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Abstract

A number of computer vision deep regression ap-
proaches report improved results when adding a classifica-
tion loss to the regression loss. Here, we explore why this
is useful in practice and when it is beneficial. To do so, we
start from precisely controlled dataset variations and data
samplings and find that the effect of adding a classification
loss is the most pronounced for regression with imbalanced
data. We explain these empirical findings by formalizing the
relation between the balanced and imbalanced regression
losses. Finally, we show that our findings hold on two real
imbalanced image datasets for depth estimation (NYUD2-
DIR), and age estimation (IMDB-WIKI-DIR), and on the
problem of imbalanced video progress prediction (Break-
fast). Our main takeaway is: for a regression task, if the
data sampling is imbalanced, then add a classification loss.

1. Introduction
Regression models predict continuous outputs. In con-

trast, classification models make discrete, binned, predic-
tions. For a continuous task, regression targets are a super-
set of the classification labels: they are more precise, taking
values in-between the discrete classification bins. For re-
gression, the error is only bounded by the precision of the
measurements, for classification this also depends on the
bin sizes: e.g. an age estimation classifier that can pre-
dict only young/old classes, cannot discriminate between
middle-aged people. Additionally, when training a regres-
sion model, losses are proportional to the error magnitude,
while for classification all errors receive an equal penalty:
predicting bin 10 instead of 20, is just as incorrect as pre-
dicting bin 10 instead of bin 100. So classification cannot
add anything new to regression; or can it?

Surprisingly, adding a classification loss to the regres-
sion loss [30, 44, 46, 51], or even replacing the regression
loss with classification [10, 11, 38] is extensively used in
practice when training deep models for predicting continu-
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Figure 1. To probe “Why does classification help regression?” we
design a fully controlled dataset including the following scenar-
ios: Clean data – 1D non-linear functions defined by the sum of
two sine waves with different frequencies and amplitudes; Noisy
data – uniform noise added to the outputs; Out of distribution –
sampling different regions of the input space during training and
during testing. (We show a single function here. The gray shading
groups the function targets into 4 classes, as an example.)

ous outputs. The classification is typically defined by bin-
ning the regression targets into a fixed number of classes.
This is shown to be beneficial for tasks such as: depth esti-
mation [11], horizon line detection [44], object orientation
estimation [30, 51], age estimations [34]. And the reported
motivation for discretizing the regression loss is that: it im-
proves performance [44, 46], or that it helps in dealing with
noisy data [44], or that it helps overcome the overly-smooth
regression predictions [30, 40], or that it helps better regu-
larize the model [22, 44]. However, none of these assump-
tions has been thoroughly investigated.

In this work, we aim to explore in the context of deep
learning: Why does classification help regression? Intu-
itively, the regression targets contain more information than
the classification labels. And adding a classification loss
does not contribute any novel information. What is it really
that a classification loss can add to a standard MSE (mean
squared error) regression loss? And why does it seem ben-
eficial in practice?

To take a step towards understanding why classification
helps regression, we start the analysis in a fully controlled
setup, using a set of 1D synthetic functions. We consider
several prior hypothesis of when classification can help re-
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gression: noisy data, out-of-distribution data, and the nor-
mal clean data case, as in Fig. 1. Additionally, we vary the
sampling of the data from uniform to highly imbalanced as
in Fig. 2. We empirically find out in which of these cases
adding a classification loss improves the regression quality
on the test set. Moreover, we explain these empirical obser-
vations by formulating them into a probabilistic analysis.

We urge the reader to note that our goal is not propos-
ing a novel regression loss, nor do we aim to improve re-
sults with “superior performance” over state-of-the-art re-
gression models. But rather, we aim to investigate a com-
mon computer vision practice: i.e. adding a classification
loss to the regression loss, and we analyze for what kind
of dataset properties and dataset samplings this practice
is useful. Finally, we show experimentally that our find-
ings hold in practice on two imbalanced real-world com-
puter vision datasets: NYUD2-DIR (depth estimation) and
IMDB-WIKI-DIR (age estimation) [47], and on the Break-
fast dataset [23] when predicting video progression.

2. Why does classification help regression?

For an input dataset, D, containing N samples of the
form (x, y)∈D, we analyze what happens when we train
a deep network with parameters ω to predict a target
y∗=f(x,ω) for a sample x, by minimizing NLL (negative
log-likelihood) or equivalently, minimizing the MSE (mean
squared error) regression loss:

ω∗ = argmin
ω

∑
(x,y)∈D

L(y,x,ω) (1)

= argmin
ω

 ∑
(x,y)∈D

− log p(y|x,ω)

 (2)

≡ argmin
ω

λ
1

N

∑
(x,y)∈D

(y − y∗)
2 (3)

where ω∗ are the optimal parameters, and we can reinterpret
the imbalanced likelihood as the mean of a Gaussian distri-
bution with σ noise: p(y|x,ω) = N (y; y∗, σ2I), in which
case minimizing the NLL is equivalent to minimizing the
MSE loss [3], and λ is a function of the noise σ.

We contrast Eq. (3) to the case when we discretize the
targets y into a set of C classes and use a classification loss
next to the regression loss:

L(y,x,ω) =λ (y − y∗)
2 − log p(y∗c |x,ω), (4)

where y∗k, k∈{1, .., C} denotes the model predictions
binned into classes, and specifically y∗c is the prediction at
the true class indexed by c, for the sample x. For the clas-
sification term, we make the standard softmax distribution
assumption.
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Figure 2. Data sampling. On the columns we increase the data
imbalance from uniform (balanced) to severely imbalanced. On
the first row we show the function f(x) where darker datapoint
colors visualize higher density. The gray shading on the first row
groups the targets into 4 classes. On the second row we show the
log-counts per function value, sampled for the training data. We
sample the test data uniformly.

