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Abstract

Location determination finds wide applications in daily
life. Instead of existing efforts devoted to localizing tourist
photos captured by perspective cameras, in this article, we
focus on devising person positioning solutions using over-
head fisheye cameras. Such solutions are advantageous in
large field of view (FOV), low cost, anti-occlusion, and un-
aggressive work mode (without the necessity of cameras car-
ried by persons). However, related studies are quite scarce,
due to the paucity of data. To stimulate research in this ex-
citing area, we present LOAF, the first large-scale overhead
fisheye dataset for person detection and localization. LOAF
is built with many essential features, e.g., i) the data cover
abundant diversities in scenes, human pose, density, and
location; ii) it contains currently the largest number of an-
notated pedestrian, i.e., 457K bounding boxes with ground-
truth location information; iii) the body-boxes are labeled
as radius-aligned so as to fully address the positioning chal-
lenge. To approach localization, we build a fisheye person
detection network, which exploits the fisheye distortions by
a rotation-equivariant training strategy and predict radius-
aligned human boxes end-to-end. Then, the actual locations
of the detected persons are calculated by a numerical solu-
tion on the fisheye model and camera altitude data. Exten-
sive experiments on LOAF validate the superiority of our
fisheye detector w.r.t. previous methods, and show that our
whole fisheye positioning solution is able to locate all per-
sons in FOV with an accuracy of 0.5 m, within 0.1 s.

1. Introduction

Accurate position finding of persons attracts growing in-
terest from both research and industrial communities, since
it plays a crucial role in numerous location-sensitive applica-
tion scenarios (e.g., surveillance, smart home, public health).
Nevertheless, due to the line-of-sight (LOS) issue, GPS is
unreliable in interior spaces and urban canyon. To overcome
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Figure 1: Person positioning using overhead fisheye camera: We
detect humans on omnidirectional images and then project detects
onto the real world coordinates to obtain physical locations. Com-
pared with using perspective cameras, our fisheye camera based
solution is favored in low cost, high accuracy, and fast speed.

such limitation, various alternative solutions are investigated.
Signal based solutions, including Bluetooth [13] and Wi-
Fi [74], are popular, but they are easily interfered by chang-
ing environments and nearby human bodies [73]. A com-
plementary stream of work is vision based; they typically
make use of traditional cameras, RGBD cameras, or in-built
smartphone cameras, and enjoy the advantage of reliable
services. To get location information, visual positioning so-
lutions usually refer to a pre-acquired 3D map or a geo-
tagged database as the scene representation [63], or directly
utilize the captured image to estimate the camera pose [38].

Although visual localization has been a hotspot issue for
many years, existing efforts are mainly dedicated to urban
place recognition or indoor camera localization, based on
perspective cameras [63, 38, 62, 42]. None of them ad-
dresses person positioning by using overhead fisheye cam-
eras, even though fisheye cameras are widely used in visual
surveillance applications. One possible reason is the lack of
accessible datasets, compounded by considerable costs in-
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volved in data collection. In this article, we provide a large-
scale overhead fisheye dataset, LOAF, for person detection
and localization in both indoor and outdoor scenes.

Compared with perspective cameras, overhead (top-view)
fisheye cameras are promoted due to less occlusion among
people and larger field of view (FOV) – allowing the coverage
of a large space using a single, low-cost camera. Only few
public datasets [21, 41, 24] provide top-view fisheye data.
Unfortunately, they only cover quite few scenes and their
people-box annotations do not adequately address the po-
sitioning challenge, negatively affecting location approxi-
mation (see §3.2 for detailed analysis). Differently, LOAF
specifically targets at person localization in surveillance ap-
plications, and has the following appealing characteristics:
• Large-scale: LOAF is the largest in the filed, to our best

knowledge. It consists of over 70 videos, with more than
43K frame images, 457K person-detection annotations as
well as corresponding location information.

• High diversity: LOAF contains a wide variety of surveil-
lance scenarios; it includes a total of 11 indoor and 40 out-
door scenes, and the data are captured at different times
of day and cover different illumination conditions.

• Positioning-aware person-box annotation: LOAF offers
radius-aligned human-box annotations. Compared with
other person representations, i.e., head center [21], axis-
aligned [60] or body-aligned box [41, 24], used in previ-
ous fisheye datasets, the radius-aligned box is promoted,
as it fits well radially-oriented bodies [41], and, more im-
portantly, it is better aware of the positioning problem.

Moreover, we devise a person positioning system that first
detects persons from raw fisheye images, and then calcula-
tes physical locations based on fisheye visual model and al-
titude information (see Fig. 1). Clearly, high-quality person
detection is the crucial premise for precise localization us-
ing overhead fisheye cameras. Fisheye lenses provide large
FOV, at the cost of strong radial distortion. This makes pe-
destrian detection in top-view fisheye images a much harder
task, compared with using perspective cameras. Studies on
overhead fisheye pedestrian detection are very scarce [60,
41, 50, 24, 64]; they rarely concern the link with person po-
sitioning, and many of them [60, 41] are even not trainable
due to the lack of fisheye data. With our LOAF dataset, we
develop a novel query based fisheye human detector. It expli-
citly exploits fisheye geometry by accommodating rotation
equivariance into the matching between queries and human
instances during network training. The insight here is intui-
tive: for a robust fisheye detector, rotation of a fisheye im-
age should result in correspondingly rotated detections. In
addition, our detection algorithm learns to predict radius-
aligned person boxes, facilitating localization estimation.

