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Figure 1: We present a new method for estimating full-length motion trajectories for every pixel in every frame of a video, as illustrated by
the motion paths shown above. For clarity, we only show sparse trajectories for foreground objects, though our method computes motion for
all pixels. Our method yields accurate, coherent long-range motion even for fast-moving objects, and robustly tracks through occlusions as
shown in the dog and swing examples. For context, in the second row we depict the moving object at different moments in time.

Abstract

We present a new test-time optimization method for esti-
mating dense and long-range motion from a video sequence.
Prior optical flow or particle video tracking algorithms typi-
cally operate within limited temporal windows, struggling to
track through occlusions and maintain global consistency of
estimated motion trajectories. We propose a complete and
globally consistent motion representation, dubbed OmniMo-
tion, that allows for accurate, full-length motion estimation
of every pixel in a video. OmniMotion represents a video
using a quasi-3D canonical volume and performs pixel-wise
tracking via bijections between local and canonical space.
This representation allows us to ensure global consistency,
track through occlusions, and model any combination of
camera and object motion. Extensive evaluations on the
TAP-Vid benchmark and real-world footage show that our
approach outperforms prior state-of-the-art methods by a
large margin both quantitatively and qualitatively. See our
project page for more results: omnimotion.github.io.

1. Introduction

Motion estimation methods have traditionally followed
one of two dominant approaches: sparse feature tracking
and dense optical flow [55]. While each type of method
has proven effective for their respective applications, neither
representation fully models the motion of a video: pairwise
optical flow fails to capture motion trajectories over long
temporal windows, and sparse tracking does not model the
motion of all pixels.

A number of approaches have sought to close this gap,
i.e., to estimate both dense and long-range pixel trajectories
in a video. These range from methods that simply chain
together two-frame optical flow fields, to more recent ap-
proaches that directly predict per-pixel trajectories across
multiple frames [23]. Still, these methods all use limited
context when estimating motion, disregarding information
that is either temporally or spatially distant. This locality can
result in accumulated errors over long trajectories and spatio-
temporal inconsistencies in the motion estimates. Even when
prior methods do consider long-range context [55], they op-
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erate in the 2D domain, resulting in a loss of tracking during
occlusion events. All in all, producing both dense and long-
range trajectories remains an open problem in the field, with
three key challenges: (1) maintaining accurate tracks across
long sequences, (2) tracking points through occlusions, and
(3) maintaining coherence in space and time.

In this work, we propose a holistic approach to video
motion estimation that uses all the information in a video
to jointly estimate full-length motion trajectories for every
pixel. Our method, which we dub OmniMotion, uses a quasi-
3D representation in which a canonical 3D volume is mapped
to per-frame local volumes through a set of local-canonical
bijections. These bijections serve as a flexible relaxation of
dynamic multi-view geometry, modeling a combination of
camera and scene motion. Our representation guarantees cy-
cle consistency, and can track all pixels, even while occluded
(“Everything, Everywhere”). We optimize our representa-
tion per video to jointly solve for the motion of the entire
video “All at Once”. Once optimized, our representation
can be queried at any continuous coordinate in the video to
receive a motion trajectory spanning the entire video.

In summary, we propose an approach that: 1) produces
globally consistent full-length motion trajectories for all
points in an entire video, 2) can track points through occlu-
sions, and 3) can tackle in-the-wild videos with any combi-
nation of camera and scene motion. We demonstrate these
strengths quantitatively on the TAP video tracking bench-
mark [15], where we achieve state-of-the-art performance,
outperforming all prior methods by a large margin.

2. Related Work

Sparse feature tracking. Tracking features [4, 42] across
images is essential for a wide range of applications such as
Structure from Motion (SfM) [1, 56, 59] and SLAM [17].
While sparse feature tracking [13, 43, 57, 67] can establish
long-range correspondence, this correspondence is limited
to a set of distinctive interest points, and often restricted
to rigid scenes. Hence, below we focus on work that can
produce dense pixel motion for general videos.

Optical flow. Optical flow has traditionally been formu-
lated as an optimization problem [6, 7, 24, 75]. However,
recent advances have enabled direct prediction of optical
flow using neural networks with improved quality and ef-
ficiency [20, 25, 26, 61]. One leading method, RAFT [66],
estimates flow through iterative updates of a flow field based
on 4D correlation volumes. While optical flow methods
allow for precise motion estimation between consecutive
frames, they are not suited to long-range motion estimation:
chaining pairwise optical flow into longer trajectories re-
sults in drift and fails to handle occlusions, while directly
computing optical flow between distant frames (i.e., larger
displacements) often results in temporal inconsistency [8,75].

Multi-frame flow estimation methods [27, 29, 52, 70] can ad-
dress some limitations of two-frame optical flow, but still
struggle to handle long-range motion.

Feature matching. While optical flow methods are typi-
cally intended to operate on consecutive frames, other tech-
niques can estimate dense correspondences between dis-
tant pairs of video frames [41]. Several methods learn
such correspondences in a self- or weakly-supervised man-
ner [5, 10, 13, 37, 53, 71, 73, 78] using cues like cycle consis-
tency [28,74,83], while others [18,30,62,68,69] use stronger
supervision signals such as geometric correspondences gen-
erated from 3D reconstruction pipelines [39, 56]. However,
pairwise matching approaches typically do not incorporate
temporal context, which can lead to inconsistent tracking
over long videos and poor occlusion handling. In contrast,
our method produces smooth trajectories through occlusions.