2.1. Controlled 1D analysis

To probe the question ”Why does classification help re-
gression?” we first want to know in which cases does classi-
fication help regression. We measure test-time MSE scores
for each case in Fig. 1, and compare training with a re-
gression loss as in Eq. (3), with training using an extra
classification loss as in Eq. (4). We randomly sample 10
functions of the form: f(x)=a sin(cx) + b sin(dx), where
f(x)∈[−1.5, 1.5] and x∈[−1, 1]. For every function we
vary the dataset scenario as in Fig. 1, and we also vary the
sampling of the data from uniform to severely imbalanced
sampling, as in Fig. 2. Each dataset sampling is repeatedly
performed with 5 different random seeds, where we always
sample ≈30, 000 samples in total, and then randomly pick
1/3 for training, for validation, and for testing, respectively.
In the out-of-distribution case, the training set misses cer-
tain function regions that are present in the validation/test
set, and vice-versa; and there is an overlap of 1/4 between
the function regions in the training set and the regions in the
validation/test set. For the imbalanced sampling, we aim to
sample a range of the targets y more frequently than other
ranges. For this, we randomly select a location along the
y-axis in each repetition: this defines the center of the peak
in Fig. 2, second row. And depending on the sampling sce-
nario, we use a fixed variance ratio around the peak (0.3, 0.1
and 0.03 for mild, moderate and severe sampling) to define
the region from which we draw the frequent samples. We
sample 75% of the samples from the peak region, and the
rest uniformly from the other function areas.

We train a simple MLP (multi layer perceptron) with
3 linear layers ([1×6], [6×16], [16×1]) and ReLU non-



Figure 3. MSE per class, where we vary the number of classes
from 4 to 1024. We evaluate on uniformly sampled test sets, across
5 repetitions. We plot means and standard deviations for each
dataset (rows) and sampling variation (columns), where the shad-
ing represents the standard deviation. The red line, reg, should be
constant across classes but it varies due to the sampling/training
randomness. We also print the gap between the reg and reg+cls
measured as absolute difference of MSE scores. The effect of the
classification loss is present when the sampling of the data is im-
balanced for the clean and noisy data.

linearities. For setting the hyperparameter λ, we perform
a hyper-parameter search on the validation set. We find the
best λ to be 1e+2, 1e+3 and 1e+4 for the clean, noisy and
out-of-distribution. We train for 80 epochs using an Adam
optimizer with a learning rate of 1e−3, 1e−2 and 1e−4 for
clean, noisy and out-of-distribution respectively. We use a
weight decay of 1e−3. For classification we add at training-
time a linear layer ([16×C]) predicting C classes. More
details are in the supplementary material.

In Fig. 3 we show the MSE across all dataset and sam-
pling variations, for {22, 24, 26, 28, 210} classes. We define
the class ranges uniformly. The test sets are uniformly sam-
pled and we perform 5 repetitions. We plot the means and
standard deviations. We print on every plot the gap between
the reg and reg+cls measured as the average absolute dif-
ference of MSE scores. From this 1D analysis, we observe
that the effect of the classification loss is visible when the
training data is imbalanced for clean and noisy data.

2.2. Anchoring 1D experimental observations

In Section 2.1 we observe that classification has a more
pronounced effect when the sampling of the data is im-
balanced. Therefore, from here on we focus the anal-
ysis on imbalanced data sampling. We start from the
derivations of Ren et al. [31] who define the relation be-
tween the NLL (negative log-likelihood) of imbalanced
samples − log p̃(y|x,ω) and the NLL of the balanced sam-
ples − log p(y|x,ω):

− log p̃(y|x,ω) = − log
p(y|x,ω)p̃(y)∫

y′ p(y′|x,ω)p̃(y′)dy′
(5)

where p̃(y) denotes the prior over imbalanced targets.
Eq. (5) holds under the assumption that the data function
remains unchanged, p̃(x|y)=p(x|y), which is the case for
the clean and noisy data scenarios above. We decompose
the log and rewrite the relation between the NLL of the bal-
anced and the NLL of the imbalanced data:

− log p̃(y|x,ω) + Lextra(y,x,ω) =− log p(y|x,ω), (6)

Lextra contains all the information about the imbalanced re-
gression targets:

Lextra = log p̃(y)− log

∫
y′
p(y′|x,ω)p̃(y′)dy′, (7)

= log p̃(y)− log

∫
y′
N (y′; y∗, σ2I)p̃(y′)dy′, (8)

where again y∗ are the predicted targets.
To derive the link between optimizing a model on imbal-

anced data and using both a regression MSE loss and a clas-
sification loss, we assume the imbalanced regression targets
y can be discretized into a set of classes, k∈{1, .., C} such
that

∑C
k=1 p(yk)=1. By going from continuous regression

targets to discrete classes, we change the form of the log-
likelihood from Gaussian to softmax:

Lextra ≈ log p̃(yc)− log

C∑
k=1

p(y∗k|x,ω)p̃(yk), (9)

where we denote the true class label by yc. Note that the
regression targets y are imbalanced, but the classes yk do
not necessarily need to be imbalanced. We analyze in the
experimental section the effect of defining balanced classes.

