fig-
ure 1. Imagine being able to navigate this kitchen by asking
where the “utensils” are, or more specifically for a tool that
you could use for “stirring”, and even for your favorite mug
with a specific logo on it — all through the comfort and fa-
miliarity of everyday conversation. This requires not only
the capacity to handle natural language input queries but
also the ability to incorporate semantics at multiple scales
and relate to long-tail and abstract concepts.

In this work, we propose Language Embedded Radi-
ance Fields (LERF), a novel approach that grounds lan-
guage within NeRF by optimizing embeddings from an off-
the-shelf vision-language model like CLIP into 3D scenes.
Notably, LERF utilizes CLIP directly without the need for
finetuning through datasets like COCO or reliance on mask
region proposals, which limits the ability to capture a wide
range of semantics. Because LERF preserves the integrity
of CLIP embeddings at multiple scales, it is able to handle
a broad range of language queries, including visual prop-
erties (“yellow”), abstract concepts (“electricity”), text
(“boops”), and long-tail objects (“waldo”) as illustrated in
Figure 1.

We construct a LERF by optimizing a language field
jointly with NeRF, which takes both position and physical
scale as input and outputs a single CLIP vector. During
training, the field is supervised using a multi-scale feature
pyramid that contains CLIP embeddings generated from im-
age crops of training views. This allows the CLIP encoder
to capture different scales of image context, thus associating
the same 3D location with distinct language embeddings at
different scales (e.g. “utensils” vs. “wooden spoon”). The
language field can be queried at arbitrary scales during test
time to obtain 3D relevancy maps. To regularize the opti-
mized language field, self-supervised DINO [5] features are
also incorporated through a shared bottleneck.

LERF offers an added benefit: since we extract CLIP
embeddings from multiple views over multiple scales, the
relevancy maps of text queries obtained through our 3D
CLIP embedding are more localized compared to those ob-

tained via 2D CLIP embeddings. By definition, they are
also 3D consistent, enabling queries directly in the 3D fields
without having to render to multiple views.

LERF can be trained without significantly slowing down
the base NeRF implementation. Upon completion of the
training process, LERF allows for the generation of 3D rel-
evancy maps for a wide range of language prompts in real-
time. We evaluate the capabilities of LERF on a set of
hand-held captured in-the-wild scenes and find it can local-
ize both fine-grained queries relating to highly specific parts
of geometry (“fingers”), or abstract queries relating to mul-
tiple objects (“cartoon”). LERF produces view-consistent
relevancy maps in 3D across a wide range of queries and
scenes, which are best viewed in videos on our website. We
also provide quantitative evaluations against popular open-
vocab detectors LSeg [21] and OWL-ViT [25], by distilling
LSeg features into 3D [20] and querying OWL-ViT from
rendered novel views. Our results suggest that features in
3D from LERF can localize a wide variety of queries across
in-the-wild scenes. The zero-shot capabilities of LERF
leads to potential use cases in robotics, analyzing vision-
language models, and interacting with 3D scenes. Code and
data will be made available at https://lerf.io.

2. Related Work
Open-Vocabulary Object Detection A number of ap-
proaches study detecting objects in 2D images given nat-
ural language prompts. These lie on a spectrum from
purely zero-shot to fully trained on segmentation datasets.
LSeg [21] trains a 2D image encoder on labeled segmen-
tation datasets, which outputs pixel-wise embeddings that
best match the CLIP text embedding of the segmentation
label at that given pixel. CRIS [38] and CLIPSeg [23] train
a 2D image decoder to output a relevancy map based on the
query CLIP embedding and the intermediate outputs of the
pretrained CLIP image encoder. However, such fine-tuning
approaches tend to lose significant language capabilities by
training on a smaller dataset.

Another common approach for 2D images is a two-stage
framework wherein class-agnostic region or mask proposals
direct where to query open-vocabulary classification mod-
els. OpenSeg [14] simultaneously learns a mask predic-
tion model while predicting the text embeddings for each
mask, while ViLD [16] directly uses CLIP [28] to classify
2D regions from class-agnostic mask proposal networks.
Detic [40] builds on existing two-stage object detector ap-
proaches, but demonstrates a greater generalization ability
by allowing detector classifiers to train with image classifi-
cation data. OWL-ViT [25] attaches lightweight object clas-
sification and localization heads after a pre-trained 2D im-
age encoder. Although region proposal-based approaches
can leverage more detection data, these proposal generators
still tend to output within the training set distribution. Con-

https://lerf.io
https://lerf.io
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Figure 2: LERF Optimization: Left: LERF represents a field of 3D volumes, parameterized by position x, y, z and scale s (orange cube).
To render a CLIP embedding along a ray, the field is sampled and averaged according to NeRF’s volume rendering weights. Physical scale
corresponds to an image scale simg via projective geometry. Right: We pre-compute a multi-scale feature pyramid of CLIP embeddings
over training views, and during training interpolate this pyramid with simg and the ray’s pixel location to obtain CLIP supervision. The
CLIP loss maximizes cosine similarity, and other outputs are supervised with mean squared-error using standard per-pixel rendering.

sequently, as noted by the authors of OV-Seg [22], such net-
works often face difficulties in accurately segmenting unla-
beled hierarchical components of the original masks, such
as object parts. LERF strives to avoid region proposals by
incorporating language embeddings in a dense, 3D, multi-
scale field which allows hierarchical text queries.