Pixel-level long-range tracking. A notable recent ap-
proach, PIPs [23], estimates multi-frame trajectories through
occlusions by leveraging context within a small temporal
window (8 frames). However, to produce motion for videos
longer than this temporal window, PIPs still must chain cor-
respondences, a process that (1) is prone to drift and (2) will
lose track of points that remain occluded beyond the 8-frame
window. Concurrent to our work, several works develop
learning-based methods for predicting long-range pixel-level
tracks in a feedforward manner. MFT [46] learns to select
the most reliable sequences of optical flows to perform long-
range tracking. TAPIR [16] tracks points by employing a
matching stage inspired by TAP-Net [15] and a refinement
stage inspired by PIPs [23]. CoTracker [31] proposes a
flexible and powerful tracking algorithm with a transformer
architecture to track points throughout a video. Our contri-
bution is complementary to these works: the output of any
of these methods can be used as the input supervision when
optimizing a global motion representation.

Video-based motion optimization. Most conceptually re-
lated to our approach are classical methods that optimize mo-
tion globally over an entire video [2,12,36,54,55,60,63,72].
Particle video, for instance, produces a set of semi-dense
long-range trajectories (called particles) from initial optical
flow fields [55]. However, it does not track through occlu-
sions; an occluded entity will be treated as a different particle
when it re-appears. Rubinstein et al. [54] further proposed a
combinatorial assignment approach that can track through
occlusion and generate longer trajectories. However, this
method only produces semi-dense tracks for videos with
simple motion, whereas our method estimates long-range
motion for all pixels in general videos. Also related is Parti-
cleSfM [82], which optimizes long-range correspondences
from pairwise optical flows. Unlike our approach, Parti-
cleSfM focuses on camera pose estimation within an SfM
framework, where only correspondences from static regions

2



are optimized, and dynamic objects are treated as outliers.

Neural video representations. While our method shares
similarities with recent methods that model videos using
coordinate-based multi-layer perceptrons (MLPs) [44,58,65],
prior work has primarily focused on problems such as novel
view synthesis [38, 40, 47, 48, 77] and video decomposi-
tion [32, 81]. In contrast, our work targets the challenge of
dense, long-range motion estimation. Though some methods
for dynamic novel view synthesis produce 2D motion as
a by-product, these systems require known camera poses
and the resulting motion is often erroneous [21]. Some dy-
namic reconstruction methods [9,76,79,80] can also produce
2D motion, but these are often object-centric with a focus
on articulated objects. Alternatively, video decomposition-
based representations such as Layered Neural Atlases [32]
and Deformable Sprites [81] solve for a mapping between
each frame and a global texture atlas. Frame-to-frame cor-
respondence can be derived by inverting this mapping, but
this process is expensive and unreliable. Furthermore, these
methods are limited to representing videos using a limited
number of layers with fixed ordering, restricting their ability
to model complex, real-world videos.

3. Overview
We propose a test-time optimization approach for esti-

mating dense and long-range motion from a video sequence.
Our method takes as input a collection of frames and pair-
wise noisy motion estimates (e.g., optical flow fields), and
uses these to solve for a complete, globally consistent mo-
tion representation for the entire video. Once optimized, our
representation can be queried with any pixel in any frame
to produce a smooth, accurate motion trajectory across the
full video. Our method identifies when points are occluded,
and even tracks points through occlusions. In the following
sections, we describe our underlying representation, dubbed
OmniMotion (Sec. 4), then describe our optimization pro-
cess (Sec. 5) for recovering this representation from a video.

4. OmniMotion representation
As discussed in Sec. 1, classical motion representations,

such as pairwise optical flow, lose track of objects when
they are occluded, and can produce inconsistencies when
correspondences are composed over multiple frames. To
obtain accurate, consistent tracks even through occlusion,
we therefore need a global motion representation, i.e., a
data structure that encodes the trajectories of all points in a
scene. One such global representation is a decomposition of
a scene into a set of discrete, depth-separated layers [32, 81].
However, most real-world scenes cannot be represented as
a set of fixed, ordered layers: e.g., consider the simple case
of an object rotating in 3D. At the other extreme is full 3D
reconstruction that disentangles 3D scene geometry, camera

pose and scene motion. This, however, is an extremely ill-
posed problem. Thus, we ask: can we accurately track real-
world motion without explicit dynamic 3D reconstruction?

We answer this question using our proposed represen-
tation, OmniMotion (illustrated in Fig. 2). OmniMotion
represents the scene in a video as a canonical 3D volume
that is mapped to local volumes for each frame through
local-canonical bijections. The local-canonical bijections
are parametrized as neural networks and capture both camera
and scene motion without disentangling the two. As such,
the video can be considered as a rendering of the resulting
local volumes from a fixed, static camera.

Because OmniMotion does not explicitly disentangle
camera and scene motion, the resulting representation is
not a physically accurate 3D scene reconstruction. Instead
we call it a quasi-3D representation. This relaxation of
dynamic multi-view geometry allows us to sidestep ambi-
guities that make dynamic 3D reconstruction challenging.
Yet we retain properties needed for consistent and accurate
long-term tracking through occlusion: first, by establishing
bijections between each local frame and a canonical frame,
OmniMotion guarantees globally cycle-consistent 3D map-
pings across all local frames, which emulates the one-to-one
correspondences between real-world, metric 3D reference
frames. Second, OmniMotion retains information about all
scene points that are projected onto each pixel, along with
their relative depth ordering, enabling points to be tracked
even when they are temporarily occluded from view.