We make the observation that if we could optimize the
class assignment, the Lextra term would disappear. If the
classes are optimized, then the class likelihoods are close to
0 for all classes except the true class: p(y∗k|x,ω)≈0, ∀k ̸=c,
where c indexes the true class. Using this in the expression
of Lextra, we obtain:

Lextra ≈ log p̃(yc)− log p(y∗c |x,ω)p̃(yc), (10)
≈− log p(y∗c |x,ω), (11)



where the p̃(yc) terms cancel out when decomposing the
second log. Therefore, we can see that optimizing the class
cross-entropy loss reduces the gap between between the
NLL of imbalanced data and NLL of balanced data. (Note:
we observe in practice that if the classifier fails to converge,
adding a classification loss is detrimental to regression.)

2.3. Defining balanced classes in practice

Existing works show that optimizing imbalanced classes
is problematic [26, 49]. In practice, researchers opt for us-
ing balanced classes in combination with regression [30,
44, 46, 51]. Here, the data is imbalanced, however we are
free to define the class ranges such that we obtain balanced
classes over imbalanced data sampling. To empirically test
the added value of using balanced classes, we need a way to
define balanced classes over imbalanced data sampling.

Given an imbalanced data sampling, we bin samples into
classes, using uniform class ranges. This generates imbal-
anced classes, which we then re-balance by redefining the
class ranges such that the class histogram is approximately
uniform. To this end, we apply histogram equalization over
the original classes:

q(k) =

C

N

k∑
j=1

HC(j)

 , (12)

where ⌊x⌋ rounds x down to the nearest integer, and HC(·)
computes the histogram of the samples per class, and q(·) is
a mapping function that maps the old classes indexed by
k∈{1, .., C} to a new set of classes {1, .., C}. Eq. (12)
merges class ranges such that their counts are as close as
possible. Thus, the number of equalized classes is lower or
equal to the original number of classes, C ≤ C.

After class equalization, the new classes are not per-
fectly uniform. We further define a class-keeping proba-
bility ρ(k), as the ratio between the minimum class count
and the current equalized class count HC(k):

ρ(k) =
minCj=1 HC(j)

HC(k)
, (13)

where HC(·) computes the histogram of equalized classes.
Selecting training samples using only Eq. (13), without first
equalizing the classes, will lead to never seeing samples
from the most frequent classes. During training, for the re-
gression loss we use all samples, while for the classification
loss we pick samples (x, yk) with a probability defined by
ρ(k). More details are in the supplementary material.

3. Empirical analysis
3.1. Hypothesis analysis on 1D data

We use the 10 randomly sampled 1D functions to fur-
ther analyze the regression loss — reg from Eq. (3), and

Figure 4. Effect of the λ hyperparameter on the validation:
We evaluate a range of values λ∈{1e−3, 1e−2, 1e−1, 1, 1e+1,
1e+2, 1e+3, 1e+4} on the validation set. The shading represents
the standard deviation of the MSE error across 3 repetitions. Set-
ting λ correctly is essential when using a classification loss next to
the regression loss.

regression with classification — reg+cls from Eq. (4). We
start with the 1D data because it is easily interpretable and
it offers a controlled environment to test the hypothesis that
classification helps regression and to analyze the properties
of the classes. 1

Effect of the λ hyperparameter. We perform hyperpa-
rameter search on the validation set for setting the λ in
Eq. (4). We vary λ∈{1e−3, 1e−2, 1e−1, 1, 1e+1, 1e+2,
1e+3, 1e+4}. Fig. 4 shows the MSE across 3 repetitions,
when considering different number of classes, for clean and
noisy data scenarios, across sampling variations. Higher
values of λ typically perform better in this case. When the
sampling of the data is imbalanced, there exists a value of
λ such that the reg baseline is outperformed by the reg+cls.
We use the best λ values found on the validation, when eval-
uating on the test set.
Effect of balancing the classes on imbalanced data. We
numerically evaluate in Tab. 1 if using balanced classes
(as defined in Eq. (12)-Eq. (13)) is less sensitive to the
choice of λ. We perform 3 repetitions over all dataset
scenarios and sampling cases, and vary λ∈{1e−3, 1e−2,
1e−1, 1, 1e+1, 1e+2, 1e+3, 1e+4}. For this we consider
the percentage of runs (across different number of classes,
random seeds, and values of λ) where classification helps
regression — where reg+cls MSE is lower than reg MSE.
Ideally this number should be close to 100%. Balancing the
classes is more robust to the choice of λ, as on average there

1Our source code will be made available online, at the address:
https://github.com/SilviaLauraPintea/reg-cls.

https://github.com/SilviaLauraPintea/reg-cls


Imbalanced classes (↑) Balanced classes (↑)

Dataset case Clean Noisy data Clean Noisy data

Uniform 55.42% 59.83% 59.00% 65.00%
Mild 54.17% 55.75% 57.67% 62.42%
Moderate 47.50% 56.58% 47.50% 56.00%
Severe 36.83% 49.08% 34.25% 46.25%

Avg 48.48% 55.31% 49.60% 57.42%

Table 1. Effect of balancing the classes: On the validation sets
we test how sensitive reg+cls is to the choice of λ when balancing
classes versus when using imbalanced classes. For this we vary
λ∈{1e−3, 1e−2, 1e−1, 1, 1e+1, 1e+2, 1e+3, 1e+4}. And we
measure the percentage of runs where adding a classification loss
improves the regression predictions. Using balanced classes is less
sensitive to the choice of λ.

Figure 5. Effect of noisy targets: We vary the amount of noise
in the targets, along the y-axis. We plot both using imbalanced
classes (green), and using balanced classes (lime) compared to the
reg baseline (red). We report MSE on the test sets across 5 repeti-
tions. Despite the the noise level increasing drastically, the benefits
of adding a classification loss to the regression loss remain visible.

are more runs where classification helps regression.

