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Abstract

Visual similarity discovery (VSD) is an important task
with broad e-commerce applications. Given an image of
a certain object, the goal of VSD is to retrieve images of
different objects with high perceptual visual similarity. Al-
though being a highly addressed problem, the evaluation
of proposed methods for VSD is often based on a proxy of
an identification-retrieval task, evaluating the ability of a
model to retrieve different images of the same object. We
posit that evaluating VSD methods based on identification
tasks is limited, and faithful evaluation must rely on expert
annotations. In this paper, we introduce the first large-scale
fashion visual similarity benchmark dataset, consisting of
more than 110K expert-annotated image pairs. Besides this
major contribution, we share insight from the challenges we
faced while curating this dataset. Based on these insights,
we propose a novel and efficient labeling procedure that can
be applied to any dataset. Our analysis examines its limita-
tions and inductive biases, and based on these findings, we
propose metrics to mitigate those limitations. Though our
primary focus lies on visual similarity, the methodologies
we present have broader applications for discovering and
evaluating perceptual similarity across various domains.

1. Introduction
Visual similarity measures the perceptual agreement be-

tween two objects based on their visual appearance [50].
Two objects can be similar or dissimilar based on their
color, shape, size, pattern, utility, and more. In fact, all of
these factors and many others take part in determining the
degree of visual similarity between two objects with varying
importance. Therefore, defining the perceived visual simi-
larity based on these factors is challenging. Nonetheless,

* Equal contribution.

Figure 1. Disagreements between visual similarity and identifica-
tion. Top: Two images associated with the same object, exhibiting
low visual perceptual similarity. Bottom: Two images of two dif-
ferent objects, exhibiting high visual perceptual similarity.

learning visual similarities is a key building block for many
practical utilities such as search, recommendations, etc.

Most existing methods for VSD are based on an identifi-
cation retrieval task - given a query image of an object, the
identification task deals with retrieving images of an iden-
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tical object taken under various conditions, such as differ-
ent imaging distances, viewing angles, illuminations, back-
grounds, and weather conditions e.g., [69, 66]. In fact, per-
formance evaluation of image retrieval tasks is commonly
gauged on identification-based classification metrics.

Identification and verification tasks [61, 14, 23, 1, 5, 60]
are in fact highly related to VSD, as any object is most
similar to itself. Nevertheless, these two tasks are not the
same (see Fig. 1). Moreover, theoretically, a model that
was trained for identification can obtain perfect results on
the identification metrics, by retrieving other images of the
same product followed by images of completely dissimilar
products.

An additional difficulty with learning identification as a
proxy to similarity is simply the fact that multiple images
of the same product are often unavailable. Furthermore,
even when multiple images of the same product do exist,
the images often do not conform with visual similarity, as
illustrated in the upper row in Fig. 1.

In order to mitigate these difficulties, auxiliary informa-
tion can be utilized. For example, tags [49, 11, 6, 7, 13],
metadata [8, 9, 45, 46, 30], collaborative-filtering infor-
mation [36, 10, 37], or explicit compatibility data from
users [32], were all employed in order to learn better visual
similarities. However, such auxiliary information is often
unavailable, and even when it is, it may not be a faithful
proxy for perceived similarities.

Ultimately we acknowledge that any proxy approach has
its limitations and that the only faithful evaluation of vi-
sual perceptual similarity must rely on the annotations of
human domain experts. However, employing such experts
is time-consuming and expensive, and there was no publicly
available dataset prior to this study. Thus, visual similarity
models still rely on proxy evaluations, mostly the identifi-
cation task, despite the aforementioned limitations.

In this work, we address the challenge of discovering,
curating, and evaluating visual similarity. We developed the
Efficient Discovery of Similarities (EDS) method - a novel
scheme for efficiently collecting feedback from human do-
main experts. By employing EDS we were able to label
more than 110K image pairs which we release, as part of
this paper, to serve as the first large-scale benchmark for
evaluation of VSD models.

Our contributions: (1) We put a spotlight on the chal-
lenge of evaluating methods for VSD. We differentiate be-
tween the task of VSD and the identification task and stress
the need for a true dataset of visual similarities. (2) We
analyze the difficulty of naively labeling a dataset, and pro-
pose an efficient procedure for VSD, with proper evalua-
tion metrics. The proposed method and metrics can be uti-
lized for discovery and evaluation of perceptual similarity
in other application domains. (3) Equipped with the pro-
posed procedure, we curate the first large-scale visual simi-

Figure 2. Image-pair similarity defined using five tiers of granu-
larity levels. The innermost tiers are the most restrictive and well-
defined, and the outermost tiers are less restrictive and subject to
the definition of “instance” and “category”. The orange (green)
area corresponds to the scope of VSD (ISC21).

larity benchmark for the fashion domain, consisting of more
than 110K labeled image pairs. This dataset enables true
evaluations of perceived similarity and would help expedite
further research in visual similarity and discovery. (4) We
provide an extensive evaluation comparing pretrained and
finetuned models for both closed-catalog and wild queries.
(5) Finally, we discuss and demonstrate the disadvantages
of supervised methods for VSD.