In the following sections, we describe our quasi-3D
canonical volume and 3D bijections, and then describe how
they can be used to compute motion between any two frames.

4.1. Canonical 3D volume

We represent a video’s content using a canonical volume
G that acts as a three-dimensional atlas of the observed scene.
As in NeRF [44], we define a coordinate-based network Fθ

over G that maps each canonical 3D coordinate u ∈ G to
a density σ and color c. The density stored in G is key, as
it tells us where the surfaces are in canonical space. To-
gether with the 3D bijections, this allows us to track surfaces
over multiple frames as well as reason about occlusion re-
lationships. The color stored in G allows us to compute a
photometric loss during optimization.

4.2. 3D bijections

We define a continuous bijective mapping Ti that maps
3D points xi from each local coordinate frame Li to the
canonical 3D coordinate frame as u = Ti(xi), where i is
the frame index. Note that the canonical coordinate u is
time-independent and can be viewed as a globally consistent
“index” for a particular scene point or 3D trajectory across
time. By composing these bijective mappings and their in-
verses, we can map a 3D point from one local 3D coordinate
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Figure 2: Method overview. (a) Our OmniMotion representation is comprised of a canonical 3D volume G and a set of bijections Ti

that map between each frame’s local volume Li and the canonical volume G. Any local 3D location xi in frame i can be mapped to its
corresponding canonical location u through Ti, and then mapped back to another frame j as xj through the inverse mapping T −1

j . Each
location u in G is associated with a color c and density σ, computed using a coordinate-based MLP Fθ . (b) To compute the corresponding
2D location for a given query point pi mapped from frame i to j, we shoot a ray into Li and sample a set of points {xk

i }Kk=1, which are then
mapped first to the canonical space to obtain their densities, and then to frame j to compute their corresponding local 3D locations {xk

j }Kk=1.
These points {xk

j }Kk=1 are then alpha-composited and projected to obtain the 2D corresponding location p̂j .

frame (Li) to another (Lj):

xj = T −1
j ◦ Ti(xi). (1)

Bijective mappings ensure that the resulting correspondences
between 3D points in individual frames are all cycle consis-
tent, as they arise from the same canonical point.

To allow for expressive maps that can capture real-world
motion, we parameterize these bijections as invertible neural
networks (INNs). Inspired by recent work on homeomor-
phic shape modeling [35, 49], we use Real-NVP [14] due to
its simple formulation and analytic invertibility. Real-NVP
builds bijective mappings by composing simple bijective
transformations called affine coupling layers. An affine cou-
pling layer splits the input into two parts; the first part is left
unchanged, but is used to parametrize an affine transforma-
tion that is applied to the second part.

We modify this architecture to also condition on a per-
frame latent code ψi [35, 49]. Then all invertible mappings
Ti are parameterized by the same invertible network Mθ , but
with different latent codes: Ti(·) = Mθ(·;ψi).

4.3. Computing frame-to-frame motion

Given this representation, we now describe how we can
compute 2D motion for any query pixel pi in frame i. Intu-
itively, we “lift” the query pixel to 3D by sampling points
on a ray, “map” these 3D points to a target frame j using
bijections Ti and Tj , “render” these mapped 3D points from
the different samples through alpha compositing, and finally
“project” back to 2D to obtain a putative correspondence.

Specifically, since we assume that camera motion is sub-
sumed by the local-canonical bijections Ti, we simply use a

fixed, orthographic camera. The ray at pi can then be defined
as ri(z) = oi+zd, where oi = [pi, 0] and d = [0, 0, 1]. We
sample K samples on the ray {xk

i }, which are equivalent to
appending a set of depth values {zki }Kk=1 to pi. Despite not
being a physical camera ray, it captures the notion of multiple
surfaces at each pixel and suffices to handle occlusion.

Next we obtain densities and colors for these samples
by mapping them to the canonical space and then querying
the density network Fθ. Taking the k-th sample xk

i as an
example, its density and color can be written as (σk, ck) =
Fθ(Mθ(x

k
i ;ψi)). We can also map each sample along the

ray to a corresponding 3D location xk
j in frame j (Eq. 1).

We can now aggregate the correspondences xk
j from all

samples to produce a single correspondence x̂j . This ag-
gregation is similar to how the colors of sample points are
aggregated in NeRF: we use alpha compositing, with the
alpha value for the k-th sample as αk = 1− exp(−σk). We
then compute x̂j as:

x̂j =

K∑
k=1

Tkαkx
k
j , where Tk =

k−1∏
l=1

(1− αl) (2)

A similar process is used to composite ck to get the image-
space color Ĉi for pi. x̂j is then projected using our sta-
tionary orthographic camera model to yield the predicted 2D
corresponding location p̂j for the query location pi.