Grad-CAM [31] and attention-based methods [7] pro-
vide a relevancy mapping between 2D images and text in
vision-language models (e.g., CLIP). Works such as Seman-
tic Abstraction [17] have shown that these frameworks can
be used to detect long-tail objects for scene understanding.
Outputs from LERF are most similar in spirit to these meth-
ods, outputting a 3D relevancy score given a query. How-
ever, LERF builds a 3D representation that can be queried
with different text prompts without reconstructing the un-
derlying representation each time, and in addition fuses
multiple viewpoints into a single shared scene representa-
tion, rather than operating per-image.

Distilling 2D Features into NeRF NeRF has an attractive
property of averaging information across multiple views.
Several prior works leverage this to improve the quality of
2D semantics, segmentations, or feature vectors by distill-
ing them into 3D. Semantic NeRF [39] and Panoptic Lift-
ing [33] embed semantic information from semantic seg-
mentation networks into 3D, showing that combining noisy
or sparse labels in 3D can result in crisp 3D segmenta-
tions. This concept has been applied to segmenting objects
with extremely sparse user input scribbles of foreground-
background masks [30]. Our approach draws inspiration
from these works by averaging multiple potentially noisy
language embeddings over input views.

Distilled Feature Fields [20] and Neural Feature Fusion
Fields [37] explore embedding pixel-aligned feature vectors
from LSeg or DINO [5] into a NeRF, and show they can
be used for 3D manipulations of the underlying geometry.
LERF similarly embeds feature vectors into NeRF, but also

demonstrates a method to distill non pixel-aligned embed-
dings (e.g., from CLIP) into 3D without fine-tuning.

3D Language Grounding Incorporating language into
3D has been explored in a wide range of contexts: 3D vi-
sual question answering [15, 2, 6] leverage 3D information
to extract answers to queries about the environment. In ad-
dition, incorporating language with shape information can
improve object recognition via text [11, 36].

LERF is more similar to 3D scene representations in
robotics which fuse vision-language embeddings to sup-
port natural language interaction. VL-Maps [18] and Open-
Scene [27] build a 3D volume of language features which
can be queried for navigation tasks, by using pre-trained
pixel-aligned language encoders [14, 21]. In LERF, we
compare against one such encoder, LSeg, in 3D and find
it loses significant expressive capability compared to CLIP.

CLIP-Fields [32] and NLMaps-SayCan [8] fuse CLIP
embeddings of crops into pointclouds, using a contrastively
supervised field and classical pointcloud fusion respec-
tively. In CLIP-Fields, the crop locations are guided by De-
tic [40]. On the other hand, NLMaps-SayCan relies on re-
gion proposal networks. These maps are sparser than LERF
as they primarily query CLIP on detected objects rather than
densely throughout views of the scene. Concurrent work
ConceptFusion [19] fuses CLIP features more densely in
RGBD pointclouds, using Mask2Former [9] to predict re-
gions of interest, meaning it can lose objects which are out
of distribution to Mask2Former’s training set. In contrast,
LERF does not use region or mask proposals.

LERF contributes a new dense, volumetric interface for
3D text queries which can integrate with a broad range of
downstream applications of 3D language, improving the
resolution and fidelity at which these methods can query
the environment when multi-view inputs are available. This
is enabled by the smoothing behavior of embedding po-
tentially noisy feature vectors from multiple views into the



Figure 3: Results with LERF for 5 in-the-wild scenes. Each image shows a visual rendering of the LERF (Sec. 3), along with relevancy
renderings (Sec. 3.5) for each text query and a cropped view of the activated region. For the bookstore scene, the original book cover
images are shown in blue with a globe icon. See Sec. 4.1 for discussion and details on relevancy visualization.



dense LERF structure.

3. Language Embedded Radiance Fields

Given a set of calibrated input images, we ground CLIP
embeddings into a 3D field within NeRF. However, query-
ing a CLIP embedding for a single 3D point is ambigu-
ous, as CLIP is inherently a global image embedding and
not conducive to pixel-aligned feature extraction. To ac-
count for this property, we propose a novel approach that
involves learning a field of language embeddings over vol-
umes centered at the sample point. Specifically, the output
of this field is the average CLIP embedding across all train-
ing views of image crops containing the specified volume.
By reframing the query from points to volumes, we can ef-
fectively supervise a dense field from coarse crops of input
images, which can be rendered in a pixel-aligned manner
by conditioning on a given volume scale.