Effect of the noisy targets. In Fig. 3 we considered a sin-
gle noise level for the Noisy data scenario. Here, we fur-
ther analyze the effect on the MSE scores when varying the
noise level in the targets for the baseline reg (in red) and
the reg+cls with imbalanced classes (in green) as well as
reg+cls bal where the classes are balanced (in lime color).
We vary the level of noise σ of the targets on the y-axis
σ∈{0.05, 0.1, 0.5}, and plot mean MSE and standard devi-
ation on uniform test sets across 5 repetitions. For the bal-
anced case, we indicate the original number of classes on
the x-axis, while in practice the number of balanced classes

is typically 2× lower than the initial one. Fig. 5 shows that
despite severely increasing the noise level, adding a classifi-
cation loss remains beneficial when the data is imbalanced.

3.2. Realistic image datasets

Imbalanced realistic image datasets. We run experiments
on two realistic imbalanced datasets from Yang et al. [47]:
depth estimation on the NYUD2-DIR dataset, and age esti-
mation on the IMDB-WIKI-DIR. The supplementary ma-
terial plots dataset statistics. For both datasets we use
the Adam optimizer and set the learning rate to 1e−4 for
NYUD2-DIR with 5 epochs1 and batch size 16 accumu-
lated over 2 batches (to mimic batch size 32 on 2 GPUs),
while for IMDB-WIKI we use a learning rate of 1e−3 for
90 epochs and batch size 128. When comparing with Ren
et al. [31] we use their best results (their GAI method). We
also use the evaluation code provided in Yang et al. [47]
and we report RMSE (root mean squared error) on NYUD2-
DIR and MAE (mean absolute error)/MSE (mean squared
error) for IMDB-WIKI-DIR as also done in [31, 47]. When
re-running the baseline reg results we observed a large vari-
ability across different runs by varying the random seed,
especially on the NYUD2-DIR dataset, therefore we re-
port results averaged over 3 random seeds. We use the ar-
chitecture of Yang et al. [47]: ResNet-50 [17] for IMDB-
WIKI-DIR, and the ResNet-50-based model from [19] for
NYUD2-DIR.

For adding the classification loss on IMDB-WIKI-DIR
we append, only during training, a linear layer of size [F,C]
followed by a softmax activation and a cross-entropy loss,
where F is the number of channels in the one-to-last layer.
For the NYUD2-DIR the predictions are per-pixel, thus we
use the segmentation head from Mask R-CNN [16] com-
posed of a transposed convolution of size 2×2, ReLU, and
a 1×1 convolution predicting the number of classes, C. At
test time the classification branch is not used. We estimate
the λ hyperparameter using the validation set provided in
[47] on IMDB-WIKI-DIR. For NYUD2-DIR we define a
validation set by randomly selecting 1/5 of the training di-
rectories with a seed of 0, and we use the same training/
validation/test split for all our results. For NYUD2-DIR we
use λ=1.0 for 100 classes and λ=0.1 for 10 and 2 classes.
For IMDB-WIKI-DIR we set λ=0.1 for 100 classes and
λ=1.0 for 10 and 2 classes. We compare the reg results with
reg+cls adding the classification loss, and reg+cls bal. with
balanced classes, where we consider 2, 10 and 100 classes.

Tab. 2 shows the RMSE results on NYUD2-DIR when
training with the standard MSE loss compared to adding a
classification loss. We report RMSE on the test, where the
best model is selected on the validation set across epochs
— RMSE-val. To compare with previous work who selects
the best model on the test, we also report this as RMSE-test

1Using more epochs on NYUD2-DIR seems to lead to overfitting.



NYUD2-DIR RMSE-val (↓) NYUD2-DIR RMSE-test (↓)

Samples All Many Med. Few All Many Med. Few

Kernel [47] — — — — 1.338 0.670 0.851 1.880
Balanced [31] — — — — 1.251 0.692 0.959 1.703

reg (MSE) 1.614 (±0.051) 0.554 (±0.002) 0.934 (±0.042) 2.360 (±0.081) 1.499 (±0.083) 0.578 (±0.010) 0.896 (±0.043) 2.171 (±0.136)

reg+cls (2 cls) 1.587 (±0.026) 0.618 (±0.003) 1.062 (±0.025) 2.278 (±0.041) 1.532 (±0.082) 0.624 (±0.036) 0.946 (±0.032) 2.204 (±0.141)
reg+cls (10 cls) 1.576 (±0.063) 0.585 (±0.008) 0.982 (±0.058) 2.282 (±0.095) 1.509 (±0.022) 0.582 (±0.013) 0.947 (±0.046) 2.178 (±0.047)

reg+cls (100 cls) 1.536 (±0.090) 0.569 (±0.018) 0.966 (±0.041) 2.222 (±0.146) 1.488 (±0.028) 0.578 (±0.015) 0.971 (±0.049) 2.141 (±0.045)

reg+cls bal. (2 cls) 1.599 (±0.020) 0.616 (±0.026) 1.033 (±0.058) 2.304 (±0.044) 1.522 (±0.060) 0.665 (±0.033) 1.003 (±0.059) 2.166 (±0.118)
reg+cls bal. (10 cls) 1.454 (±0.044) 0.607 (±0.041) 0.965 (±0.023) 2.077 (±0.087) 1.454 (±0.044) 0.607 (±0.041) 0.965 (±0.023) 2.077 (±0.087)

reg+cls bal. (100 cls) 1.553 (±0.117) 0.563 (±0.033) 0.897 (±0.043) 2.263 (±0.193) 1.487 (±0.051) 0.574 (±0.014) 0.869 (±0.019) 2.156 (±0.084)

Table 2. Imbalanced realistic image data: NYUD2-DIR depth estimation. We evaluate the baseline reg trained with MSE, and the
reg+cls variants. We report RMSE when the best model is selected on the validation (RMSE-val ), or as in [47] on the test set (RMSE-
test). We average over 3 different random seeds. Adding a classification loss helps regression, which validates our hypothesis.