5. Optimization
Our optimization process takes as input a video sequence

and a collection of noisy correspondence predictions (from
an existing method) as guidance, and generates a complete,
globally consistent motion estimate for the entire video.
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5.1. Collecting input motion data

For most of our experiments, we use RAFT [66] to com-
pute input pairwise correspondence. We also experimented
with another dense correspondence method, TAP-Net [15],
and demonstrate in our evaluation that our approach consis-
tently works well given different types of input correspon-
dence. Taking RAFT as an example, we begin by exhaus-
tively computing all pairwise optical flows. Since optical
flow methods can produce significant errors under large dis-
placements, we apply cycle consistency and appearance con-
sistency checks to filter out spurious correspondences. We
also optionally augment the flows through chaining, when
deemed reliable. Additional details about our flow collection
process are provided in the supplemental material. Despite
the filtering, the (now incomplete) flow fields remain noisy
and inconsistent. We now introduce our optimization method
that consolidates these noisy, incomplete pairwise motion
into complete and accurate long-range motion.

5.2. Loss functions

Our primary loss function is a flow loss. We minimize
the mean absolute error (MAE) between the predicted flow
f̂i→j = p̂j − pi from our optimized representation and the
supervising input flow fi→j derived from running optical
flow:

Lflo =
∑

fi→j∈Ωf

||f̂i→j − fi→j ||1 (3)

where Ωf is the set of all the filtered pairwise flows. In
addition, we minimize a photometric loss defined as the
mean squared error (MSE) between the predicted color Ĉi

and the observed color Ci in the source video frame:

Lpho =
∑

(i,p)∈Ωp

||Ĉi(p)−Ci(p)||22 (4)

where Ωp is the set of all pixel locations over all frames. Last,
to ensure temporal smoothness of the 3D motion estimated
by Mθ, we apply a regularization term that penalizes large
accelerations. Given a sampled 3D location xi in frame i,
we map it to frame i−1 and frame i+1 using Eq. 1, yielding
3D points xi−1 and xi+1 respectively, and then minimize
3D acceleration as in [38]:

Lreg =
∑

(i,x)∈Ωx

||xi+1 + xi−1 − 2xi||1 (5)

where Ωx is the union of local 3D spaces for all frames. Our
final combined loss can be written as:

L = Lflo + λphoLpho + λregLreg (6)

where weights λ control the relative importance of each term.
The intuition behind this optimization is to leverage the

bijections to a single canonical volume G, photo consis-
tency, and the natural spatiotemporal smoothness provided

by the coordinate-based networks Mθ and Fθ to reconcile
inconsistent pairwise flow and fill in missing content in the
correspondence graphs.

5.3. Balancing supervision via hard mining

The exhaustive pairwise flow input maximizes the use-
ful motion information available to the optimization stage.
However, this approach, especially when coupled with the
flow-filtering process, can result in an unbalanced collection
of motion samples in dynamic regions. Rigid background re-
gions typically have many reliable pairwise correspondences,
while fast-moving and deforming foreground objects often
have many fewer reliable correspondences after filtering, es-
pecially between distant frames. This imbalance can lead the
network to focus entirely on dominant (simple) background
motions, and ignore the challenging moving objects that
represent a small portion of the supervisory signal.

To address this issue, we propose a simple strategy for
mining hard examples during training. Specifically, we peri-
odically cache flow predictions and compute error maps by
calculating the Euclidean distance between the predicted and
input flows. During optimization, we guide sampling such
that regions with high errors are sampled more frequently.
We compute these error maps on consecutive frames, where
we assume our supervisory optical flow is most reliable.
Please refer to the supplement for more details.

5.4. Implementation details

Network. Our mapping network Mθ consists of six affine
coupling layers. We apply positional encoding [44, 65] with
4 frequencies to each layer’s input coordinates before com-
puting the scale and translation. We use a single 2-layer
MLP with 256 channels implemented as a GaborNet [19] to
compute the latent code ψi for each frame i. The input to
this MLP is the time ti. The dimensionality of latent codeψi

is 128. The canonical representation Fθ is also implemented
as a GaborNet, but with 3 layers of 512 channels.

Representation. We normalize all pixel coordinates pi
to the range [−1, 1], and set the near and far depth range
to 0 and 2, defining a local 3D space for each frame as
[−1, 1]2× [0, 2]. While our method can place content at arbi-
trary locations in the canonical space G, we initialize mapped
canonical locations given by Mθ to be roughly within a unit
sphere to ensure well-conditioned input to the density/color
network Fθ . To improve numerical stability during training,
we apply the contraction operation in mip-NeRF 360 [3] to
canonical 3D coordinates u before passing them to Fθ.

Training. We train our representation on each video se-
quence with Adam [33] for 200K iterations. In each train-
ing batch, we sample 256 correspondences from 8 pairs of
images, for a total of 1024 correspondences. We sample
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K = 32 points on each ray using stratified sampling. More
training details can be found in the supplemental material.

6. Evaluation
6.1. Benchmarks

We evaluate our method on the TAP-Vid benchmark [15],
which is designed to evaluate the performance of point track-
ing across long video clips. TAP-Vid consists of both real-
world videos with accurate human annotations of point tracks
and synthetic videos with perfect ground-truth point tracks.
Each point track is annotated through the entire video, and
is labeled as occluded when not visible.

Datasets. We evaluate on the following datasets from TAP-
Vid: 1) DAVIS, a real dataset of 30 videos from the DAVIS
2017 validation set [50], with clips ranging from 34-104
frames and an average of 21.7 point track annotations per
video. 2) Kinetics, a real dataset of 1,189 videos each with
250 frames from the Kinetics-700-2020 validation set [11]
with an average of 26.3 point track annotations per video.
To make evaluation tractable for test-time optimization ap-
proaches like ours, we randomly sample a subset of 100
videos and evaluate all methods on this subset. 3) RGB-
Stacking [34], a synthetic dataset of 50 videos each with
250 frames and 30 tracks. We exclude the synthetic Kubric
dataset [22] as it is primarily intended for training. For
quantitative evaluation, we adhere to the TAP benchmark
protocol and evaluate all methods at 256×256 resolution, but
all qualitative results are run at a higher resolution (480p).