3.1. LERF Volumetric Rendering

NeRF takes in a position ~x and view direction ~d and out-
puts color ~c and density σ. Samples of these values can be
composited along a ray to produce a pixel’s color. To create
LERF, we augment NeRF’s outputs with a language em-
bedding Flang(~x, s) ∈ Rd, which takes an input position ~x
and physical scale s, and outputs a d-dimensional language
embedding. We choose this output to be view-independent,
since the semantic meaning of a location should be invari-
ant to viewing angle. This allows multiple views to con-
tribute to the same field input, averaging their embeddings
together. The scale s represents the side length in world co-
ordinates of a cube centered at ~x, and is analogous to how
Mip-NeRF[3, 4] incorporates different scales via integrated
positional encodings.

Rendering color and density from LERF remains exactly
the same as NeRF. To render language embeddings into an
image, we adopt a similar technique as prior work[20, 39]
to render language embeddings along a ray ~r(t) = ~ot + t~d.
However, since LERF is a field over volumes, not points, we
must also define a scale parameter for each position along
the ray. We achieve this by fixing an initial scale in the
image plane simg and define s(t) to increase proportionally
with focal length and sample distance from the ray origin:
s(t) = simg ∗ fxy/t (Fig. 2, left). Geometrically, this rep-
resents a frustrum along the ray. We calculate rendering
weights as in NeRF: T (t) =

∫
t

exp (−σ(s)ds) , w(t) =∫
t
T (t)σ(t)dt, then integrate the LERF to obtain raw lan-

guage outputs: φ̂lang =
∫
t
w(t)Flang (r(t), s(t)) dt, and fi-

nally normalize each embedding to the unit sphere as in
CLIP: φlang = φ̂lang/||φ̂lang||. We find that spherical inter-
polation between samples on a ray is unnecessary because
non-zero weight samples along a ray tend to be spatially
close, and instead opt for a weighted euclidean average fol-

Figure 4: 2D CLIP vs LERF: The left visualizes similarity inter-
polated over patchwise CLIP embeddings, and the right rendered
from LERF. Because volumetric language rendering incorporates
information from multiple views, 3D relevancy activation maps
have better alignment with the underlying scene geometry.

lowed by normalization for implementation simplicity.

3.2. Multi-Scale Supervision

To supervise language field outputs Flang, recall that we
can only query language embeddings over image patches,
not pixels. Therefore, to supervise the multi-scale LERF,
we supervise each rendered frustrum with an image crop
of size simg centered at the image pixel where the ray orig-
inated. In practice, re-computing a CLIP embedding for
each ray during LERF optimization would be prohibitively
expensive, so instead we pre-compute an image pyramid
over multiple image crop scales and store the CLIP embed-
dings of each crop (Fig 2, right). This pyramid has n layers
sampled between smin and smax, with each crop arranged in
a grid with 50% overlap between crops.

During training, we randomly sample ray origins uni-
formly throughout input views, and uniformly randomly se-
lect simg ∈ (smin, smax) for each. Since these samples don’t
necessarily fall in the center of a crop in this image pyramid,
we perform trilinear interpolation between the embeddings
from the 4 nearest crops for the scale above and below to
produce the final ground truth embedding φgt

lang. We mini-
mize a loss between rendered and ground truth embeddings
which maximizes cosine similarity between the two, scaling



Figure 5: Ablations: We ablate DINO regularization and multi-
scale training (Sec. 4.4), and highlight qualitative degradation in
relevancy maps here.

by a constant λlang (Sec. 3.3): Llang = −λlangφlang · φgt
lang.

3.3. DINO Regularization

Naı̈vely implementing LERF as described produces co-
hesive results, but the resulting relevancy maps can some-
times be patchy and contain outliers in regions with few
views or little foreground-background separation (Fig. 5).

To mitigate this, we additionally train a field Fdino(~x)
which outputs a DINO[5] feature at each point. DINO has
been shown to exhibit emergent object decomposition prop-
erties despite training on no labels[1], and additionally dis-
tills well into 3D fields[20], making it a good candidate for
grouping language in 3D without relying on labeled data or
imparting too strict a prior. Because DINO outputs pixel-
aligned features, Fdino does not take in scale as an input,
and is directly supervised for each ray with the DINO fea-
ture it corresponds to. We render φdino identically to φlang
except without normalizing to a unit sphere, and supervise
it with MSE loss on ground-truth DINO features. DINO is
used explicitly during inference, and only serves as an ex-
tra regularizer during training since CLIP and DINO output
heads share an architectural backbone.

3.4. Field Architecture

Intuitively, optimizing a language embedding in 3D
should not influence the distribution of density in the under-
lying scene representation. We capture this inductive bias
in LERF by training two separate networks: one for feature
vectors (DINO, CLIP), and the other for standard NeRF out-
puts (color, density). Gradients from Llang and Ldino do not

affect the NeRF outputs, and can be viewed as jointly opti-
mizing a language field in conjunction with a radiance field.