2. Related work

In this paper, we address the challenge of evaluating
methods for VSD. VSD is part of a fundamental com-
puter vision task termed “content-based image retrieval”
(CBIR)1, which involves ranking a catalog of images ac-
cording to their similarity to a given query.

Since similarity is subjective and depends on the appli-
cation, evaluation of CBIR methods is a longstanding chal-
lenge [28]. This challenge was recently addressed in the
Image Similarity Challenge at NeurIPS’21 (ISC21) [27]. In
[27] the authors defined similarity using a 5-tiers granular-
ity scheme. This scheme, taken from [27], is presented in
Fig. 2. The scope of [27] corresponds to the green area in
Fig. 2. Since the objective of VSD is to retrieve images of
different objects with high visual perceptual similarity, the
scope of VSD corresponds to the orange area.

Existing methods for VSD [19, 64, 55, 57, 31, 67, 24]
are often evaluated using the inner tier, marked by the gray
color. The same practice is also common in the fash-
ion domain. Existing methods for fashion retrieval tasks
[31, 37, 41, 21, 52] are evaluated based on the ability to
identify whether a pair of images correspond to the same
instance or not. This evaluation is often carried out using
publicly available datasets: DeepFashion [43], variations of

1https://en.wikipedia.org/wiki/Content-based image retrieval



Street2Shop [42, 31, 65], and DARN [37]. In these datasets,
each instance is associated with multiple images, taken un-
der various conditions. For example, catalog images (in-
shop) at different viewing angles, illuminations, and worn
by different human models, or even images taken by cus-
tomers (wild images). Since two different instances might
exhibit high visual perceptual similarity, this evaluation is
prone to false negatives. However, evaluation based on the
category (the orange tier in Fig. 2) is prone to false positives
since two images of objects from the same category are not
necessarily visually similar.

This trade-off can be mitigated by utilizing domain ex-
perts. In [64], the authors proposed an annotations proce-
dure based on popular text queries from the Google image
search engine. However, this dataset is not oriented for
the fashion domain, and their approach can not be applied
to offline datasets. In [58], the authors curated a fashion-
expert annotated dataset for evaluation of their proposed
VSD model, however, this dataset is proprietary. To the best
of our knowledge, the benchmark in this work would be the
first large-scale benchmark for VSD in the fashion domain.

Connection to classic Information-Retrieval. The
seminal Cranfield experiments were a series of information
retrieval (IR) experiments conducted in the late 1950s and
early 1960s at Cranfield University in England [20]. These
experiments were among the first large-scale, systematic
evaluations of IR systems entailing the use of test collec-
tions of documents and queries, with the goal of evaluat-
ing the effectiveness of different IR systems in retrieving
relevant documents in response to user queries. Relevance
judgments were made by domain experts based on topical
similarity in which documents and queries were carefully
designed to represent the types of information retrieval tasks
that might be encountered in real-world applications. Dif-
ferent IR systems were tested based on various measures
such as precision, recall, and the F-measure. The Cranfield
experiments helped to establish the importance of certain
IR techniques, such as relevance feedback and query expan-
sion. Retrieval test collections have also been employed by
other researchers for system performance comparison using
relevance judgments, as noted in [25, 63].

Today, a comprehensive analysis of contemporary
datasets is often impractical due to their large size. Con-
sequently, pooling techniques were developed for generat-
ing ground truth candidates. Pooling involves the selec-
tion of a fixed set of relevant documents for a given query,
which are then used as the basis for computing evaluation
metrics such as precision, recall, and the F-measure. De-
spite its effectiveness, pooling often results in incomplete
labeled sets, potentially excluding relevant candidates that
were not considered for the ground truth. This causes a bias
that penalizes models that retrieve good candidates which
were not shown to the annotators during labeling [70]. To

address this issue, evaluation metrics were developed that
accommodate incomplete relevance assessments [15, 47].
Our work relates to these works, as we address the issue of
model bias resulting from incomplete labeling. To alleviate
this bias, we introduce a metric to prioritize relative ranking
over absolute ranking. Our approach builds upon similar
techniques from the field of information retrieval that suc-
cessfully handle incomplete information [16].