Evaluation metrics. Following the TAP-Vid benchmark,
we report both the position and occlusion accuracy of pre-
dicted tracks. We also introduce a new metric measuring
temporal coherence. Our evaluation metrics include:

• < δxavg measures the average position accuracy of visible
points across 5 thresholds: 1, 2, 4, 8, and 16 pixels. The
accuracy < δx at each threshold δx is the fraction of points
that are within δx pixels of their ground truth position.

• Average Jaccard (AJ) evaluates both occlusion and po-
sition accuracy on the same thresholds as < δxavg. It cat-
egorizes predicted point locations as true positives, false
positives, and false negatives, and is defined as the ratio
of true positives to all points. True positives are points
within the threshold of visible ground truth points. False
positives are points that are predicted as visible, but where
the ground truth is occluded or beyond the threshold. False
negatives are ground truth visible points that are predicted
as occluded or are beyond the threshold.

• Occlusion Accuracy (OA) evaluates the accuracy of the
visibility/occlusion prediction at each frame.

• Temporal Coherence (TC) evaluates the temporal coher-
ence of the tracks by measuring the L2 distance between

the acceleration of groundtruth tracks and predicted tracks.
The acceleration is measured as the flow difference be-
tween two adjacent frames for visible points.

6.2. Baselines

We compare OmniMotion to various types of dense corre-
spondence methods, including optical flow, feature matching,
and multi-frame trajectory estimation as follows:

RAFT [66] is a state-of-the-art two-frame flow method. We
consider two ways to use RAFT to generate multi-frame
trajectories at test time: 1) chaining RAFT predictions be-
tween consecutive frames into longer tracks, which we call
RAFT-C, and 2) directly computing RAFT flow between any
(non-adjacent) query and target frames (RAFT-D). When
generating trajectories using RAFT-D, we always use the pre-
vious flow prediction as initialization for the current frame.

PIPs [23] is a method for estimating multi-frame point tra-
jectories that can handle occlusions. By default, the method
uses a temporal window of 8 frames, and longer trajectories
must be generated through chaining. We used the official
implementation of PIPs to perform chaining.

Flow-Walk [5] uses a multi-scale contrastive random walk
to learn space-time correspondences by encouraging cycle
consistency across time. Similar to RAFT, we report both
chained and direct correspondence computation as Flow-
Walk-C and Flow-Walk-D, respectively.

TAP-Net [15] uses a cost volume to predict the location of
a query point in a single target frame, along with a scalar
occlusion logit.

Deformable Sprites [81] is a layer-based video decomposi-
tion method. Like our method, it uses a per-video test-time
optimization. However, it does not directly produce frame-
to-frame correspondence, as the mapping from each frame to
a canonical texture image is non-invertible. A nearest neigh-
bor search in texture image space is required to find corre-
spondence. Layered Neural Atlases [32] shares similarities
to Deformable Sprites, but requires semantic segmentation
masks as input, so we opt to compare to Deformable Sprites.

PIPs, TAP-Net and Deformable Sprites directly predict
occlusion, but RAFT and Flow-Walk do not. Therefore we
follow prior work [15, 78] and use a cycle consistency check
with a threshold of 48 pixels to produce occlusion predictions
for these methods. For our method, we detect occlusion
by first mapping the query point to its corresponding 3D
location in the target frame, then checking the transmittance
of that 3D location in the target frame.

6.3. Comparisons

Quantitative comparisons. We compare our method to
baselines on the TAP-Vid benchmark in Tab. 1. Our method
achieves the best position accuracy, occlusion accuracy, and
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Figure 3: Qualitative comparison of our method and baselines on DAVIS [50]. The leftmost image shows query points in the first frame, and
the right three images show tracking results over time. Notably, our method tracks successfully through the occlusion events in swing and
india, while baseline methods fail. Our method additionally detects occlusion (marked as cross “+”) and gives plausible location estimates
even when a point is occluded. Please refer to the supplemental video for better visualizations of tracking accuracy and coherence.

temporal coherence consistently across different datasets.
Our method works well with different input pairwise corre-
spondences from RAFT and TAP-Net, and provides consis-
tent improvements over both of these base methods.

Compared to approaches that directly operate on (non-
adjacent) pairs of query and target frames like RAFT-D,
TAP-Net, and Flow-Walk-D, our method achieves signifi-
cantly better temporal coherence due to our globally con-
sistent representation. Compared to flow chaining methods
like RAFT-C, PIPs, and Flow-Walk-C, our method has better
tracking performance, especially on longer videos. Chaining
methods accumulate errors over time and are not robust to oc-

clusion. Although PIPs considers a wider temporal window
(8 frames) for better occlusion handling, it fails to track a
point if it stays occluded beyond the entire temporal window.
In contrast, OmniMotion can track points through extended
occlusions. Our method also outperforms the test-time op-
timization approach Deformable Sprites [81]. Deformable
Sprites decomposes a video using a predefined two or three
layers with fixed ordering and models the background as a
2D atlas with a per-frame homography, limiting its ability to
fit to videos with complex camera and scene motion.