We represent both fields with a multi-resolution hashgrid
[26]. The language hashgrid has two output MLPs for CLIP
and DINO respectively. Scale s is passed into the CLIP
MLP as an extra input in addition to the concatenated hash-
grid features. We adopt the Nerfacto method from Nerfstu-
dio [35] as the backbone for our approach, leveraging the
same proposal sampling, scene contraction, and appearance
embeddings

3.5. Querying LERF

Often, language models like CLIP are evaluated on zero-
shot classification, where a category is selected from a list
guaranteed to include the correct category [28]. However, in
practical usage of LERF on in-the-wild scenes, an exhaus-
tive list of categories is not available. We view the open-
endedness and ambiguity of natural language as a benefit,
and propose a method to query 3D relevancy maps from the
LERF given an arbitrary text query. Querying LERF has
two parts: 1) obtaining a relevancy score for a rendered em-
bedding and 2) automatically selecting a scale s given the
prompt.

Relevancy Score: To assign each rendered language
embedding φlang a score, we compute the CLIP embed-
ding of the text query φquer, along with a set of canon-
ical phrases φicanon. We compute cosine similarity be-
tween the rendered embedding and canonical phrase em-
beddings, then compute the pairwise softmax between the
rendered embedding text prompts. The relevancy score is
then mini

exp(φlang·φquer)
exp(φlang·φi

canon)+exp(φlang·φquer))
. Intuitively, this score

represents how much closer the rendered embedding is to-
wards the query embedding compared to the canonical em-
beddings. All renderings use the same canonical phrases:
“object”, “things”, “stuff”, and “texture”. We chose these
as qualitatively “average” words for queries users might
make, and found them to be surprisingly robust to queries
ranging from incredibly specific to visual or abstract. We
acknowledge that choosing these phrases is susceptible to
prompt-engineering, and think fine-tuning them could be
an interesting future work, perhaps incorporating feedback
from user interaction about negative prompts they do not
consider relevant.

Scale Selection: For each query, we compute a scale s
to evaluate Flang. To accomplish this, we generate relevancy
maps across a range of scales 0 to 2 meters with 30 incre-
ments, and select the scale that yields the highest relevancy
score. This scale is used for all pixels in the output rele-
vancy map. We found this heuristic to be robust across a
broad range of queries and is used for all the images and
videos rendered in this paper. This assumes relevant parts
of a scene are the same scale, see Limitations Sec. 5.

Visibility Filtering: Regions of the scene that lack suffi-



Figure 6: Localization comparison Qualitative comparison on lo-
calizing long-tail objects from novel views with LSeg in 3D (DFF)
and OWL-ViT (Tab. 1)

cient views, such as those in the background or near floaters,
may generate noisy embeddings. To address this issue, dur-
ing querying we discard samples that were observed by
fewer than five training views (approximately 5% of the
views in our datasets).

3.6. Implementation Details

We implement LERF in Nerfstudio [35], on top of the
Nerfacto method. Proposal sampling is the same except
we reduce the number of LERF samples from 48 to 24 to
increase training speed. We use the OpenClip [10] ViT-
B/16 model trained on the LAION-2B dataset, with an im-
age pyramid varying from smin = .05 to smin = .5 in 7
steps. The hashgrid used for representing language features
is much larger than a typical RGB hashgrid: it has 32 lay-
ers from a resolution of 16 to 512, with a hash table size
of 221 and feature dimension of 8. The CLIP MLP used for
Flang has 3 hidden layers with width 256 before the final 512
dimension CLIP output. The DINO MLP for FDINO has 1
hidden layer of dimension 256.

We use the Adam optimizer for proposal networks and
fields with weight decay 10−9, with an exponential learn-
ing rate scheduler from 10−2 to 10−3 over the first 5000
training steps. All models are trained to 30,000 steps (45
minutes), although good results can be obtained in as few as
6,000(8 minutes) as presented in the Appendix. We train on
an NVIDIA A100, which takes roughly 20GB of memory
total. One can interactively query in real-time within the
Nerfstudio viewer. The λ used in weighting CLIP loss is
0.01, chosen empirically and ablated in Sec 4.4. When
computing relevancy score, we multiply similarity by 10 as
a temperature parameter within the softmax.

4. Experiments
We examine the capabilities of LERF and find that it

can effectively process a wide variety of input text queries,
encompassing various aspects of natural language specifi-
cations that current open-vocab detection frameworks en-
counter difficulty with. Though existing 3D scan datasets
exist, they tend to be either of singulated objects [29, 13],
or are RGB-D scans without enough views to optimize high

Figure 7: Comparison to LSeg in 3D: LSeg performs well on
“glass of water” since cups are in the COCO dataset, but cannot
locate an out-of-distribution query like an egg.