We test our fisheye person detection algorithm as well as
our whole positioning system over LOAF. We find that our
detector significantly outperforms previous methods, and

our full system delivers precise localization results. We also
empirically show that our algorithm generalizes well on pre-
vious top-view fisheye person detection datasets [24, 65].

2. Related Work
Accurate Positioning. GPS is the most popular system for
outdoor localization. As it requires LOS between the satel-
lites and the handset, GPS does not function well in urban
canyons, indoors and basements [30, 26]. This triggered the
development of alternative positioning solutions, following
a multi-disciplinary approach. Concretely, there are two main
schemes of the alternatives: signal-based and vision-based.

Signal-based positioning systems typically lean on sound
wave[49], geomagnetism[31], radio frequency(RF) [26, 74,
54, 13, 1], and infrared radiation (IR) [71], as well as differ-
ent location determination techniques, such as TOA (time of
arrival) [30] and RSS (received signal strength) [26]. The
main challenge to signal-based systems is the sensitivity to
environment changes, such as object moving, diffraction and
reflection, which affect signal propagation [26].

Visual data is another potential information source for pre-
cise localization. Since put forward [61], visual positioning
has became a hot topic in robotics and computer vision. Some
methods adopt a pre-built geo-tagged database or a 3D scene
model, as the reference for camera location estimation [32,
77, 66, 78, 76]. Some others rely on recognizing some dep-
loyed coded targets [27, 59, 20, 35], e.g., concentric rings,
barcodes, colored dots, etc. Some recent ones utilize deep
learning techniques to replace some components (e.g., im-
age retrieval, descriptor matching) in traditional systems[4,
16], or regress the camera pose directly[38, 37, 7]. Though
promising, existing visual positioning systems are mostly
founded on perspective cameras.

Due to the problem complexity, there is no persuasive
solution for precise positioning yet, and hybrid schemes are
often applied in practice. Fisheye cameras have advantage
of providing wide FOV with low cost and reduced occlu-
sion, while the research landscape is sparse for fisheye cam-
era based localization [79, 21]. To foster research in this
direction and facilitate practical deployment, we contribute
the first overhead fisheye dataset, to our knowledge, that al-
lows to conduct the task of person localization at large scale.
Deep Learning based Visual (Camera) Localization. Re-
garding application scenarios, scholars in computer vision
community are mainly aware of city-scale location recogni-
tion [2, 72, 58, 57] and indoor camera localization [5, 67].
Popular visual localization approaches can be divided as
retrieval-based, regression-based, and structure-based, ac-
cording to the camera pose estimation strategy. Retrieval-
based methods [58, 3, 23, 75, 56] represent a scene as a
database of geo-tagged photos and use geo-tag of the most
relevant database photo as an approximation to the camera
position [58]. Regression-based methods learn to encode
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the scene into a deep network and directly regress a 6DOF
camera pose [38, 67, 37] from a captured image. Structure-
based methods [6, 55, 29] pose the localization problem as a
camera resectioning task [58]. They first represent scenes via
3D models and establish a set of 2D-3D matches, then re-
cover the full camera pose by employing a PnP solver [33]
inside a RANSAC [28] loop.

These visual positioning techniques seek to localize im-
ages captured by handheld devices [42, 11] or vehicle cam-
eras [47] and demand pre-created geo-tagged databases or
3D maps. And they work on an active mode – users need to
carry the cameras. Differently, we address person localiza-
tion in surveillance scenarios, by using stationary, overhead
fisheye cameras. This yields a passive, low-cost scheme,
where the localization is completed by a numerical solution
on the fisheye model fused with altitude information. Thus
our scheme faces a different challenge, i.e., conducting ro-
bust person detection from non-rectilinear fisheye images.
Overall, our scheme fills the gap left by conventional stud-
ies and is complementary to existing positioning systems.
Person Detection in Overhead Fisheye Images. As a ca-
nonicalsubproblem of object detection, pedestrian detection
has long received great interest owing to its broad applica-
tions such as intelligent surveillance and autonomous vehi-
cles[12, 8]. By contrast, people detection in overhead fish-
eye images has been studied much less, due to the absence
of such datasets. Moreover, adapting standard pedestrian
detectors to top-view fisheye cameras is difficult [15]: First,
the appearance of people in fisheye images is arbitrary-
oriented, while in perspective images, people typically ap-
pear upright. Second, people suffer from severe geometric
distortions, particularly in the fisheye image’s periphery.

Faced with the above challenges, early attempts make
use of handcrafted features (e.g., HOG, LBP) as well as
standard pedestrian detectors with slight modifications to
account for fisheye geometry [39, 14, 17, 69]. The common
approach is dewarping fisheye images [14] or features [39]
so as to approximate normal people’ appearances from the
deformed ones. Though this simplifies the classification of
features, approximation errors are inevitable, causing per-
formance degradation[64]. Later, a few CNN-based fisheye
detectors were developed. Some of them are training-free.
For example, [60] runs standard YOLOv2[51] on dewarped
versions of overlapped windows extracted from a fisheye
image. Li et al. [41] rotate a fisheye image in 15◦ incre-
ments, and apply off-the-shelf YOLOv3[52] only to the top-
center region of each rotated image, where people usually
appear upright. Some more recent methods are trainable:
[64] trains YOLOv2 with rotated perspective images so as
to handle omnidirectional images without test-time trans-
formation; [24] trains YOLOv3 with human-aligned boxes.