3. Efficient discovery of similarities
Let D be a dataset of images. Let Q ⊂ D be a set

of queries (for discussion, we assume Q is a subset of D,
while in the general case, Q and D can have partial or no
overlap). Let A = {(q, c)|q ∈ Q, c ∈ D−q} be the set of
query-candidate image pairs, where D−q := D \ {q}. The
general similarity labeling task is labeling the similarity for
all image pairs in A. Accordingly, the output of the label-
ing procedure is the set Y = {yqc|(q, c) ∈ A}. Here, we
assume binary labels, i.e., either the candidate image is sim-
ilar to the query or not, and therefore, for all (q, c) ∈ A it
holds that yqc ∈ {0, 1}. Thus, an image-pair (q, c) is treated
as positive (negative) if yqc = 1 (yqc = 0).

In this work, we assume the pairs in A are labeled by a
group of E experts, and that each pair must be reviewed by
all experts. While the final decision regarding a label can be
made according to various heuristics, in our labeling proce-
dure, we followed a simple majority voting (where ties re-
sult in a negative label). Although more advanced methods
are possible, they are outside the scope of this study.

In what follows, we consider two naive approaches for
labeling image pairs in A. These approaches illustrate the
main challenge that motivated our proposed EDS method.

3.1. Brute-force labeling

The brute-force naive approach simply calls for hu-
man domain experts to label all pairs in A. This method
costs O(|Q||D|) labeling operations per expert, and be-
comes both prohibitive in time and expensive as |D| in-
creases, hence impractical: For example, consider a cata-
log of |D| = 10, 000 candidates and |Q| = 1, 000 queries,
which results in |A| ≈ 107 labeling operations per expert.
Assuming the average time for labeling a pair is 15s, the
total time to accomplish the labeling by a single expert that
works 24/7 is more than 4.5 years. Of course, one could dis-
tribute the pairs in A among the E experts to scale up the
procedure by a factor of E, but then each partition will be
annotated by a different expert which violates the require-
ment that each pair would be reviewed by all experts.

3.2. Random sample labeling

The main difficulty stems from the need to discover pos-
itive pairs in A, which are extremely rare compared to the
negative pairs. Denote p as the fraction of positive pairs in



A. Then, the smaller the value of p, the longer it takes to
discover a positive pair on average. Continuing the previous
example, if we assume that the average number of positives
per query is k = 10, the total number of positives in A is
10, 000, and p ≈ 0.001 (the probability of sampling a pos-
itive pair at random). Therefore, the expected number of
trials needed to obtain h positives is 1, 000h. For example,
we should expect the expert to annotate 100, 000 pairs to
discover 100 positives (∼17 days of 24/7 work).

3.3. The EDS method

In this section, we present the EDS method that enables
the efficient discovery of positive pairs. EDS utilizes a set
of vision models to form a set S of pairs suspected to be
positive. These suspects are then reviewed by experts that
determine whether each suspected pair is indeed positive.
The main assumption behind EDS is that the models can
serve as a proxy similarity measure on the pairs in A, and
hence the produced set S is likely to contain a fraction of
true positives that are much higher than p (Sec. 3.2). In
what follows, we describe the method in detail, where we
follow the same notations and setup as above.

Let M be a set of VSD models. We assume each
model m ∈ M is equipped with a similarity function
fm : X × X → R, where X is the image domain. We de-
fine Rm(q, c) as the (zero-based) rank of the image c w.r.t.
the query q, according to similarity scores produced by the
application of fm to the pairs in A. Then, we define the
positive suspects set as Sk = ∪m∈MSm

k , with:

Sm
k = {(q, c)|Rm(q, c) < k, (q, c) ∈ A}. (1)

Namely, Sm
k contains all (q, c) for which c is ranked in

the top-k images w.r.t. q ∈ Q, according to the model
m, and Sk is the union of the |M | sets. Note that |Sk| ≤
|M ||Q|k (and |Sk| = |Q||M |k if Sm

k are disjoint). There-
fore, the cost of a human domain expert to annotate all the
pairs in Sk is O(|Q||M |k), whereas in the case of the brute-
force method (Sec. 3.1) the cost is O(|Q||D|). Finally, the
output of EDS is an annotated set Yk = {yqc|(q, c) ∈ Sk}.