Qualitative comparisons. We compare our method quali-
tatively to our baselines in Fig. 3. We highlight our ability to

7



Method Kinetics DAVIS RGB-Stacking

AJ ↑ < δxavg ↑ OA ↑ TC ↓ AJ ↑ < δxavg ↑ OA ↑ TC ↓ AJ ↑ < δxavg ↑ OA ↑ TC ↓

RAFT-C [66] 31.7 51.7 84.3 0.82 30.7 46.6 80.2 0.93 42.0 56.4 91.5 0.18
RAFT-D [66] 50.6 66.9 85.5 3.00 34.1 48.9 76.1 9.83 72.1 85.1 92.1 1.04
TAP-Net [15] 48.5 61.7 86.6 6.65 38.4 53.4 81.4 10.82 61.3 73.7 91.5 1.52
PIPs [23] 39.1 55.3 82.9 1.30 39.9 56.0 81.3 1.78 37.3 50.6 89.7 0.84
Flow-Walk-C [5] 40.9 55.5 84.5 0.77 35.2 51.4 80.6 0.90 41.3 55.7 92.2 0.13
Flow-Walk-D [5] 46.9 65.9 81.8 3.04 24.4 40.9 76.5 10.41 66.3 82.7 91.2 0.47
Deformable-Sprites [81] 25.6 39.5 71.4 1.70 20.6 32.9 69.7 2.07 45.0 58.3 84.0 0.99

Ours (TAP-Net) 53.8 68.3 88.8 0.77 50.9 66.7 85.7 0.86 73.4 84.1 92.2 0.11
Ours (RAFT) 55.1 69.6 89.6 0.76 51.7 67.5 85.3 0.74 77.5 87.0 93.5 0.13

Table 1: Quantitative comparison of our method and baselines on the TAP-Vid benchmark [15]. We refer to our method as Ours, and
present two variants, Ours (TAP-Net) and Ours (RAFT), which are optimized using input pairwise correspondences from TAP-Net [15]
and RAFT [66], respectively. Both Ours and Deformable Sprites [81] estimate global motion via test-time optimization on each individual
video, while all other methods estimate motion locally in a feed-forward manner. Our method notably improves the quality of the input
correspondences, achieving the best position accuracy, occlusion accuracy, and temporal coherence among all methods tested.

Method AJ ↑ < δxavg ↑ OA ↑ TC ↓

No invertible 12.5 21.4 76.5 0.97
No photometric 42.3 58.3 84.1 0.83
Uniform sampling 47.8 61.8 83.6 0.88

Full 51.7 67.5 85.3 0.74

Table 2: Ablation study on DAVIS [50].

identify and track through (long) occlusion events while also
providing plausible locations for points during occlusion, as
well as handling large camera motion parallax. Please refer
to the supplementary video for animated comparisons.

6.4. Ablations and analysis

Ablations. We perform ablations to verify the effective-
ness of our design decisions in Tab. 2. No invertible is a
model variant that replaces our invertible mapping network
Mθ with separate forward and backward mapping networks
between local and canonical frames (i.e., without the strict
cycle consistency guarantees of our proposed bijections).
While we additionally add a cycle consistency loss for this
ablation, it still fails to construct a meaningful canonical
space, and can only represent simple motions of the static
background. No photometric is a version that omits the
photometric loss Lpho; the reduced performance suggests
the importance of photoconsistency for refining motion esti-
mates. Uniform sampling replaces our hard-mining sampling
strategy with a uniform sampling strategy, which we found
leads to an inability to capture fast motion.

Analysis. In Fig. 4, we show pseudo-depth maps generated
from our model to demonstrate the learned depth ordering.
Note that these maps do not correspond to physical depth,
nonetheless, they demonstrate that using only photometric
and flow signals, our method is able to sort out the relative

Figure 4: Pseudo-depth maps extracted from our representation,
where blue indicates closer objects and red indicates further.

ordering between different surfaces, which is crucial for
tracking through occlusions. More ablations and analyses
are provided in the supplemental material.

7. Limitations

Like many motion estimation methods, our method strug-
gles with rapid and highly non-rigid motion as well as thin
structures. In these scenarios, pairwise correspondence meth-
ods can fail to provide enough reliable correspondences for
our method to compute accurate global motion.

In addition, due to the highly non-convex nature of the
underlying optimization problem, we observe that our opti-
mization process can be sensitive to initialization for certain
difficult videos. This can result in sub-optimal local min-
ima, e.g., incorrect surface ordering or duplicated objects
in canonical space that can sometimes be hard to correct
through optimization.

Finally, our method in its current form can be computa-
tionally expensive. First, the flow collection process involves
computing all pairwise flows exhaustively, which scales
quadratically with respect to the sequence length. However,
we believe the scalability of this process can be improved by
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exploring more efficient alternatives to exhaustive matching,
e.g., vocabulary trees or keyframe-based matching, drawing
inspiration from the Structure from Motion and SLAM liter-
ature. Second, like other methods that utilize neural implicit
representations [44], our method involves a relatively long
optimization process. Recent research in this area [45, 64]
may help accelerate this process and allow further scaling to
longer sequences.