Although many prior arts [60, 41, 64] allowing to detect
persons without any fisheye training data, they require a cer-

tain amount of computation time for post-processing: [60]
carriesoutdetection inmultipleperspective imagesdewarped
from one omnidirectional image; [41] applies YOLOv3 24
times to each fisheye image; [64] needs a grouping process to
eliminate numerous redundant results, caused by a rotation-
invariant training strategy. Hence, the utility of previous me-
thods is limited in the context of visual positioning. Our ana-
lysis in §3.2 sheds light on the weaknesses of human repre-
sentations adopted by existing fisheye detectors (e.g., head
center [21], horizontal or body-aligned box [60, 41, 24]) in
regard to localization. Thus we supply our large-scale dataset
with positioning-aware person-detection annotation. As a re-
sult, our human detector can benefit from end-to-end, fisheye
visual pattern learning and output radius-aligned body-boxes
for precise positioning. Further, by regularizing the learning
of image representations and instance queries with rotation
equivariance, our algorithm naturally addresses the omnidi-
rectional nature of fisheye images, yet using standard detec-
tion network architecture designed for perspective images.

3. LOAF Dataset
3.1. Dataset Acquisition

We first describe how our fisheye images are collected.
Apparatus and Technical Specifications. A TL-IPC59AE
fisheye camera with 1.1mm focal length is adopted for data
recording. It has a wide FOV, reaching the full circle in the
horizontal plane and 180◦ in the vertical plane. This offers
a clear advantage in reducing deployment cost – installing
just one fisheye camera instead of multiple conventional
cameras to monitor the same region. However, the severe
geometric distortions introduced prevent the use of standard
detectors, which are designed for conventional cameras [8].
Data Capturing. The fisheye camera is mounted on the
ceiling (indoors) or poles (outdoors), 2.5∼4.0 m from the
ground with 200∼300 m2 FOV. Considering the factorssuch
as scenario diversity, pedestrians density and weather condi-
tion, we capture 110 fisheye image sequences in 80 realistic
scenarios as the raw data pool. The recorded sequences span
14 hrs; the image resolution is 2952×2952 pixels, and the
frame rate is 10∼20 fps. Eventually, 42,942 images, sam-
pled at 1 fps, are collected to construct our LOAF dataset.

3.2. Dataset Annotation
We next describe how our fisheye images are annotated.

Person Detection. As the performance of localization relies
critically on the quality of person detections, significant ef-
fort should be spent on the fisheye person-detection annota-
tion. Some human-detection representations were explored
in previous datasets: [21] labels the center point of each
human head; [41, 24] opt for human-aligned person-boxes.
However, these representations have several shortcomings,
especially with regards to the localization task. First, they
suffer from some inherent limitations. The point-based rep-
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Dataset
#Scene

#Video #Image
#People

Max Resolution FOV (m2)
Annotation

FPS
Indoor Outdoor Total Avg. Max People Detection Location Attribute

PIROPO [21] 2 0 27 - - - - 800×600 <50 Head Center 10
HABBOF [41] 2 0 4 5,837 20,466 3.5 5 2,048×2,048 <36 Human-aligned box 12∼30

MW-R [24] 6 0 19 8,752 22,825 2.6 6 1,488×1,488 <36 Human-aligned box 15
CEPDOF [24] 5 0 8 25,504 173,073 6.8 13 2,048×2,048 <36 Human-aligned box 1∼10

WEPDTOF [65] 14 0 16 10,544 93,363 8.9 35 2,592×1,944 <36 Human-aligned box 1∼10
LOAF 11 39 74 42,942 457,762 10.5 65 2,952×2,952 200∼300 Radius-aligned box ✓ ✓ 10∼20

Table 1: Overhead fisheye datasets comparison (§3.4). LOAF is the largest in terms of the total number of pedestrian and scene categories.

image 
plane

fisheye 
lens

ground 
plane

90°

O

P P2
P1

A

B

Figure 2: Human annotation comparison for visual position-
ing (§3.2). Previous methods typically use the detected hu-
man head [21] ( ) or the center ( ) of human-aligned body-box
( ) [41, 24] to determine the physical location P , bringing po-
sitioning errors (i.e., PP1, PP2). We instead leverage the radius-
aligned box ( ) as human representation. The midpoint ( ) of
side AB, i.e., the closest point to the image center on the radius-
aligned box, better corresponds to the human actual position.

resentation is not applicable in other analysis tasks (e.g.,
re-identification, attribute recognition); the human-aligned
box has ambiguity [10, 68] – the ground-truths of human-
aligned boxes are not uniquely determined [24]. Second,
and most important, these human-detection representations
cannot meet the need of precise localization. Clearly, based
on the fisheye camera model, one can project 2D detections
on the 3D world for localization. However, the center of
human head or of human-aligned box is not the exact place-
ment occupied by human on the image plane, causing errors
to estimations of human physical position (see Fig. 2).