Test Scene LSeg (3D) OWL-ViT LERF

waldo kitchen 13.0% 42.6% 81.5%
bouquet 50.0% 66.7% 91.7%
ramen 15.0% 92.5% 62.5%
teatime 28.1% 75.0% 93.8%
figurines 8.9% 38.5% 79.5%

Overall 18.0% 54.8% 80.3%

Table 1: Localization accuracy comparison between Distilled
Feature Fields using LSeg, OWL-ViT, and LERF. Overall perfor-
mance is calculated by aggregating scene results. Refer to supple-
ments for more details on scenes and text queries.

quality NeRFs [12], and such simulated or scanned scenes
contain few long-tail objects [34]. Emphasizing the capa-
bility of LERF to handle real-world data, we collect 13
scenes containing a mixture of in-the-wild (grocery store,
kitchen, bookstore) and posed long-tail (teatime, figurines,
hand) scenes. We capture scenes using the iPhone app Poly-
cam, which runs on-board SLAM to find camera poses, and
use images of resolution 994×738.

4.1. Qualitative Results

We visualize relevancy score by normalizing the col-
ormap for each query from 50% (less relevant than canon-
ical phrases) to the maximum relevancy. Extensive visual-
izations of all scenes can be found in the Appendix, and in
Fig. 3 we select 5 representative scenes which demonstrate
LERF’s ability to handle natural language. Visual compari-
son with LSeg in 3D are presented in Fig 7.

LERF captures language features of a scene at different
levels of detail, supporting queries of properties like “yel-
low”, as well as highly specific queries like names of books
and specific characters from TV shows (“jake from adven-
ture time”). Because of the lack of discrete categories, ob-
jects can be relevant to multiple queries: in the figurine
scene, abstract text queries can create semantically mean-
ingful groupings. “Cartoon” selects the cat, Jake, rubber
duck, miffy, waldo, toy elephant. “Bath toy” selects rubber-
like objects, such as rubber duck, Jake, and toy elephant
(made of rubber). Toy elephant is strongly highlighted for



0 1
0

1

0 1

LERF

LSeg 3D(DFF)

Recall Recall

P
re

ci
si

on

COCO Long-Tail Labels

Figure 8: Precision recall curves for 3D existence experiments,
Sec 4.2. LSeg performs similarly to LERF on in-distribution la-
bels, but significantly suffers on long-tail labels of wild scenes.

three different queries, demonstrating the ability of LERF
to support different semantic tags for the same object.

4.2. Existence Determination

We evaluate if LERF can detect whether an object ex-
ists within a scene. We label ground truth existence for 5
scenes, collecting two sets of labels: 1) labels from COCO
to represent in-distribution objects to LSeg and 2) our own
long-tail labels, which consist of queries of 15-20 objects in
each scene concatenated together, for 81 total queries. See
the Appendix for all queries. LERF determines whether an
object exists in the scene by rendering a dense pointcloud
over visible geometry, and returns “True” if any point has a
relevancy score over a threshold.

We compare against distilling LSeg features into 3D as
in DFF [20], but implemented in our own codebase for
an apples-to-apples comparison. We remove scale as a
parameter to Flang for LSeg since it outputs pixel-aligned
features. We report precision-recall curves over relevancy
score thresholds in Fig. 8. This experiment reveals that
LSeg, trained on limited segmentation datasets, lacks the
ability to represent natural language effectively. Instead, it
only performs well on common objects that are within the
distribution of its training set, as demonstrated in Fig. 7.

4.3. Localization

To evaluate how well LERF can localize text prompts in
a scene we render novel views and label bounding boxes for
72 objects across 5 scenes. For 3D methods we consider a
label a success if the highest relevancy pixel lands inside the
box, or for OwL-ViT if the center of the predicted box does.
Results are presented in Table 1 and Fig. 6, and suggest that
language embeddings embedded in LERF strongly outper-
form LSeg in 3D for localizing relevant parts of a scene. We
also compare against the 2D open-vocab detector OWL-ViT
by rendering full-HD NeRF views and selecting the bound-
ing box with the highest confidence score for the text query.
OwL-ViT outperforms LSeg in 3D, but suffers compared to
LERF on long-tail queries.

Figure 9: Failure cases: LERF struggles with identifying objects
that appear visually similar to the query: “Zucchini” also acti-
vates on other long, green-ish vegetables, and “leaf” activates on
the green plastic chair. LERF also struggles with global/spatial
reasoning, where “table” only activate on the edges of the table.

4.4. Ablations

No DINO: Removing DINO results in a qualitative de-
terioration in the smoothness and boundaries of relevancy
maps, especially in regions with few surrounding views or
little geometric separation between foreground and back-
ground. We show two illustrative examples where DINO
improves the quality of relevancy maps in Fig. 5.

Single-Scale Training: We ablate multi-scale CLIP su-
pervision from the pipeline by only training on a fixed s0 =
15% image scale. Doing so significantly impairs LERF’s
ability to handle queries of all scales, failing on both large
(“espresso machine”) queries it doesn’t have enough con-
text for, as well as queries for which it does (“creamer
pods”). These results imply that multi-scale training reg-
ularizes the language field at all scales, not just ones with
relevant context for a given query.