In the common case, we get that |M |k ≪ |D| hence
EDS offers a significant reduction in labeling cost in large
datasets. For example, in our experiments on the DF in-
catalog dataset, we had |D| = 52, 712, |Q| = 2, 000,
|M | = 6, and k = 6. In this case, the labeling proce-
dure with EDS is ∼1,400x faster (and cheaper) than with the
brute-force method. Yet, by employing EDS we introduce
other challenges: (i) the number of annotated examples in
the output set Ak is considerably less than the number of
annotated examples in the case of the brute-force method
A (ii) The annotated set Ak is biased towards the models
that participated in the construction of Sk. In Sec. 3.4, we
address these limitations in detail.

3.3.1 Estimation of p

We define pmk as the fraction of positive pairs in Sm
k . As ex-

plained above, a prominent assumption in EDS is that the
top-ranked candidates (by each model) produce positives
with high probability, i.e., pmk ≫ p, and therefore, pk ≫ p,
where pk is the fraction of positive examples in Sk. For ex-
ample, in the DF in-catalog dataset, we had |Sk| = 54, 170
(after removing duplicate candidates suggested by differ-
ent models). Among them, 45, 920 were labeled as posi-
tive pairs, resulting in pk = 0.848. In addition, we can
place a lower bound on the fraction of positives in A using
pLB = 45,920

|A| = 0.00045 ≤ p.
One can estimate p by random sampling of pairs from

A. Given a budget of b labeling operations, we can sample
b pairs from A, and annotate them. Then, we can compute
the Maximum A-Posteriori (MAP) estimate for p by using
a uniform prior Up(pLB , 1) together with a Binomial like-
lihood Bp(a; b), where a is the number of pairs that are an-
notated positive by the expert (out of the sample of b pairs).
One can show that the MAP estimate is given by:

p̂ = max(pLB ,
a

b
). (2)

Applying Chebyshev’s inequality and setting b = k/ϵ
yields:

P (|p̂− p| ≥ ϵ) ≤ p(1− p)

bϵ2
≤ p

bϵ2
(3)

Assuming p < ϵ ≪ 1 and we want to bound the error with
probability q, we need to use b = 1/ϵq.

In order to estimate the improvement obtained by EDS
over the random sampling method in terms of positive dis-
covery rate, we randomly sampled b = 2, 000 pairs, anno-
tated them with the experts, and obtained a = 2. Accord-
ingly, for the random sampling method from Sec. 3.2, we
estimate p with p̂ = 2

2,000 = 0.001. Therefore, we conclude
that in the specific case of the DF dataset, even if the error in
our estimate is by a factor of 8 from the true value of p, the
positive discovery rate with our EDS method (pk = 0.848)
is still 100x higher than with the random sampling method.

3.4. EDS limitations

The first limitation of EDS is that it does not recover all
the positive labels. However, all methods that label only a
subset of query-result pairs share this limitation. Hence, it
cannot be avoided when annotating any real-world data, for
which the brute-force approach is infeasible.

Model bias. A second limitation of EDS concerns the
fact that Ak contains labels for the image pairs in Sk. As
a result, the examples in Sk are heavily biased towards the
models in M (recall these models participated in the cre-
ation of Sk). The bias in the dataset will lead to a bias in



standard information retrieval metrics (e.g., Hit-Rate, Mean
Reciprocal Rank, Normalized Discount Cumulative Gain,
etc. [62]). This bias can be especially prominent if Ak is
used to evaluate the performance of any model m′ /∈ M
that did not participate in the creation of Sk. To better un-
derstand why, let Sm′

k be the set of image pairs suggested by
m′ (as defined in Eq. 1), and assume that (1) Sm′

k ∩Sk = ∅,
(2) all image pairs in Sm′

k would be assigned positive la-
bels if they were to undergo expert evaluation, and (3) Hit-
Rate is used for evaluation. Since the evaluation set is Sk,
the top-k suggestions produced by m′ won’t have labels.
When computing the Hit-Rate we can either consider these
suggestions negative or skip them, but both options lead to
an unfair evaluation. A naive solution for the bias prob-
lem would be to run the labeling procedure for each newly
added model. However, this approach is impractical, as it
does not scale, and requires access to the same experts that
labeled the original models. In the next section, we propose
metrics that mitigate the bias and enable the utilization of
Sk for a fair evaluation of any model m′ /∈ M .

4. Effective evaluation measures

In this section, we propose methods and metrics for fair
evaluation w.r.t. the models that are not in M . To this end,
we propose the area under the receiver operating curve
(ROC-AUC) as an evaluation measure that quantifies the
ability of the model to rank positive pairs higher than neg-
ative pairs, regardless of their absolute rank. Specifically,
ROC-AUC measures the probability that a random positive
is ranked higher than a random negative. In what follows,
we explain how to compute the ROC-AUC metric in the
context of our work.