We instead label each person through a radius-aligned
rectangular box. Such representation is favored as it: i) allows
unique groundtruth box assignment; ii) fits well radially-
oriented human bodies presented in fisheye images; and iii)
better corresponds to the actual position of human on the
image plane, facilitating physical localization. Notably, al-
though the radially-oriented box constraint was explored in
a prior fisheye detector [41], there is no previous datasets
provide such kind of annotation, neither is there any liter-
ature points out the advantage of such representation in lo-
calization. Finally, around 457K human box annotations are
obtained. High-quality annotation is ensured via a rigorous
quality check, conducted by highly skilled reviewers.
Person Localization. For each scene, a 10 m ruler (with
0.05m accuracy) is placed on the ground, and one end of the

(a)                                       (b) 
Figure 3: Calibration for groundtruth person location anno-
tation. (a) Ground makers (with 0.05m precision). (b) Top-view
fisheye image capture for calibration. See §3.2 for details.

ruler is directly under the fisheye lens (cf. Fig. 3 (a)). We
take a fisheye picture and use this marked picture as the cal-
ibration for all the dataset images recorded in this scene (cf.
Fig. 3 (b)). Finally, for each annotated human, the physical
location, at sub-decimeter precision, is provided (cf. Fig. 4).
Scene Attribute. To enable in-depth analysis, each image is
annotated with multiple attributes, including day/night,
outdoor/indoor, and sunny/rain/foggy/snow.

3.3. Dataset Design
We then list several key aspects of our dataset design.

Privacy Protection. To protect personal information, we
apply the gaussian filter to blur all the visible facial regions
in our dataset, and conduct experiments on the blurred data.
Dataset Splits. LOAF contains 29,569 training, 4,600 vali-
dation, and 8,773 testing images (approximately 7 train,
1 val, and 2 test). Moreover, to better evaluate models’
generalization ability, LOAF is split into five sets: train
(7/28 indoor/outdoor scenes, 29,569 images), val seen
(1/2 indoor/outdoor scenes, 1,700 images), val unseen
(2/3 indoor/outdoor scenes, 2,900 images), test seen
(2/3 indoor/outdoor scenes, 2,774 images), test unseen
(2/8 indoor/outdoor scenes, 5,999 images). There are no
overlapping scenes between unseen and train sets.
Dataset Accessibility. Only the desensitized version of our
dataset will be released online, under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 License [19].

3.4. Dataset Features and Analysis

Finally, we present statistic analysis of LOAF in com-
parison with existing overhead fisheye datasets [21, 41, 24].
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Figure 4: Example images from different datasets (§3.2-§3.4). Prior datasets [21, 41, 24] are restricted to few indoor scenes with person
detection annotation only, i.e., head center ( ) or human-aligned box ( ). In contrast, LOAF covers challenging indoor and outdoor
scenes with human detection, localization and scene attribute annotations. The person-detection annotation is given as the radius-aligned
box ( ), which is more suitable for localization. For better visualization, we only present location ground-truths for some of persons.
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Figure 5: Dataset Statistics (§3.4): We summarize LOAF with the
distribution of (a) person scale (area in pixel), (b) person locations
(horizontal distance between human and the fisheye lens in the real
world), and (c) person density (number of person per image).

LOAF distinguishes itself from three aspects (cf. Table 1):
Large-scale: LOAF has 42,942 fisheye images with more
than 457K person boxes. Moreover, LOAF data are cap-
tured by an advanced fisheye camera, which is capable of
covering a larger area (200∼300 m2) with higher pedestrian
density (2∼65 persons per scene, 10.5 in average). This
makes LOAF the largest overhead fisheye dataset in terms
of the total number of pedestrian and scene categories.
High Diversity: Existing datasets limit in data diversities,
i.e., only containing very few indoor scenes (2∼14) and
completely missing outdoor scenarios (cf. Fig. 4). In con-
trast, LOAF involves 51 realistic scenes, including 11 indoor
scenes (e.g., lab, office, library, classroom) and 40 outdoor
scenes (e.g., street, playground, parking lot, square). The
recorded data cover four seasons under different illumi-
nation (e.g., morning, noon, afternoon) and weather (e.g.,
sunny, rain, snow) conditions, and involve vast variance of
human pose (e.g., walking, standing, and sitting), scale, lo-
cation, and density (cf. Fig. 5). Thus our dataset better re-
flects the distribution in real-world surveillance scenarios.
Rich and Positioning-aware Annotation: LOAF is pro-
vided with rich ground-truths for detection, localization,
and scene attribute, which lays a solid foundation for fisheye
camera based human-centric analysis. Hence, as demonstr-
ated in §3.2, the radius-aligned human-box representation
is adopted during our annotation. Compared with human-

head center based point annotation [21] and human-aligned
person-boxes [41, 24] used in previous datasets, radius-
aligned human-boxes are more suitable for the position task.

4. Our Approach
Our overhead fisheye camera based person localization

solution comprises two parts. The former computes 2D de-
tections that locate the people on the image plane (§4.1).
The latter converts the 2D detections to 3D-world coordi-
nates, obtaining the physical location of the people (§4.2).

4.1. Overhead Fisheye Person Detection
Core Idea: Rotation Equivariance. One of the reasons for
the tremendous success of CNNs is their equivariance to
horizontal and vertical shifts and the resulting invariance to
local deformations [40, 25]. This stimulates a line of efforts
to learn robust representations equivariant to generic types
of transformations [34, 18, 70]. Formally, a representation
f is said to be equivariant with a geometric transformation g
(e.g., cropping, flipping) for an input (image) I if:

f(g(I)) ≈ g(f(I)). (1)

That is to say, the output representation f(I) is changed in
the same way as the transformation g imposed to the input I .