5. Limitations

LERF has limitations associated with both CLIP and
NeRF; some are visualized in Fig. 9. Like CLIP, language
queries from LERF often exhibit “bag-of-words” behavior
(i.e., “not red” is similar to “red”) and struggles to capture
spatial relationships between objects. LERF can be prone
to false positives with queries that appear visually or se-
mantically similar: “zucchinis” activate on other similarly-
shaped vegetables, though zucchinis are more relevant than
the distractors (Fig. 9).

LERF requires known calibrated camera matrices and
NeRF-quality multi-view captures, which aren’t always
available or easy to capture. The quality of language fields
is bottlenecked by the quality of the NeRF recontsruction.
In addition, because of the volumetric input to Flang, ob-
jects which are near other surfaces without side views can
result in their embeddings being blurred to their surround-
ings since no views see the background without the object.
This results in similar blurry relevancy maps to single-view
CLIP (Fig. 4). In addition, we only render language embed-



dings from a single scale for a given query. Some queries
could benefit from or even require incorporating context
from multiple scales (eg “table”).

6. Conclusions

We present LERF, a novel method of fusing raw CLIP
embeddings into a NeRF in a dense, multi-scale fashion
without requiring region proposals or fine-tuning. We find
that it can support a broad range of natural language queries
across diverse real-world scenes, strongly outperforming
pixel-aligned LSeg in supporting natural language queries.
LERF is a general framework that supports any aligned
multi-modal encoders, meaning it can naturally support im-
provements to vision-language models. Code and datasets
will be released after the submission process.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, pages 9650–9660, 2021.

[6] Paola Cascante-Bonilla, Hui Wu, Letao Wang, Rogerio S
Feris, and Vicente Ordonez. Simvqa: Exploring simulated
environments for visual question answering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 5056–5066, 2022.

[7] Hila Chefer, Shir Gur, and Lior Wolf. Generic attention-
model explainability for interpreting bi-modal and encoder-
decoder transformers. In ICCV, pages 397–406, 2021.

[8] Boyuan Chen, Fei Xia, Brian Ichter, Kanishka Rao,
Keerthana Gopalakrishnan, Michael S Ryoo, Austin Stone,
and Daniel Kappler. Open-vocabulary queryable scene
representations for real world planning. arXiv preprint
arXiv:2209.09874, 2022.

[9] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask
transformer for universal image segmentation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1290–1299, 2022.

[10] Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell
Wortsman, Gabriel Ilharco, Cade Gordon, Christoph Schuh-
mann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scal-
ing laws for contrastive language-image learning. arXiv
preprint arXiv:2212.07143, 2022.

[11] Rodolfo Corona, Shizhan Zhu, Dan Klein, and Trevor Dar-
rell. Voxel-informed language grounding. arXiv preprint
arXiv:2205.09710, 2022.

[12] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5828–5839, 2017.

[13] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs,
Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana
Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Obja-
verse: A universe of annotated 3d objects. arXiv preprint
arXiv:2212.08051, 2022.

[14] Golnaz Ghiasi, Xiuye Gu, Yin Cui, and Tsung-Yi Lin.
Open-vocabulary image segmentation. arXiv preprint
arXiv:2112.12143, 2021.

[15] Daniel Gordon, Aniruddha Kembhavi, Mohammad Raste-
gari, Joseph Redmon, Dieter Fox, and Ali Farhadi. Iqa:
Visual question answering in interactive environments. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4089–4098, 2018.

[16] Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui.
Open-vocabulary object detection via vision and language
knowledge distillation. arXiv preprint arXiv:2104.13921,
2021.

[17] Huy Ha and Shuran Song. Semantic abstraction: Open-
world 3d scene understanding from 2d vision-language mod-
els. In Conference on Robot Learning, 2022.



[18] Chenguang Huang, Oier Mees, Andy Zeng, and Wolfram
Burgard. Visual language maps for robot navigation. arXiv
preprint arXiv:2210.05714, 2022.

[19] Krishna Murthy Jatavallabhula, Alihusein Kuwajerwala,
Qiao Gu, Mohd Omama, Tao Chen, Shuang Li, Ganesh Iyer,
Soroush Saryazdi, Nikhil Keetha, Ayush Tewari, Joshua B.
Tenenbaum, Celso Miguel de Melo, Madhava Krishna, Liam
Paull, Florian Shkurti, and Antonio Torralba. Conceptfusion:
Open-set multimodal 3d mapping, 2023.

[20] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitz-
mann. Decomposing nerf for editing via feature field dis-
tillation. In NeurIPS, volume 35, 2022.

[21] Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen
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A. Videos
We provide videos illustrating queries in 9 scenes on our

project website. In all videos, the relevancy map images
are post-processed such that all pixel values with relevancy
score less than 0.5 are fully transparent. We choose this
threshold because relevancy values under 0.5 means the ren-
dered language embedding is more similar to the canoni-
cal negative phrases used (“object”, “things”, “stuff”, “tex-
ture”) than to the positive query prompt, so we consider
them irrelevant to the query. This relevancy map is over-
laid on the RGB renders. Relevancy map scale selection
and normalization factor is constant across the entire video
sequence to show scene-wide 3D consistency. During post-
process editing we select queries which are visible during
the specific segment of video; but we also provide full raw,
uncut videos of outputs for the queries in the kitchen scene
to give readers an idea of the scene-wide activations. Many
other scenes contain wide-angle shots to observe relevancy
maps scene-wide.