Let Pq = {c|yqc = 1} be the set of candidates labeled
as positives w.r.t. the query q. Let Nq = {c|yqc = 0} be
the set of candidates considered as negatives. Note that we
consider negative candidates that were explicitly labeled as
negatives. Furthermore, these negatives are ranked at the
top-k, and therefore can be treated as hard negatives that
are more challenging (at least to the model that suggests
them). However, it is also possible to extend Nq with a ran-
dom sample of candidates that do not belong to Nq . While
the labels for these candidates are unknown, the probability
of each randomly sampled candidate being a true negative
is very high (recall that in DF our estimate for p was 0.001).

The ROC-AUC for the model m on the query q is:

ROC-AUCm
q =

1

|Pq||Nq|
∑
c∈Pq

∑
c′∈Nq

1[Rm(q, c) < Rm(q, c′)] (4)

where 1[·] is the indicator function. Given a set of queries

Benchmark # of queries # of annotated pairs

Discovery 2,000 54,170
Wild 2,000 64,046

Table 1. Ground-truth statistics.

Q, the ROC-AUC for the model m on Q is computed by:

ROC-AUCm
Q =

1

|D|
∑
q∈Q

ROC-AUCm
q (5)

The motivation for using ROC-AUC is as follows: given
that we trust in the generated labels Ak, these labels are
treated as a faithful ground truth. Hence, a good model is
expected to be able to differentiate between the positive and
negative pairs, whether it belongs to M or not. In contrast
to metrics that focus on the absolute rank (e.g., HR, MRR,
etc.), the ROC-AUC metric focuses on the relative rank (of
the positive w.r.t. the negative). Therefore, the ROC-AUC
should not favor models that participated in the ground truth
generation procedure over models that did not. For exam-
ple, consider the model m′ ∈ M discussed above. Accord-
ing to assumptions (1) and (2) from Sec. 3.4, all image pairs
in Sm′

k would be assigned positive labels if were to go un-
der expert evaluation. Therefore, m′ will completely fail in
the HR test, however in order to fail in the ROC-AUC test,
m′ should rank negatives from Sk above the positive ones.
In other words, the ROC-AUC metric is agnostic to the fact
that the top-k suggestions by m′ are not labeled, and will
punish m′ only if it ranks negatives above positives.

5. VSD benchmarks
The proposed benchmarks are based on the DeepFash-

ion (DF) [43] dataset. DF contains over 800, 000 images
of fashion items. These images include both ”in-shop” im-
ages that display clothing items worn by models in a clean
environment, as well as images taken by consumers in the
wild. The benchmarks utilize two subsets of the DF dataset.
The first subset, named In-shop Clothes Retrieval (ICR),
contains 52, 712 images of clothes worn by models. ICR
images exhibit a variety of poses and scales. The second,
named Consumer-to-shop Clothes Retrieval (CCR), con-
tains 239, 557 images of clothes taken by consumers (wild
images). Accordingly, we propose two benchmarks: (i)
Closed-catalog discovery. (ii) Image in the wild discovery.

5.1. Closed-catalog discovery

In the Closed-catalog discovery benchmark, we build
upon the ICR dataset, where the query images are taken
from the catalog. The task is to retrieve images associated
with different objects, which are similar to the item in the
query image. In the Closed-catalog discovery benchmark,
2, 000 query images were selected (denoted by Q), and
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Figure 3. Closed catalog query-candidate pairs. A positive query-
candidate pair is presented in the upper row, while a negative
query-candidate pair is presented in the lower row.

|M | = 6 VSD models were used throughout the EDS pro-
cedure (more details about the vision models can be found
in Sec. 6.1). Specifically, ∀q ∈ Q, and m ∈ M we con-
struct the set Sm

k (as in Eq. (1)) using k = 6. Our final
set Sk = ∪m∈MSm

k , comprised of 54, 170 query-candidate
image pairs, was evaluated by human domain experts that
generated the ground truth (GT) labels of this benchmark.