8. Conclusion

We proposed a new test-time optimization method for esti-
mating complete and globally consistent motion for an entire
video. We introduced a new video motion representation
called OmniMotion which includes a quasi-3D canonical
volume and per-frame local-canonical bijections. OmniMo-
tion can handle general videos with varying camera setups
and scene dynamics, and produce accurate and smooth long-
range motion through occlusions. Our method achieves
significant improvements over prior state-of-the-art methods
both qualitatively and quantitatively.
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A. Preparing pairwise correspondences
Our method uses pairwise correspondences from existing

methods, such as RAFT [66] and TAP-Net [15], and con-
solidates them into dense, globally consistent, and accurate
correspondences that span an entire video. As a preprocess-
ing stage, we exhaustively compute all pairwise correspon-
dences (i.e., between every pair of frames i and j) and filter
them using cycle consistency and appearance consistency
checks.

When computing the flow field between a base frame
i and a target frame j as i → j, we always use the flow
prediction for the previous target frame (i → j − 1) as ini-
tialization for the optical flow model (when possible). We
find this improves flow predictions between distant frames.
Still, the flow predictions between distant frames can contain
significant errors, and therefore we filter out flow vector esti-
mates with cycle consistency errors (i.e., forward-backward
flow consistency error) greater than 3 pixels.

Despite this filtering process, we still frequently observe
a persistent type of error that remains undetected by cycle
consistency checks. This type of spurious correspondence,
illustrated in Fig. 5, occurs because flow networks can strug-
gle to estimate motion for regions that undergo significant
deformation between the two input frames, and instead opt
to interpolate motion from the surrounding areas. In the ex-
ample in Fig. 5, this leads to flow on the foreground person
“locking on” to the background layer instead. This behavior
results in incorrect flows that survive the cycle consistency
check, since they are consistent with a secondary layer’s
motion (e.g., background motion). To address this issue,
we additionally use an appearance check: we extract dense
features for each pixel using DINO [10] and filter out cor-
respondences whose features’ cosine similarity is < 0.5.
In practice, we apply the cycle consistency check for all
pairwise flows and supplement it with an appearance check
when the two frames are more than 3 frames apart. We found
this filtering process consistently eliminates major errors in
flow fields across different sequences without per-sequence
tuning. The results of our filtering approach, after both cycle
and appearance consistency checks, are illustrated in Fig. 6.

One drawback of such a filtering process is that it will
also remove correct flows for regions that become occluded
in the target frame. For certain correspondence methods
(such as RAFT), including these motion signals during oc-
clusion events can result in better final motion estimates.
Therefore, we devise a simple strategy for detecting reliable
flow in occluded regions. For each pixel, we compute its
forward flow to a target frame (a), cycle flow (flow back to
the source frame from the target pixel) (b), and a second for-
ward flow (c). This process effectively amounts to a 2-pass
cycle consistency check: the consistency between (a) and
(b) forms a standard cycle consistency check, and the consis-
tency between (b) and (c) forms a secondary, supplementary

Figure 5: Erroneous correspondences after cycle consistency
check. The red bounding box highlights a common type of incorrect
correspondences from flow networks like RAFT [66] that remains
undetected by cycle consistency check. The left images are query
frames with query points and the right images are target frames
with the corresponding predictions. Only correspondences on the
foreground object are shown for better clarity.

Figure 6: Correspondences from RAFT [66] after both cycle and
appearance checks. The left column shows a single query frame,
and the right column displays target frames with increasing frame
distances to the query frame from top to bottom. The filtered
correspondences are reliable without significant errors.

one. We identify pixels where (a) and (b) are inconsistent
but (b) and (c) are consistent and deem these to be occluded
pixels. We found this approach effective in identifying reli-
able flows for occluded regions—particularly when the two
frames are close to each other. Therefore, we allow these
correspondences to bypass cycle consistency checks if they
span a temporal distance of less than 3 frames. Our exper-
iments use this added signal for the variant of our method
that uses RAFT flow, but not for the TAP-Net variant, as we
found the predicted correspondences from the latter were
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Method AJ ↑ < δxavg ↑ OA ↑ TC ↓

Plain 2D 11.6 19.8 76.7 1.25
No invertible 12.5 21.4 76.5 0.97
No flow loss 23.9 37.3 70.8 1.75
No photometric 42.3 58.3 84.1 0.83
Uniform sampling 47.8 61.8 83.6 0.88
#Samples K = 8 48.1 63.5 84.6 0.75
#Samples K = 16 49.7 65.0 85.6 0.84

Full 51.7 67.5 85.3 0.74

Table 3: Ablation study on DAVIS [50].

less reliable near occlusion events.
We can also optionally augment the supervising input flow

by chaining sequences of correspondences that are deemed
reliable (i.e., those that satisfy the cycle consistency and
appearance consistency checks). This helps densify the set
of correspondences, creating supervision between distant
frames where the direct flow estimates were deemed unreli-
able and therefore discarded during filtering. We found this
process to be beneficial especially for challenging sequences
with rapid motion or large displacements, where optical flow
estimates between non-adjacent frames are less reliable.

B. Additional ablations
In addition to the ablations in the main paper, we provide

the following ablations and report the results in Table 3: 1)
Plain 2D: Rather than using a quasi-3D representation with
bijections to model motion, we utilized a simple 8-layer MLP
with 256 neurons that takes the query pixel location, query
time, and target time as input and outputs the corresponding
location in the target frame. Although we applied positional
encoding with 8 frequencies to the input to enable better fit-
ting, this ablation failed to capture the holistic motion of the
video, instead only capturing simpler motion patterns for the
rigid background. 2) No flow loss: we remove the flow loss
and only rely on photometric information for training. We
find this approach is effective only for sequences with small
motion, where a photometric loss can provide useful signals
to adjust motion locally. For sequences with relatively large
motion, this method fails to provide correct results. 3) We
also vary the number of samples K for each ray from 32 to
16 and 8. The resulting ablations, named #Samples K=8 and
#Samples K=16, demonstrate that using a denser sampling
strategy tends to produce better results.