One notable property of relevancy maps across the scene
that is more apparent in videos is that regions similar to, but
not matching the query are also assigned a non-zero rele-
vancy score, though not as high. For example, the query
for “utensils” highlights most on the utensils in the dish
drainer, but also on the knives hanging on the wall and uten-
sils in the sink. The query for “wooden spoon” is most
activated on the spoon, but also activates on other wooden
components of the scene. This could be viewed as either
a positive aspect of the language field in that it naturally
groups similar regions to a query together, or a downside in
that it can provide too many relevant regions in addition to
the highest activation. For example, for the “refrigerator”
query, the highest activation is assigned to the refrigerator,
but much of the remaining kitchen space is also labeled as
relevant. We hypothesize that this is related to the lack of
grounding with visual-language models like CLIP. We find
that the longer-tail and more specific the query, the more
separation it tends to have with canonical phrases and hence
the result more obviously pops out from other objects. An-
other effect visible in videos is the presence of “floaters”
in the scene which can produce spurious activations, as dis-
cussed at length in Fig.14 and Sec.F.

B. Additional qualitative results
We present a more complete list of results from scenes

not pictured in the main text or videos in Fig. 16.

C. Numerical relevancy scores
We explore the reliability of using relevancy as a thresh-

old for existence determination in and report precision-
recall curves. Here, we provide raw relevancy scores for
the queries in Fig. 1 of the main text to illustrate the be-

Figure 10: Language and visual ambiguities from CLIP: Cases
with incorrect relevancy renders. Some failures can be attributed to
visual similarity to the query (eg “bell peppers” gets distracted on
jalepenos, “portafilter” activates on the grinder spout which has
a similar metal cylindrical appearance, and “refrigerator” slightly
activates on the white rectangular cabinets). Others are more flat-
out failures, with “sugar packets” seemingly a confusing case to
detect, and “kiwis” activating strongly on plums rather than cor-
rectly predicting nothing.

havior across different types of queries. Scores are shown
in Table 2. One can observe that highly descriptive queries
including visual and semantic properties produce higher rel-
evancy scores (eg “blue dish soap”), and the lowest are ab-
stract queries like “electricity” or small objects in clutter
with not many close-up views (“wooden spoon”).

D. Convergence speed

Videos and images for LERF were rendered after 30k
optimization steps. However, usable relevancy maps can be
obtained much sooner, as this section explores. We visual-
ize relevancy maps and RGB renders of the kitchen scene
and figurines scene after 1k, 2k, 6k, and 30k steps in Fig.
11. Because density converges significantly in NeRF within
the first thousand steps, language embeddings in 3D are
already usable at this stage. However, some fine-grained
queries or small objects suffer in performance until later in
optimization. In the “Pikachu” query, early training steps
confuse the yellow figurine (Jake from Adventure Time)
which is visually similar. As LERF converges, the actual
Pikachu in the scene has higher relevancy than Jake. For
fine-grained properties like “bath toys”, the relevancy starts
out more blurry and becomes sharper and more isolated to
the correct objects over time. Objects without much ge-
ometric separation like “pepper mill” also take longer to
converge, since the surrounding geometry can be less pre-
cise.



Figure 11: LERF Convergence. We visualize rendered relevancy maps at 1k, 2k, 6k, and 30k optimization steps. Relatively speaking,
regions with more common semantics (like “blue dish soap”) and more expansive multi-view converge faster, while more fine-grained
properties (like “bath toys”) take more steps. Notably, the optimization is quite stable: all queries produce reasonable activations within
the first few thousand steps, and relevancy continues to refine over time.

Text query Maximum relevancy score

utensils 0.77
wooden spoon 0.60
blue dish soap 0.83

waldo 0.76
paper towel roll 0.75

electricity 0.63
yellow 0.73
boops 0.77

Table 2: Maximum relevancy scores for each text query in Fig.
1 of main text, calculated from the displayed viewpoint. Highly
specific queries have a higher relevancy value (“blue dish soap”,
0.83), while abstract queries can have lower ones (“electricity”,
0.63).

E. Experiment details

We provide a list of the labels used for the localization
experiment in Tab. 3. Each label was labeled in 3-4 different

Figure 12: Prompt tuning case study: Some objects are sensi-
tive to the prompt, with more specific wordings producing better
results.

views. We provide an exhaustive list of our custom long-tail
labels for the existence experiment in Tab. 4.



Figure 13: CLIP bag-of-words behavior: CLIP sometimes be-
haves as a bag-of-words, resulting in some adjectives not properly
incorporating into queries.

Figure 14: Degradation with poor NeRF geometry: Floaters and
incomplete geometry can produce unreliable rendered CLIP em-
beddings.