IMDB-WIKI-DIR MAE(↓) IMDB-WIKI-DIR MSE(↓)

Samples All Many Med. Few All Many Med. Few

Focal [27] 7.97 7.12 15.14 26.96 136.98 106.87 368.60 1002.90
Kernel [47] 7.78 7.20 12.61 22.19 129.35 106.52 311.49 811.82

Balanced [31] 8.12 7.58 12.27 23.05 — — — —
reg (MAE) 8.09 (±0.01) 7.23 (±0.02) 15.48 (±0.15) 26.81 (±0.48) 138.53 (±1.17) 107.82 (±0.96) 375.27 (±6.97) 1017.59 (±27.51)

reg+cls (2 cls) 7.95 (±0.05) 7.11 (±0.03) 15.08 (±0.27) 26.15 (±0.06) 135.15 (±0.40) 105.86 (±0.27) 361.02 (±7.00) 973.53 (±11.52)
reg+cls (10 cls) 7.93 (±0.06) 7.12 (±0.06) 14.93 (±0.17) 25.91 (±0.27) 135.69 (±1.65) 106.58 (±1.42) 359.27 (±5.70) 975.37 (±34.09)

reg+cls (100 cls) 7.61 (±0.02) 6.90 (±0.03) 13.46 (±0.44) 25.04 (± 0.82) 129.73 (±1.33) 103.25 (±1.12) 328.17 (± 10.40) 933.33 (± 9.16)

reg+cls bal. (2 cls) 7.94 (±0.06) 7.14 (±0.09) 14.71 (±0.51) 26.20 (±0.73) 134.91 (±1.20) 106.36 (±1.68) 351.48 (±14.82) 980.61 (±39.44)
reg+cls bal. (10 cls) 7.92 (±0.06) 7.10 (±0.05) 14.99 (±0.21) 25.58 (±0.39) 134.53 (±0.75) 105.40 (±0.43) 362.48 (±4.41) 940.91 (±18.70)

reg+cls bal. (100 cls) 7.59 (±0.09) 6.86 (±0.08) 13.61 (±0.35) 25.30 (±0.19) 127.87 (±1.99) 101.34 (±1.74) 327.55 (±12.98) 925.65 (±21.96)

Table 3. Imbalanced realistic image data: IMDB-WIKI-DIR age estimation. We evaluate the baseline reg when trained with MAE,
and the reg+cls variants. We report test MSE and MAE on the test set, averaged over 3 repetitions with different random seeds. Adding
a classification loss next to the regression loss is specifically beneficial on this dataset, where this simple yet popular strategy performs on
par with state-of-the-art. (We use “—” where the authors’ results are missing).

.

Balanced NYUD2-DIR

All RMSE-val (↓) All RMSE-test (↓)

reg (MSE) 1.442 (±0.077) 1.492 (±0.042)
reg+cls 1.456 (±0.033) 1.593 (±0.025)

Balanced IMDB-WIKI-DIR

All MAE (↓) All MSE (↓)

reg (MSE) 7.74 (±0.04) 131.03 (±1.44)
reg+cls 7.71 (±0.06) 131.27 (±1.00)

Table 4. Balanced realistic image data: NYUD2-DIR depth es-
timation and IMDB-WIKI-DIR age estimation. We compare
the reg and reg+cls (using 100 classes) when the data is balanced.
We report RMSE and MAE/MSE, respectively, across 3 repeti-
tions. There are no clear improvements when adding a classifica-
tion loss to the regression on balanced data.

(despite this being a bad practice). Additionally, note that
our training set is slightly smaller because of using a valida-
tion set, so the reg results are worse than in [47] (i.e. 1.477
RMSE-test). We observe that there is an inconsistency be-
tween the training and test set, as the best model on the test
set does not correspond to the best model on the validation
set (which is a subset of the training). Despite all these,
adding a classification loss still improves across all class-
options, when selecting the best model on the validation set,

and for 100 classes and 10 balanced classes, when selecting
the best model on the test set. This may be due to the clas-
sifier overfitting on the training data for fewer classes.

Tab. 3 gives the MAE and MSE results on IMDB-WIKI-
DIR when using the standard MSE loss during training
compared to when adding the classification at training time.
The best results are obtained using 100 balanced classes.
Here, adding a classification loss not only improves over the
regression baseline, but it is also on-par with state-of-the-art
methods specifically designed for imbalanced regression,
such as [32, 47]. Adding a classification loss is similar to
[32, 47], who define smooth classes over the data.