5.2. Image in the wild discovery

This benchmark focuses on the discovery of perceptu-
ally similar objects where the query images were taken in
the wild. In this setting, we are given a “wild” query image
of a clothing item and the task is to retrieve images of per-
ceptually similar items from the ICR dataset. To this end,
we adopt wild images from the Consumer-to-shop Clothes
Retrieval (CCR) Benchmark dataset and match them with
candidates from the ICR dataset. Note that both datasets
are associated with significantly different distributions since
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Figure 4. Image in the wild query-candidate pairs. A positive
query-candidate pair is presented in the upper row, while a neg-
ative query-candidate pair is presented in the lower row.

the ICR dataset contains ”in-shop” images and the CCR
dataset incorporates images in the wild. A total of 2, 000
query images from the CCR dataset were filtered, and the
EDS procedure was applied to generate ground truth anno-
tations of image pairs, consisting of query-candidate image
pairs from the CCR and ICR datasets, respectively. In total,
this benchmark consists of 64, 046 query-candidate image
pairs. Since objects are often seen with suboptimal light-
ing, angles, resolution, or cluttered indoor backgrounds, this
benchmark presents additional visual challenges compared
to Closed-catalog discovery. Importantly, due to the signif-
icantly different characteristics of the query and candidate
images, this benchmark imposes a cross-domain VSD task
which can emphasize the generalization and robustness of
the underlying tested models.

6. Experiments
This section answers the following research questions:



• RQ1: How effective and fair is our evaluation?

• RQ2: Does labeled supervised training improve VSD?

• RQ3: Recognition vs. discovery. How do they differ?

We will begin by describing the experimental settings, fol-
lowed by answering the above three research questions.

6.1. Baselines

Our pretrained baselines set M was assembled by pow-
erful and successful image classification models from the
past few years. Furthermore, the pretraining schemes that
the models were pretrained on are highly diverse, resulting
in a wide range of predictions. Specifically, we adopt: Ar-
gus (AS) an open source ResNext101 32 × 8d pretrained
on Bing web data2, DINO [18], self-supervised pre-trained
on ImageNet1K, BEiT [3], pretrained on ImageNet21K [56]
and CLIP [54] image encoder, pretrained on web-scale data.

We further consider finetuned versions of the pretrained
backbones, where the finetuning is performed using (i)
identity labels, i.e. the gallery item’s ID (denoted by ID),
(ii) category labels, i.e., the gallery item’s category (de-
noted by CAT), or both. Accordingly, a finetuned version
of model X is denoted by X-ID, X-CAT, or X-ID+C (if
both ID and CAT information sources were used to finetune
X). Specifically, the optimization w.r.t. to each information
source (ID and/or CAT) is performed by placing a new lin-
ear classification head (on top of the backbone) that matches
the output dimension (number of IDs or categories), and
the model’s parameters are optimized w.r.t. the categorical
cross-entropy loss. The exact optimization details are pro-
vided in the supplementary material (SM).

6.2. Candidates diversity

In Tab. 2, we present the candidates overlap for each pair
of GT generators. This analysis demonstrates the diversity
of candidates produced by the different GT generators, with
an average pairwise overlap of ∼10% (average of the num-
bers in Tab. 2). Moreover, the maximum number of distinct
candidates per query is 30 (as each GT generator can con-
tribute its top-5 candidates at most). We found that after
candidate deduping, the average number of candidates per
query is 24.4 (a relatively low duplication rate of ∼18%).

6.3. Evaluation metrics (RQ1)

Hit Ratio at k (HR@k) [40]. HR@k is the percentage
of the predictions made by the model, where the true item
was found in the top k items suggested by the model. A
query-candidate example is scored 1 if the candidate item is
ranked among the top k predictions of the model, otherwise
0. This is followed by the average of all query-candidate
examples in the test set.

2https://pypi.org/project/argusvision/

AS DINO BEiT CLIP ID ID+C
AS - 15.0 16.5 11.2 3.8 3.9
DINO 15.0 - 27.6 13.2 4.8 5.1
BEiT 16.5 27.6 - 17.7 5.8 6.2
CLIP 11.2 13.2 17.7 - 4.3 4.6
ID 3.8 4.8 5.8 4.3 - 15.8
ID+C 3.9 5.1 6.2 4.6 15.8 -

Table 2. Pairwise overlap (%) between GT generator candidates in
the closed-catalog task. ID and ID+C have been finetuned with the
Argus backbone.

Mean Reciprocal Rank at k (MRR@k) [53]. This
measure is defined as the average of the reciprocal ranks
considering the top k prediction ranked items. The main
difference between MRR and HR is that the former takes
into account the order in which predictions are made.

The area under the receiver operating characteristic
curve (ROC-AUC) [29]. It is the metric proposed in Sec. 4.
ROC-AUC measures how well the model distinguishes pos-
itive from negative data. By varying a threshold, the ROC
curve plots true positive rates against false positive rates.

The area under the precision-recall curve (PR-AUC)
[22]. Similar to ROC-AUC, PR-AUC is a threshold-
independent metric that calculates the area under a curve.
In this case, the curve is defined by a trade-off between pre-
cision and recall (the precision as a function of the recall).