In this work, we devise a query-based fisheye person de-
tector that exhibits 360◦-rotational equivariance through an
elaborately designed training protocol. Our key insight is de-
rived from the omnidirectional nature of this task: if one ro-
tates the input fisheye image by an arbitrary angle, then the
outputs of a robust fisheye detector should change accord-
ingly. We thus design a rotation equivariant training strategy,
which forces the matching between object queries and im-
age representations to be equivariant against 360◦-rotations.
In this way, the rotational symmetry of omnidirectional im-
ages is explicitly addressed, without architectural modifica-
tion of standard detectors developed for perspective images.
Rotation Equivariant Training for Query-based Fisheye
Detection. As shown in Fig. 6, our fisheye detector is built
upon DETR [9], promoted by a rotation equivariant training
strategy. Basically, DETR conducts detection in a query-
based fashion. Denote F as a feature encoder that extracts
representation I of image I , and κ as a query creator
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Figure 6: Our rotation equivariant training strategy for query-
based fisheye person detection (§4.1). For equivariant training, ob-
ject queries {qgr

n }Nn=1 created for rotated image gr(I) and the ro-
tated representation gr(I) are fed into the decoder D; the rotated
ground-truths {bg

r

ℓ(n)}
N
n=1 are set as the training targets.

that outputs a set ofN object-aware descriptors {qn}Nn=1

from I . DETR employs {qn}Nn=1 as queries to retrieve tar-
get objects from I:

{b̂n}Nn=1 = D(I, {qn}Nn=1), (2)

where I=F(I), {qn}Nn=1=κ(I), andD refers to the Trans-
former decoder which formulates the object-query match-
ing process via neural cross-attention computation. {b̂n}Nn=1

are the set of predicted parameterized object bounding boxes.
Our rotation equivariant training further encourages ro-

bust object-query matching which is equivariant against ro-
tations. First, given an input rotation transformation gr, a ro-
bust fisheye detector is desired to be able to extract rotation-
equivariant representation. Analogous to Eq. 1, we have:

F(gr(I)) ≈ g(F(I)) = gr(I). (3)

Also, it is reasonable to assume that the final output of a
robust fisheye detector should be changed in the same way
to the rotation gr applied to the input fisheye image I:

{bg
r

ℓ(n)}
N
n=1 ≈ D(Igr , {qgr

n }Nn=1), (4)

where Igr

indicates the feature of rotated image gr(I), i.e.,
Igr

=F(gr(I)). Similarly, {qgr

n }Nn=1denote the object queries
derived from gr(I), i.e., {qgr

n }Nn=1=κ(Igr

). {bg
r

ℓ(n)}
N
n=1

are the rotated groundtruth bounding boxes, where ℓ(n) re-
turns the groundtruth index for n-th query.

Considering Eq.3 and Eq.4, we can have: {bg
r

ℓ(n)}
N
n=1 ≈

D(gr(I), {qgr

n }Nn=1). Hence our rotation equivariant training
objective is given as:

Lrotat-equi = Ldet
(
{bg

r

ℓ(n)}
N
n=1,D(gr(I), {qgr

n }Nn=1)
)
. (5)

HereLdet is the standard detection loss in DETR [9]. As such,
the rotation equivariance properties for both fisheye repre-
sentation F (cf. Eq.3) and the query-based detection predic-
tion D(I, {qn}Nn=1) (cf. Eq.4) are sought in a single train-
ing target. This also allows us to effortlessly adapt standard
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Figure 7: Our fisheye
camera model based
person localization
(§4.2). Here p and p′

denote the projection
point of the distortion
point P by fisheye lens
and normal perspective
lens, respectively.

DETR to our omnidirectional detection setting. Note that our
rotation equivariant training differs from rotational data aug-
mentation technique which only views rotated images as in-
dividual training samples (see §5.4 for detailed experiments).

4.2. 2D-3D Projection based Person Localization

General Fisheye Camera Model. The perspective pro-
jection of a normal pinhole camera can be written as r =
f tan θ, where r indicates the projection distance between
the principal point and the image point, f is the focal length,
and θ is the angle between the incident ray and the camera’s
optical axis. However, fisheye lens does not follow this per-
spective projection model [48], as the FOV equals to 180◦

(cf. Fig. 7). Fortunately, the image formation of different
kinds of fisheye lenses can be approximated by a general
polynomial projection model [36], i.e.,

r(θ) =
∑n

i=1
kiθ

2i−1, n = 1, 2, 3, 4, · · · (6)

High distortions can be handled well when n = 5 [36]. The
coefficients ks can be obtained from camera calibration.
2D-3D Projection. Given a detected human location point
p = (u, v)⊤ in the fisheye image pixel coordinate system,
our target is to calculate its 3D location P = (X,Y, Z)⊤

in the camera coordinate system, where Z is the altitude of
the fisheye camera and priorly known. To do so, one can
first calculate r as: r=

√
(x2 + y2), where x=(u−u0)/f

and y=(v−v0)/f , and (u0, v0)
⊤ are the coordinates of the

principal point in the fisheye image. Then θ can be obtained
by solving Eq. 6 using a numerical means [36]. With the al-
titude Z of the camera, the actual location (X,Y )⊤ is given
as: (

X

Y

)
= Z

(
tan θ cosϕ

tan θ sinϕ

)
, (7)

where ϕ = arctan(y, x) refers to the polar angle, which is
shared by both p and P .