Balanced realistic image datasets. On the same two
datasets: NYUD2-DIR and IMDB-WIKI, we test the effect
of adding a classification loss when we re-balance the data
by binning the targets into 100 bins and selecting samples
per batch during training as defined as in Eq. (12)-Eq. (13)
for both reg and reg+cls. Because we mask samples per
batch to balance the training data, for IMDB-WIKI here
we use a batch size of 128 and learning rate 1e−4 for 90
epochs. While for NYUD2-DIR we use a learning rate of
1e−4 and batch size of 8, accumulated over 4 batches (to
mimic a batch of 32 on 1 GPU), for 5 epochs. Tab. 4 shows



Breakfast RMSE % (↓) Breakfast RMSE frames (↓) – unnormalized

Dataset split S1 S2 S3 S4 S1 S2 S3 S4

Random baseline 58.50 (±0.29) 58.37 (±0.07) 58.39 (±0.14) 58.38 (±0.12) 1394.48 (±992.50) 1511.04 (±1132.60) 1450.26 (±1085.56) 1420.21 (±1063.16)
[24] 31.24 (±0.80) 31.49 (±0.98) 30.85 (±0.66) 30.78 (±0.53) 1079.38 (±775.17) 1235.02 (±932.89) 1172.67 (±880.69) 1170.07 (±886.92)

reg (RMSE) 32.57 (±1.45) 33.30 (±1.69) 32.52 (±1.17) 33.08 (±1.49) 860.17 (±583.44) 891.39 (±641.58) 862.65 (±609.01) 845.48 (±605.46)

reg+cls (100 cls) 28.71 (±0.38) 28.84 (±0.55) 28.46 (±0.48) 28.44 (±0.50) 837.59 (±573.15) 870.55 (±630.89) 845.65 (±601.73) 809.76 (±595.37)
reg+cls bal. (100 cls) — — — — 837.61 (±573.17) 870.54 (±630.88) 845.65 (±601.72) 809.76 (±595.37)

(a) Percentage prediction (normalized). (b) Frame prediction (unnormalized).
Table 5. Imbalanced video progress prediction on Breakfast. We report mean RMSE and standard deviations averaged over all 10
cooking tasks of the Breakfast dataset. (a) Progress prediction in video percentages. (b) Progress prediction in frame numbers. The
overall progress prediction results leave space for improvements for all methods, because of the dataset challenges. However, also for this
regression problem adding a classification loss has benefits.

the results across 3 repetitions. When the data is already
balanced, adding a classification loss has limited effect.

3.3. Imbalanced video progress prediction

As an additional investigation on imbalanced data, we
explore videos which are naturally imbalanced in the num-
ber of frames. We perform video progress prediction on
the Breakfast video dataset [23] containing 52 participants
performing 10 cooking activities. We follow the standard
dataset split (S1, S2, S3, S4) [23] and use the correspond-
ing train/test splits. We adopt the method in [24] and train a
simple MLP on top of IDT (improved dense trajectory) fea-
tures [41] of dimension 64 over trajectories of 15 frames.
We evaluate RMSE when predicting either video progress
percentages, or absolute frame numbers. Kukleva et al.
[24] use an MLP with 3 linear layers and sigmoid activa-
tions. We change the sigmoid activations into ReLU acti-
vations for the reg and reg+cls models, since it works bet-
ter when predicting absolute frame numbers. For all meth-
ods we keep the training hyperparameters from [24]: learn-
ing rate 1e−3, Adam optimizer, and training for 40 epochs
with the learning rate decreased by 0.1 at 30 epochs. We
also report the random baseline results when using the un-
trained model. The data is imbalanced, in the sense that
video lengths vary widely (see supplementary material for
data distribution). We test again if adding a classification
loss can benefit the regression predictions when using 100
classes in the reg+cls. We search for λ on a validation
set created by randomly selecting 1/3 of the training videos
with a seed of 0. We use λ=100 when predicting percent-
ages, and λ=10 when predicting frame numbers. At train-
ing time, we add the classification loss via a linear layer on
top of the one-to-last layer, followed by softmax. We train
one model per task and report mean and standard deviations
over all 10 tasks.

Tab. 5 depicts the results across all 4 splits. We re-
port RMSE scores when predicting video progress in terms
of percentages in Tab. 5(a), and when predicting video
progress in terms of frames in Tab. 5(b). Even if we predict
video progress percentages between [0,100]% in Tab. 5(a),
because the video length varies widely, for some videos we

will have a lot more frame than for others, causing the data
sampling to still be imbalanced. In both cases there is gain
from adding a classification loss to the regression loss.

4. Discussion and limitations

Relation to nonlinear ICA. Hyvärinen et al. [21] show
that there is a relation between learning to bin a continu-
ous function and performing nonlinear ICA. Hyvärinen et
al. [21] start from a continuous signal x generated by a
non-linear combination of source-signals: x=f(s), where
f(·) is a non-linear function and s are the independent
and non-stationary sources. They split the signal into C
temporal segments x={x1,x2, ..,xC} and train an MLP
to predict for every sample xki the segment it belongs to:
g(xki , θ)=k, k∈{1, .., C} and xki⊂xk, and θ are the MLP
parameters. Hyvärinen et al. [21] prove that the last hid-
den layer of the MLP hg(·, θ) recovers the original sources
s within a linear transformation: hg(xki

, θ) = wski
+ b,

where w,b define a linear transformation. Intuitively,
Hyvärinen et al. [21] discretize the signal into segments and
classify the segments, thus performing classification on a
continuous function. However, they do not focus on com-
bining the binning with optimizing a regression problem.