Figure 15: Geometric separation impacts quality: Queries
without much geometric separation can blur between objects and
foreground-background. In the toaster case, very few viewing an-
gles were taken because of its position, which results in a fuzzier
boundary.

F. Detailed Illustrations of Limitations
LERF inherits limitations from CLIP relating to lan-

guage ambiguity and prompt sensitivity, as well as from
NeRF’s geometry representation capabilities. We present
additional figures on failure cases to complement the ones
provided in the main text.

Fig.10 showcases visual and language ambiguity from
our usage of CLIP. Some queries get confused by unrelated
regions of the scene because they appear very similar, such
as the portafilter and the coffee grinder. In the refrigerator
query, unrelated parts of the kitchen also activate in rele-
vancy maps, though less strongly than refrigerator, because
the CLIP embeddings of square white cabinets are more
similar to a refrigerator than the canonical phrases. Sugar
packets appear to be a confusing case for LERF, getting dis-
tracted in two separate scenes (teatime, espresso machine)
with a tea packet and creamer pods respectively.

Fig.13 highlights another well-known undesirable prop-
erty inherited from CLIP: text embeddings often behave as a
bag-of-words rather than a grammatically parsed sentence.
As a result, sometimes adding additional adjectives cause
the output to latch onto incorrect regions (“mug handle” vs
“handle” or “coffee spill” vs “spill”.)

Fig.14 shows performance degradation when geometry
is unreliable in the underlying NeRF: reflective objects like
the table in the ramen scene can produce holes, which re-
sult in CLIP embeddings from multiple views incorrectly
averaging. Highly transparent objects like the glass cup in
the espresso scene also suffer from lack of density, since the
rendering weights mostly focus on the opaque background
rather than the transparent foreground.

Fig.12 illustrates examples of relevancy maps improv-
ing in quality with subtly changed queries to become more
and more specific. Usually this has a subtle effect on rele-
vancy maps by refining the activation to a more localized re-
gion, for example providing progressively more descriptive
queries improves the relevancy activation on the tea cup.
This effect can also be drastic, for example “Dish soap”
primarily activates on a pump soap bottle, but describing
“blue dish soap” shifts focus to the correct object.

Finally, Fig.15 shows cases where lack of geometric sep-
aration (a cable close to a table, or a toaster flush in the cor-
ner) causes the relevancy maps to blur into other surround-
ing objects because most views of the background contain
the foreground object in front.



Figure 16: Additional results of scenes not reported fully in the main text or rendered in videos.



Scene Text queries

blue hydroflask coffee grinder cookbooks cooking tongs
copper-bottom pot dish soap faucet knives

Kitchen olive oil paper towel roll pepper mill pour-over vessel
power outlet red mug scrub brush sink
spice rack utensils vegetable oil waldo

big white crinkly flower bouquet carnation daisy
Bouquet eucalyptus lily rosemary small white flowers

vase

green apple ice cream cone jake miffy
old camera pikachu pink ice cream porcelain hand

Figurines quilted pumpkin rabbit red apple rubber duck
rubics cube spatula tesla door handle toy cat statue

toy chair toy elephant twizzlers waldo

bowl broth chopsticks egg
Ramen glass of water green onion napkin nori

pork belly ramen sake cup wavy noodles

bag of cookies bear nose coffee coffee mug
Teatime cookies on a plate dall-e hooves paper napkin

plate sheep spill spoon handle
stuffed bear tea in a glass yellow pouf

Table 3: Labels used during detection experiments (75 total).

Scene Positive Labels

Figurines jake, miffy, rabbit, bunny, old camera, toy elephant, twizzlers, quilted pumpkin, tesla door handle,
porcelain hand, rubics cube, rubber duck, apple, ice cream cone,

pink ice cream, toy cat statue, toy chair, waldo, spatula, pikachu,table,

Kitchen red mug, pour-over vessel, olive oil, vegetable oil, cookbooks, waldo,
dish soap, plates, sink, faucet, copper-bottom pot, utensils, knives, spice rack,

coffee grinder,flour, blue hydroflask, pepper mill, paper towel roll, scrub brush,
power outlet, cooking tongs, transparent tupperware, coffee mug, coffee, spoon handle,

Teatime stuffed bear, sheep, bear nose, coffee mug, spill, tea in a glass, cookies on a plate, bag of cookies, dall-e,
hooves,coffee, yellow pouf, spoon handle, paper napkin, plate, wood, bag of food, hand sanitizer, mug,

Table wood texture, red bag of food, hand sanitizer bottle, airpods case,
usb cable, brown paper napkins, transparent tupperware, colorful coaster,

packing tape roll, hardware clamps,
iphone, laptop, metal cooking tongs, mug, drinking straw, table, tea in a glass,

Bouquet big white crinkly flower, bouquet, carnation, daisy, eucalyptus, lily, rosemary
small white flowers, table, flowers, pink flowers, wood, sink

Table 4: Long-tail labels used for existence experiment. Each row shows the positive labels for a given scene. Negative labels consist of
the positives for other scenes, re-labeled to match the ground truth.