It can be seen that precise determination of the person
location point p on the image plane is vital for estimat-
ing the corresponding physical position P . However, most
previous approaches, restricted to axis-aligned [79, 60] or
person-aligned [24] human-box representation, use the cen-
ter of the detection box to approximate p. Few excep-
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val test
Method

mAP↑ AP50↑ AP75↑ APn↑ APm↑ APf↑ APseen↑ APunseen↑ mAP↑ AP50↑ AP75↑ APn↑ APm↑ APf↑ APseen↑ APunseen↑
FPS↑

Seide et al. [60] 21.8 59.8 7.6 32.8 28.5 2.3 23.2 19.5 20.2 58.2 7.1 32.2 28.3 3.9 22.4 18.9 10.2
Li et al. [41] 28.5 63.3 20.1 46.8 24.2 1.3 33.8 29.3 27.2 65.2 21.3 47.2 24.8 1.3 31.8 27.6 0.6

Tamura et al. [64] 34.8 72.1 27.7 51.7 38.8 8.7 38.8 32.9 34.2 72.8 28.7 53.7 37.3 6.5 39.5 33.2 10.2
RAPiD [24] 40.3 77.9 34.8 55.3 41.9 9.2 44.7 37.6 39.2 77.9 35.4 54.8 40.1 7.9 44.2 37.3 8.4

Ours 47.2 82.3 48.2 63.8 54.1 14.0 50.6 45.5 46.2 81.1 47.3 66.1 53.5 12.6 49.3 44.9 12.1

Table 2: Person detection results on val and test sets of LOAF (§5.2).

Method mAP↑ AP50↑ AP75↑ Precision↑ Recall↑ F-Score↑
Seide et al. [60] 20.9 50.6 10.2 80.6 39.5 53.0

Li et al. [41] 34.2 75.7 28.6 86.3 65.4 74.4
Tamura et al. [64] 29.3 61.0 23.4 88.8 51.2 65.0

RAPiD [24] 39.3 85.4 26.0 89.2 78.7 83.6
Ours 46.8 88.1 36.8 90.2 87.4 88.6

Table 3: Person detection results on CEPDOF [24] (§5.2).

tions [21], built on point-based human representation, treat
the center of the detected human head as p. However, they
suffer from a similar issue as the human head center is even
often far from the exact position p human stand on, w.r.t.
the image plane. Instead, with our radius-aligned human-
box representation, the closest point to the principal point
on the bounding box better corresponds to p.

4.3. Implementation Details

Network Architecture. Our fisheye person detector is built
upon DAB-DETR [44], a prevalent variant of DETR [9] but
converges much faster. Swin-T [45] is utilized as the back-
bone. For our LOAF with radius-aligned person boxes, the
output of our detector is a 4D vector b̂∈ [0, 1]4 that parame-
terizes 2D center coordinates, height, and width. Note that,
for traditional fisheye detection datasets like [24, 65] with
arbitrary-oriented person box annotations, an extra output
dimension is needed for rotation angle regression.
Training Objective. Our fisheye person detector is end-to-
end trained by jointly optimizing the vanilla detection loss
used in DETR [9, 44] (referred as LDet) and our proposed
rotation-equivariant constraint (i.e., Lrotat-equi in Eq. 5):

L = Ldet + λLrotat-equi, (8)

where the coefficient λ is empirically set to 0.5.
Training. Our fisheye detector is trained with a batch size of 8
for 50 epochs, where the AdamW[46] optimizer is employed
with base learning rate 2e-4 and decayed by 0.1 at epoch 40.
The remaining hyper-parameters are determined following
[64, 24]. Specifically, we initialize backbones with Image-
Net [22] pre-trained weights and adopt standard data aug-
mentation techniques, i.e., color jitter, horizontal flip, and
random scaling, with a base training size of 608×608. For
CEPDOF[24]andWEPDTOF[65],weuseabatchsizeof128
and pre-train the detector on COCO [43] for 50 epochs to
prevent over-fitting, as in [24, 65]. For the computation of
our rotation-equivariant loss Lrotat-equi, the training images
are rotated by a degree randomly sampled from 0 to 360.
Our detector is implemented in PyTorch and trained on eight

Method mAP↑ AP50↑ AP75↑ Precision↑ Recall↑ F-Score↑
Seide et al. [60] 16.1 39.4 9.0 70.9 38.6 50.0

Li et al. [41] 25.2 69.9 30.2 81.4 64.5 72.0
Tamura et al. [64] 28.8 59.8 24.2 77.0 52.4 62.4

RAPiD [24] 37.7 72.0 26.8 73.3 67.8 70.4
Ours 45.4 85.1 36.2 84.7 74.4 79.5

Table 4: Person detection results on WEPDTOF [65] (§5.2).

NVIDIA Tesla V100 GPUs with a 32GB memory per-card.
Inference. Once trained, our fisheye detector can be directly
applied for locating persons on the omnidirectional image
plane. After that, the physical locations of the detected per-
sons can be easily obtained through the numerical solution
described in §4.2. For fisheye person detection, we follow
prior work [60, 41, 64, 24] to use 1024×1024 input resolu-
tion without any test-time augmentation or post-processing.
Testing is conducted on a single NVIDIA V100 GPU with
16 GB memory.

5. Experiment
5.1. Experimental Setup
Evaluation Protocol. On the top of LOAF, we conduct ex-
periments for fisheye based person detection and localiza-
tion. Following the dataset splitting (cf. §3.3), performance
are reported on seen and unseen scenes, respectively,
for both val and test sets. This allows us to assess the
generalization ability over different surveillance scenarios.
For comprehensive study, we further report person detection
performance on two existing fisheye datasets, CEPDOF[24]
and WEPDTOF [65]. Note that localization cannot be test
since [24, 65] only provide person bounding box annotations.
Evaluation Metrics. For fisheye person detection, we fol-
low COCO [43] to report the mean average precision (mAP)
for IoU∈ [0.5:0.05:0.95]. We also employ AP50 and AP75

for further analysis. For fisheye person localization, we mea-
sure positional error (PE) in meters, i.e., Euclidean distance
of calculated position and ground-truth position, as the con-
ventions in visual localization [42, 58, 73, 79]. For detailed
evaluation, on our LOAF, we report performance w.r.t. hor-
izontal distance between human and the fisheye lens, i.e.,
near (0∼10 m), middle (10∼20 m), and far (larger than 20
m). Hence we have AP{n,m,f} and PE{n,m,f} accordingly.