Similar to Hyvärinen et al. [21], predicting discrete sig-
nal bins has been successfully used for unsupervised video
representation learning by discriminating between video
segments [9] or classifying video speed [42]. Up to the
point which the underlying continuous regression function
(e.g. speed, time, age, depth) can be assumed to be gener-
ated by a non-linear combination of non-stationary source
(whose statistics change with the function), adding a clas-
sification loss decorrelates the independent sources. Addi-
tionally, we hypothesize that there may be a relation be-
tween nonlinear ICA and imbalanced sampling: the inde-
pendent sources s are also continuous and shared across
samples. And having the hidden representation of the MLP
constrained to be independent across dimensions may lead
to a better use of sparse samples in certain areas of the
target-space. However, we leave this for future research.
Limitations of analysis. The analysis performed here is
still elementary and only aims to scratch the surface on the



usefulness of adding a classification loss when performing
regression. A number of things have been disregarded here
such as: the effect of the model depth, while keeping the
model size fixed. Additionally, the choice of the optimizer
and the loss function during training may also play an im-
portant role. Finally, delving more into the relation between
nonlinear ICA and adding a classification loss to the regres-
sion, may be an interesting future research avenue.

5. Related work
5.1. Improved deep regression

A thorough analysis of the effect of deep architecture
choices on regression scores is performed in [25]. Rather
than considering architecture choices, other works focus on
regression robustness – defined as less influence from out-
liers [15, 20]. The benefits of having a weighted regression
loss has been extensively analyzed in classic work such as
[6, 7]. With a similar goal, Barron [1] proposes a general re-
gression loss that can be adapted to well-known functions.
Minimizing a Tukey’s biweight function also offers robust-
ness to outliers [2]. Similarly, a smooth L1 loss is used in
[12] for improved object bounding-box regression. Map-
ping regression targets to the hyper-sphere can also aid re-
gression [29]. Instead of focusing on the loss function, a
smooth adaptive activation function is used in [18]. From a
different direction, ensemble networks have been success-
fully used for improved regression estimates [8, 14, 39].
Deep negative correlation learning is proposed in [48] to
learn diversified base networks for deep ensemble regres-
sion. Dissimilar to these works, our goal is not proposing a
new network architecture or a new regression loss function,
but rather analyzing why a combination between a classifi-
cation and a regression loss can lead to improvements.

5.2. Discretized regression targets

Instead of optimizing continuous object pose angles,
[38, 36] discretize them into classes and perform classifi-
cation. Continuous prediction can be obtained back from
discretized targets, by using soft-min for disparity learning
[22]. Similarly, ages are discretized in classes and the final
prediction is computed as an expectation over class proba-
bilities in [34]. Rather than using predefined classes, clus-
ters can be defined and, again, the final predication is a
weighted sum over clusters [40, 43]. In a similar manner,
a weighted combination of clustered regression targets is
used for finding surface normals in [43]. Popular object de-
tectors [28, 32, 33, 45] also rely on a set of predefined box
locations that can be seen as bin centers, and regress the fi-
nal box locations with respect to these centers. An explicit
combination of regression and classification losses has been
shown to improve results for object orientation regression
[30, 50, 51] by first splitting orientations into bins and then

regressing the precise value in each bin. Similarly, a joint
classification loss over discretized targets and a regression
loss is effective for horizon line detection [44]. Here, we
want to analyze why these prior works opt for discretizing
regression targets. More specifically, we analyze why and
when a combination of a regression loss and a classification
loss over discretized continuous targets improves results.

5.3. Regression on imbalanced data

Prior work has shown that imbalanced sampling can neg-
atively affect the regression scores, and proposed ways to
mitigate this by designing better data sampling techniques
[4, 37]. How rare a data point is in the training set, can be
modeled with kernel density estimation [35]. Not only the
data sampling but also the target distribution can be fixed by
smoothing the distribution of both labels and features using
nearby targets [47]. Similarly, the learning model can be
regularized such that samples that are close in label space
are also close in the feature space [13]. While focusing
on the learning model, ensemble methods are a viable so-
lution when working with imbalanced regression problems
[5]. Instead of focusing on the data sampling or the model,
imbalanced regression estimates can be improved by adapt-
ing the MSE (mean squared error) loss [31]. Most similar
to us are [32, 47] whose methods can be seen as defining
smooth classes over the data. However, they aim to im-
prove regression on imbalanced data, while we set off to
analyze in which cases adding a classification loss can help
regression, and what is the motivation behind this.

6. Conclusion

Here, we present a preliminary analysis on the effect of
adding a classification loss to the regression loss. We make
the observation that adding a classification loss to the re-
gression loss has been used in computer vision for deep re-
gression [30, 44, 46]. And we empirically test across data
variations and data samplings on a set of 1D functions, the
effect of adding a classification loss to a regression loss. We
find that for imbalanced regression, adding a classification
loss helps the most. Furthermore, we present an attempt at
formalizing this observation starting from the derivations of
Ren et al. [31] for imbalanced regression.

Additionally, we validate that adding a classification loss
to the regression loss is beneficial on imbalanced real data,
where we evaluate on imbalanced image data on NUYD2-
DIR and IMDB-WIKI-DIR datasets [47], and imbalanced
video progress prediction on the Breakfast dataset [23].
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A step towards understanding why classification helps regression
Supplementary material

A. 1D experimental details
For the 1D synthetic experiments we use the function f(·) defined by a sum of two sines with different frequencies and amplitudes:

f(x) = a sin(cx) + b sin(dx), (14)

where f(x) ∈ [−1.5, 1.5] and x ∈ [−1, 1]. We show here in Fig. 6 the 10 functions we have sampled from this function for the 1D
experiments presented in the paper.

Figure 6. The 10 sampled 1D functions used in the experiments in the main paper. Over these 10 functions we vary the sampling into:
4 sampling scenarios (uniform, mild, moderate and severe), 3 data scenarios (clean, noisy, and ood ), with 5 different seeds and 5 classes
(22, 24, 26, 28, 210) resulting in 3000 experiments on the 1D data.