It is important to note that we differentiate between
two types of AUC: (i) Micro-averaged AUC, computing all
query-candidates scores (ii) Macro-averaged AUC, comput-
ing the query-level AUC, then averaging the AUC results
over all queries (same as in Eq. (5)).

6.3.1 AUC for bias reduction

For the purpose of understanding how robust the AUC met-
ric is to the choice of the annotated set, a leave-one-out ex-
periment was conducted. By using a subset of the GT that
does not include predictions from a single model m ∈ M at
a time, the leave-one-out experiment evaluates all the base-
lines in M . As an example, in the first evaluation, the GT
was a subset containing all the predictions from our base-
lines except for Argus. This allows us to see how a model is
influenced by the removal of its predictions from the GT. In
Tab. 3 we present the ROC-AUC average micro and macro
results over all possible subsets, as well as the spearman
correlation (SC) results of each subset of the GT with the
full set of pairs. The first column in Tab. 3 indicates the
relevant subsets that were removed. The SC results show a
strong correspondence between each subset of the GT and
the full set of the GT, emphasizing the robustness of the
AUC metric. Additionally, the hierarchy of the models re-
mains the same as in Tab. 5, indicating the AUC robustness.

https://pypi.org/project/argusvision/


Metric Micro ROC-AUC Macro ROC-AUC

AUC SC p-value AUC SC p-value

AS 62.6±1.8 0.83 0.042 78.5±1.7 0.75 0.083
DINO 69.9±1.9 0.94 0.004 82.9±1.1 0.93 0.007
BEiT 75.2±0.9 0.94 0.004 86.0±0.8 0.93 0.007
CLIP 67.7±1.8 0.94 0.004 80.9±1.7 0.93 0.007
AS ID 62.2±1.8 0.83 0.042 78.7±1.5 0.70 0.124
AS ID+C 65.4±1.2 1.00 0.000 80.5±0.9 0.93 0.007

Table 3. Leave-one-out robustness ROC-AUC closed-catalog discovery re-
sults. The p-value is computed with respect to a null hypothesis of zero SC.

Metric HR MRR

@5 @9 @5 @9

AS 15.2 10.9 20.5 17.6
DINO 26.0 18.3 34.5 29.5
BEiT 37.2 26.4 47.3 40.7
CLIP 25.2 18.1 32.7 28.2
AS ID 99.9 99.9 91.8 83.2
AS ID+C 99.8 99.9 89.4 80.8

Table 4. Identity recognition performance. Bold is best.

ROC-AUC PR-AUC

HR MRR Micro Macro Micro Macro

Method @5 @9 @5 @9 Anno. Neg Anno. Neg Anno. Neg Anno. Neg

G
T

G
en

er
at

or
s Argus 82.5 52.9 84.5 71.3 62.7 73.9 77.1 81.9 91.7 94.1 92.2 95.6

DINO 91.9 64.0 93.1 80.9 70.4 76.8 82.2 86.8 94.3 94.9 94.2 97.0
BEiT 92.3 63.2 93.4 80.6 75.5 81.6 85.4 88.8 95.4 96.1 95.1 97.4
CLIP 81.5 52.7 84.2 71.4 67.8 74.1 79.7 83.1 93.2 94.3 92.9 95.9
Argus ID 84.3 51.6 86.0 71.5 62.3 76.8 77.1 83.4 91.9 95.2 92.5 96.0
Argus ID+C 86.8 52.5 88.9 73.6 65.4 76.6 79.1 83.0 92.7 95.1 93.3 95.8

N
ew

m
od

el
s

Argus CAT 9.0 7.23 11.0 9.9 67.5 65.9 79.9 83.0 92.7 95.1 93.3 95.8
DINO CAT 4.3 3.6 4.7 4.3 71.0 68.3 81.6 76.7 94.0 91.6 94.1 93.4
BEiT CAT 38.7 28.9 47.0 41.2 72.9 71.9 83.7 83.4 94.7 95.7 94.9 96.0
DINO ID 32.3 25.7 38.6 34.4 68.8 83.3 81.7 87.6 93.7 96.2 94.4 96.9
BEiT ID 34.9 27.0 41.8 37.1 71.0 81.1 82.9 88.0 94.3 96.5 94.9 97.0
DINO ID+C 32.4 25.0 39.2 34.7 71.9 80.7 83.1 86.2 94.6 96.2 94.4 96.9
BEiT ID+C 34.6 26.3 42.1 37.1 72.3 80.6 83.3 86.0 94.7 95.7 95.0 96.5
DINO FT 88.2 58.5 90.0 76.9 69.2 80.5 81.1 86.6 93.5 95.8 93.5 96.9

Table 5. Discovery performance. Bold denotes the best results.