5.2. Performance on Person Detection

LOAF. We first report the person detection performance on
LOAF. Specifically, four recent deep learning based fisheye
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val test
Method

mPE↓ PEn↓ PEm↓ PEf ↓ PEseen↓ PEunseen↓ mPE↓ PEn↓ PEm↓ PEf ↓ PEseen↓ PEunseen↓
Seide et al. [60] 1.298 0.561 1.332 3.109 1.206 1.382 1.321 0.706 1.309 3.482 1.306 1.386

Li et al. [41] 0.898 0.502 0.871 2.650 0.832 0.962 0.913 0.543 0.884 2.780 0.904 0.998
Tamura et al. [64] 0.755 0.429 0.736 1.862 0.709 0.821 0.778 0.471 0.826 2.160 0.724 0.836

RAPiD [24] 0.674 0.426 0.623 1.403 0.625 0.757 0.682 0.461 0.664 1.445 0.638 0.776
Ours 0.387 0.164 0.382 0.786 0.332 0.419 0.392 0.171 0.391 0.825 0.343 0.413

Table 5: Person localization results on val and test sets of LOAF (§5.3).

person detectors [60, 41, 64, 24] are involved for compari-
son. Among them, [60, 41] are training-free, thus their scores
are obtained by directly running the algorithms on the val
and test data. As [64, 24] are trainable methods, we first
train them on the train set of LOAF following their offi-
cial setups, and then report the scores on the val and test
sets. Quantitative comparison results are presented in Ta-
ble 2. Some essential observations are as follows:

• Our fisheye person detector significantly outperforms ex-
isting methods across all the metrics. For example, our
detector provides a considerable performance gain in
mAP, i.e., 6.9% and 7.0% higher than the second best,
RAPiD [24], on the val and test sets, respectively.

• Our detector not only handles nearby persons but also ap-
proaches distant targets well. Specifically, for the targets
at 10∼20 m away from the fisheye lens, our performance
gain over other methods is more significant than the im-
provement reported with the persons at 0∼10 m distance.

• Our detector also yields small performance gap between
the seen and unseen scenes (e.g., 49.3 → 44.9 in terms
of mAP), validating our good generalizability.

• For those persons at very far distance (>20 m), our
algorithm, though still giving higher scores than other
competitors, suffers from great performance degradation.
This sheds light on the direction of our future efforts.

CEPDOF [24]. CEPDOF contains eight videos with 25,504
frames in total. Following the official setup, we train our
fisheye person detector on HABBOF [41] and MW-R [24]
datasets, and report performance on CEPDOF. As shown in
Table 3, our fisheye detector delivers state-of-the-art perfor-
mance: it significantly outperforms RAPiD[24], the current
top-leading algorithm, by 7.5% in terms of mAP.
WEPDTOF [65]. WEPDTOF has 16 videos with 10,544
frames in total. Following the official setup, we use HAB-
BOF [41], MW-R [24], and CEPDOF [24] for training and
WEPDTOF for testing. Table 4 summarizes the results. Im-
pressively, our detector greatly suppresses all the other com-
petitors across all the evaluation metrics.

5.3. Performance on Person Localization

Then we study the person localization performance on
LOAF. None of previous fisheye person detectors [60, 41,
64, 24] are aware of the task of person localization. We
therefore follow the common practice [79, 21] in the field
of visual localization: for [60, 41, 64, 24], we project

val seen val unseen
Method mAP↑

mAP↑ AP50↑ AP75↑ mAP↑ AP50↑ AP75↑
Baseline [44] 43.1 46.4 81.2 48.4 40.9 76.2 38.9

+ Rotation Aug. 45.6 49.2 82.8 52.8 43.2 78.9 43.9
+ Rotation Equ. 47.2 50.6 83.7 54.6 45.5 80.4 47.1

Table 6: Diagnostic results on val set of LOAF (§5.4).

centers of their detected human boxes on the 3D world,
based on the same strategy of ours (cf. §4.2), for phys-
ical position estimation. As shown in Table 5, our sys-
tem produces much small localization errors in comparison
with [60, 41, 64, 24], i.e., 0.392 m vs 0.682 m[24] and 0.773
m of [64] on the test set of LOAF. In addition, for all the
methods, the localization performance is declined as target
distance increases, but our system suffers from the small-
est drop. Moreover, the results suggest there is still large
room for improvement, thus we hope that our dataset could
encourage continuous efforts in this challenging task.

5.4. Diagnostic Study

Table 6 studies the efficacy of our rotation equivariant
training strategy (§4.1), on the val set of LOAF. Our base-
line model [44] (row #1) gains 43.1% mAP. After adopt-
ing rotational data augmentation (row #2), the performance
boosts by 2.5% mAP. By contrast, our rotation equivariant
training brings much larger improvements over the base-
line, e.g., 4.1% mAP gain. It is remarkable that, training
with standard rotational data augmentation technique can be
viewed as a specific case of our equivariant training – only
learning rotation-equivariant object-querying (cf. Eq. 4).