For the validation set we run the experiments over 3 repetitions with seeds: {0, 421, 8125}, while for testing we run the experiments
by setting the random seed everywhere in the code to {0, 421, 8125, 2481, 849}. For each dataset scenario (clean, noisy data, ood ) and
sampling (uniform, moderate, mild, severe) we create 5 dataset versions. During training for every random seed we pick a dataset version,
giving rise to 5 repetitions per function, over which we report results in the Fig. 3 in the paper. We print here in Tab. 6 the model architecture
for the regression-only and regression and classification tasks.

Layer Output Shape Param

Linear1 [-1, 6] 12
ReLU1 [-1, 6] —
Linear2 [-1, 16] 112
ReLU2 [-1, 16] –
Linear3 [-1, 1] 17

Layer Output Shape Param

Linear1 [-1, 6] 12
ReLU1 [-1, 6] —
Linear2 [-1, 16] 112
ReLU2 [-1, 16] –

Linear3a [-1, 1] 17
Linear3b [-1, C] 16C

(a) Regression only (b) Regression and classification
Table 6. MLP network architectures for the 1D experiments. When adding the classification loss during training, we use an additional
linear layer (emphasized here) which maps the features of the one-to-last layer to the desired number of classes, C. During testing this
layer is discarded.

Fig. 7 shows examples of predictions when using balanced and imbalanced classes on 3 severe sampling scenarios. The classification
methods can make different mistakes, but overall the predictions are more accurate than for the regression alone.

B. Re-balancing the 2D imbalanced training data
For re-balancing the classes, we first redefine the class ranges to have equalized class counts using Eq. (12). For the regression loss we

use all samples in each batch during training. For the classification loss we subsample the samples in the batch by considering the current



log-counts of f(x)

f(
x
)

101 102

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

0.50 0.00 0.50

x
0.50 0.00 0.50

x
0.50 0.00 0.50

x

log-counts of f(x)

f(
x
)

0.50 0.00 0.50

x
0.50 0.00 0.50

x
0.50 0.00 0.50

x

log-counts of f(x)

f(
x
)

101 102 103

1.0

0.5

0.0

0.5

1.0

0.50 0.00 0.50

x
0.50 0.00 0.50

x
0.50 0.00 0.50

x

101 102

Figure 7. Examples of 1D predictions: For moderate/mild/severely imbalanced data sampling, on clean data scenario, when using 64
classes. The classification variants: with balanced classes (lime) and with imbalanced classes (green) make more accurate predictions than
the regression baseline (red).

(a) Original NYUD2-DIR targets distribution. (b) NYUD2-DIR probabilities of keeping samples per class. (c) NYUD2-DIR re-balanced samples.

(c) Original IMDB-WIKI-DIR targets distribution. (d) IMDB-WIKI-DIR probabilities of keeping samples per class. (e) IMDB-WIKI-DIR re-balanced samples.

Figure 8. Re-balancing the training distribution in the classification loss. (a) The initial distribution per class for the NYUD2-DIR
dataset. (b) The probabilities of samples being retained per class, as described in Eq. (13). (c) The NYUD2-DIR samples re-balanced per
class as described in Section 2.3. (d) The initial distribution per class for the IMDB-WIKI-DIR dataset. (e) The probabilities of samples
being retained per class, as described in Eq. (13). (f) The IMDB-WIKI-DIR samples re-balanced per class as described in Section 2.3.
Here we consider 100 classes for binning the dataset targets. Equalizing the class ranges using Eq. (12) and sampling samples per class
over the training epochs using Eq. (13) is effective at balancing the classes.



training sample (x, yk) in the classification loss with probability ρ(k), where ρ(k) is defined in Eq. (13). Specifically, for every training
sample (x, yk) we sample a random variable u from the uniform distribution and use this sample in the classification loss if the random
value is smaller than ρ(k):

u ∼ U(0, 1), (15)

we classify (x, yk) if u ≤ ρ(k). (16)

This procedure is useful, because the complete dataset will be visited during training for classification (provided sufficient epochs), yet
the samples seen per class will be equal. To illustrate this, we show in Fig. 8(a) the original data distribution on NYUD2-DIR, and
IMDB-WIKI-DIR, the probabilities per class of keeping a sample for 100 equalized classes in Fig. 8(b), and the re-balanced training set
distribution in Fig. 8(c). Here we consider 100 classes to bin the training targets. We see that after class equalization and re-balancing the
class distribution is uniform. We could have only used the second option to balance the classes by sampling uniform samples per class
using Eq. (13) without first equalizing the classes with Eq. (12). However, if the classes are severely imbalanced (as in the case of our data),
some class probabilities are extremely low which leads to never selecting samples from those classes, and thus having the classification fail
to converge.

C. Breakfast dataset task variations
Fig. 9 shows the large variation in video lengths across the 10 tasks on the Breakfast dataset on the training data. This large variability

makes predicting video progression extra challenging, even when predicting video progression in percentages. This is due to having a
most-frequent task length, and the model learns to predict better for the videos belonging to the most-frequent task length, and it makes
mistakes when predicting progression on the videos that are a lot shorter or a lot longer than the average.

(a) Cereals (b) Coffee (c) Fried egg (d) Juice (e) Milk

(a) Pancake (b) Salad (b) Sandwich (c) Scrambled egg (d) Tea

Figure 9. Breakfast task length variations. Here we consider 100 classes for binning the video lengths. There is a considerable variation
in the video lengths for the same cooking task. Because of this imbalance in the training data, the model makes more errors when predicting
video progression on videos that are either considerably longer or shorter than the average. Next to this, the large variety in appearance of
the videos makes the video progress prediction challenging.