C. Additional implementation details
We provide additional implementation details below and

will release our code upon acceptance.

Error map sampling. We cache the flow predictions gen-
erated by our model every 20k steps and use them to mine
hard examples for effective training. Specifically, for each

frame in the video sequence, we compute the optical flow
between that frame and its subsequent frame, except for the
final frame where we compute the flow between it and the
previous frame. We then compute the L2 distance between
the predicted flow and supervising input flow, where each
pixel in the video is now associated with a flow error. In
each training batch, we randomly sampled half of the query
pixels using weights proportional to the flow errors and the
other half using uniform sampling weights.

Training details. In addition to the photometric loss Lpho
introduced in the main paper, we include an auxiliary loss
term that supervises the relative color between a pair of
pixels in a frame:

Lpgrad =
∑
Ωp

||(Ĉi(p1)− Ĉi(p2))− (Ci(p1)−Ci(p2))||1

(7)
Here, (Ĉi(p1)− Ĉi(p2)) is the difference in predicted color
between a pair of pixels, and (Ci(p1) − Ci(p2)) is the
corresponding difference between ground-truth observations.
This loss is akin to spatial smoothness regularizations or
gradient losses that supplement pixel reconstruction losses
in prior work [32, 51], but instead computed between pairs
of randomly sampled, potentially distant pixels p1 and p2,
rather than between adjacent pixels. We apply the same
gradient loss to the flow prediction as well. We found that
including these gradient losses helps improve the spatial
consistency of estimates, and more generally improves the
training process. We also use distortion loss introduced in
mip-NeRF 360 [3] to suppress floaters.

We train our network with the Adam optimizer with base
learning rates of 3 × 10−4, 1 × 10−4, and 1 × 10−3 for
the density/color network Fθ, the mapping network Mθ,
and the MLP that computes the latent code, respectively.
We decrease the learning rate by a factor of 0.5 every 20k
step. To select correspondences during training, we begin
by sampling correspondences from pairs of frames with a
maximum interval of 20, and gradually increase the window
size during training. Specifically, we expand the window by
one every 2k steps.

In our loss formulation, we compute the flow loss Lflo
as a weighted sum of the mean absolute error (MAE) be-
tween each pair of correspondences in a training batch. The
weight is determined by the frame interval, and is given by
w = 1/ cos(∆/N ′ ·π/2), where ∆ is the frame interval, and
N ′ is the current window size. The coefficient λpho for the
photometric loss initially starts at 0 and linearly increases to
10 over the first 50k steps of training. After 50k steps, λpho
stays fixed at 10. This design is motivated by our observa-
tion that the photometric loss is not effective in fixing large
motion errors early on in the training process, but is effective
in refining the motion. The coefficient λreg for smoothness
regularization is set to 20. We use the same set of network
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Figure 7: Network architecture for the mapping network Mθ . We
show the first affine coupling layer, which is representative of the
subsequent layers, except for the different splitting patterns used.
As mentioned in the main paper, this architecture is fully invertible,
i.e., it can be queried in either direction, from (u, v, w) to (x, y, z)
and vice-versa.

architecture and training hyperparameters when evaluating
different datasets in the TAP-Net benchmark.

When sampling on each ray, we use a stratified sampling
strategy and sample K = 32 points on each ray between the
near and far depth range. Additionally, when mapping a 3D
location from one local volume to another, we encourage
it to be mapped within our predefined depth range to avoid
degenerate solutions.

During training, we use alpha compositing to propagate
the training signal to all samples along a ray. However,
at inference time, we instead compute the corresponding
location using the single sample with the largest alpha value,
which we found to produce quantitatively similar but visually
better results.

Network architecture for Mθ. We illustrate the archi-
tecture for our invertible network Mθ that maps between
local and canonical coordinate frames in Fig. 7. Mθ is com-
prised of six affine coupling layers with alternating split
patterns (only the first layer is highlighted in Fig. 7). The
learnable component in each affine coupling layer is an MLP
that computes a scale and a translation from a frame latent
code ψi and the first part of the input coordinates. This
scale and translation is then applied to the second part of the
input coordinate. This process subsequently is repeated for
each of the other coordinates. The MLP network in each
affine coupling layer has 3 layers with 256 channels. We
found that applying positional encoding [44] to the MLP’s
input coordinates improved its fitting ability, and we set the
number of frequencies to 4.

Deformable sprites evaluation. Because the Deformable
Sprites method defines directional mappings from image
space to atlas space, we must approximate the inverses of
these mappings in order to establish corresponding point
estimates between pairs of frames. We do this by performing
a nearest neighbor search: all points in the target frame
are mapped to the atlas, and the closest atlas coordinate to
the source point’s mapping is chosen as the corresponding
pixel. Furthermore, occlusion estimates are extracted using
the following process: (1) initialize the layer assignment of

source point tracks to the layer which has the higher opacity
at the source frame, (2) at a given target frame index, denote
the point as occluded if its originally assigned layer has
lower opacity than the other layer.
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