6. Conclusion

We presented LOAF – the first top-view fisheye dataset
that supports large-scale study for person localization in re-
alistic surveillance scenarios. With radius-aligned person-
box annotations and precise location ground-truths, LOAF
closes a crucial gap in the literature as these cases are not
covered by previous datasets and annotation protocols. We
further proposed an efficient fisheye person detection model
that is equipped with a rotation-equivariant training strat-
egy. The physical locations of detected persons are formu-
lated based on the fisheye model and the altitude of the cam-
era. We empirically verified the effectiveness and promising
performance of our algorithm.
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# Video # Image
# People Scene Season Time

Total Avg. Max Total Indoor Outdoor Spring Summer Autumn Morning Noon Afternoon

train 51 29,569 315,262 10.6 65 35 7 28 13 30 8 10 15 26

val
seen 3 1,700 18,460 10.8 29 3 1 2 1 2 0 1 1 1

unseen 5 2,900 29,381 10.1 44 5 2 3 1 3 1 1 2 2
total 8 4,600 47,841 10.4 44 8 3 5 2 5 1 2 3 3

test
seen 5 2,774 28,666 10.3 41 5 2 3 1 3 1 1 2 2

unseen 10 5,999 65,993 10.0 44 10 2 8 3 5 2 3 3 4
total 15 8,773 94,659 10.1 44 15 4 11 4 8 3 4 5 6

Total 74 42,942 457,762 10.5 65 50 11 39 17 38 11 14 20 32

Table S1: Detailed statistics of LOAF. # indicates the number of elements.

This document provides additional materials to supple-
ment our main manuscript. We first present more statistics
about LOAF in §A, and then give extra implementation de-
tails of our method in §B. More qualitative results on the
test set of LOAF are summarized in §C. Next, we state
the ethical conducts in §D. Finally, we provide the pseudo
of our proposed rotation equivariant training strategy in §E.

A. Additional Dataset Analysis
More Statistics. LOAF is captured from multiple indoor/
outdoor scenes (e.g., library, classroom, street, parking lot)
across three seasons, we summarize the detailed statistics in
Table S1, including the number of boxes, video sequences,
etc. As seen, the majority of videos are collected from out-
door environments characterized by increased complexity,
larger fields of view, and a higher number of human targets
when compared to the indoor ones. These videos are di-
vided into train, val, and test sets in the ratio of 7:1:2
respectively, while ensuring an roughly even distribution of
attributes (e.g., season, time) across these sets.

B. More Implementation Details
Training Objective. We extend the Generalized IoU (GIoU)
loss [53] utilized in vanilla DETR [9] for bounding box re-
gression to the rotated setup. Concretely, Brute-force search
is leveraged to compute the minimum enclosing box be-
tween two rotated bounding boxes. It is implemented in
a fully differentiable manner and adapted for parallel pro-
cessing on GPU, which merely defers the training speed by
around 5% when compared to the axis-aligned setup.

C. Qualitative Evaluation
Visual Comparison. Fig.S1-S5 compare our method with
existing work qualitatively. It is obvious that our proposed
method consistently presents more accurate detection and
localization results, regardless of the category of scenes.
Notably, it is much more effective than existing work for
targets that are relatively small or densely arranged.
Diversity. To render a more intuitive understanding of
the diversity of LOAF, a collage constituted from various

scenes characterized by distinct attributes is given in Fig.S6.

D. Ethical Conducts
To protect the privacy of individuals and groups, we

utilize Gaussian filters to blur all visible facial regions in
LOAF. The proprietary data can only be accessed for non-
commercial purposes to prevent inappropriate usage.

E. Pseudo Code
We offer the pseudo code for our proposed query-based

rotation equivariant training strategy in Algorithm S1.

Algorithm S1 Pseudo-code for our proposed rotation
equivariant training strategy.

"""
I: input image
gt: ground truth
angle: degree of clockwise rotation
λ: the balance factor
"""
def rotat equi training(I, gt):

# F(I)
m1 = Encoder(I)
angle = randint(0, 360)
# F(gr(I))
m2 = Encoder(rotate(I, angle))

# {qn}N
n=1=κ(I)

query1 = gen proposal(m1)

# {qgr

n }N
n=1=κ(Igr)

query2 = gen proposal(m2)

# D(I, {qn}N
n=1)

det1 = Decoder(m1, query1)

# D(gr(I), {qgr

n }N
n=1)

det2 = Decoder(rotate(m1, angle), query2)

# Ldet

(
{bℓ(n)}N

n=1,D(I, {qn}N
n=1)

)
loss1 = det loss(det1, gt)

# Ldet

(
{bgr

ℓ(n)
}N
n=1,D(gr(I), {qgr

n }N
n=1)

)
loss2 = det loss(det2, label rotate(gt, angle)

return loss1 + λ*loss2
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Figure S1: Visual comparison of detection results on the test set of LOAF. indicates targets missed by our method.
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Figure S2: Visual comparison of detection results on the test set of LOAF. indicates targets missed by our method.
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Figure S3: Visual comparison of detection results on the test set of LOAF. indicates targets missed by our method.
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Figure S4: Visual comparison of detection results on the test set of LOAF. indicates targets missed by our method.
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Figure S5: Visual comparison of localization results on the test set of LOAF. We selected three targets per frame for clear visualization.
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Figure S6: A collage constituted from various scenes characterized by distinct attributes.
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