6.4. Performance comparison (RQ2)

We present a comprehensive comparison of all the base-
lines which includes both HR@k and MRR@k metrics as
well as the robust AUC metrics. In addition, we computed
the AUC metrics in two different ways: (i) using negatives
annotated by our human domain expert annotators, and (ii)
using negatives randomly selected from a set of the top 100
to 500 predictions of the baseline models. The second sce-
nario assumes that there are only negative predictions af-
ter the top 100 predictions of each model. The comparison
also includes the evaluation of GT generator models, vari-
ous versions of supervised finetuning (ID and/or CAT), and
a finetuned DINO with its own self-supervised objective.

In order to demonstrate that even without being a genera-
tor, it is possible to obtain good discovery results, in the SM
we provide results for 8 additional models on our annotated
GT. We evaluated supervised models: ResNet50 [35] and
ConvNext [44] pretrained on ImageNet1K, ViT B-16 [26]

pretrained on ImageNet21K and SwAG [59] weakly super-
vised pretrained through hashtags. Self-supervised models:
MoCo [34], SwAV [17], MAE [33], and NoisyStud [68].

Closed-catalog discovery results. The closed-catalog
discovery task results are presented in Tab. 5. We observe
bias in HR@k and MRR@k metrics when analyzing mod-
els that were not included in the GT generation. Our con-
clusion is that HR@k and MRR@k are only relevant for the
baselines that generated the GT. It is also important to note
that there are some inconsistencies between the hierarchies
produced by HRR@k and MRR@k and those generated by
AUC. In particular, we note that Argus ID and Argus ID+C
improve the performance of the Argus backbone when it
comes to HR@k and MRR@k, but when it comes to AUC,
Argus ID actually degrades performance. Our analysis of
this behavior revealed that the AUC metrics penalize sig-
nificantly negative predictions that are top-ranked (i.e., pre-
dictions that are found to be negative by our human domain



ROC-AUC PR-AUC

HR MRR Micro Macro Micro Macro

Method @5 @9 @5 @9 Anno. Neg Anno. Neg Anno. Neg Anno. Neg

G
T

G
en

er
at

or
s Argus 55.5 33.2 56.1 46.3 71.0 72.5 75.0 81.7 60.0 89.7 68.5 92.3

DINO 54.0 33.5 55.0 45.9 70.8 72.9 75.1 84.0 60.5 89.1 68.3 93.3
BEiT 69.6 43.0 71.0 59.2 77.2 77.7 81.3 87.0 68.5 91.6 75.7 94.7
CLIP 12.3 9.9 14.4 13.0 59.0 60.7 67.7 74.9 50.6 84.1 63.0 89.0
Argus ID 8.8 5.4 8.9 7.4 38.8 54.3 41.4 66.7 33.8 81.0 44.7 84.8
Argus ID+C 5.1 3.5 5.1 4.4 39.7 52.4 41.4 64.5 34.1 79.3 44.3 83.1

N
ew

m
od

el
s

Argus CAT 0.8 0.7 0.9 0.8 46.2 53.7 49.3 65.1 39.7 79.7 50.3 84.0
DINO CAT 0.7 0.6 0.8 0.8 64.8 63.4 66.2 63.4 55.6 84.2 62.9 86.5
BEiT CAT 14.5 11.0 18.2 16.0 72.9 72.4 75.0 80.2 64.4 88.6 71.2 91.7
DINO ID 5.8 4.7 6.8 6.1 61.2 70.4 64.9 75.7 52.1 88.6 62.7 90.0
BEiT ID 13.7 10.6 16.3 14.5 72.4 76.4 74.4 81.6 64.1 91.1 71.2 92.4
DINO ID+C 5.2 4.2 5.9 5.4 62.0 69.3 65.2 75.4 53.2 88.0 63.1 89.7
BEiT ID+C 15.8 12.5 18.6 16.6 70.6 77.5 73.5 82.2 62.9 91.9 70.7 92.8
DINO FT 29.5 22.3 34.1 30.2 71.8 76.3 73.9 83.8 62.7 91.3 68.3 93.3

Table 6. Image in the wild performance. Bold denotes the best results.

expert annotators), whereas HR@k and MRR@k do not pe-
nalize significantly negative predictions. By using a nega-
tive sampling strategy for computing AUCs, we find that the
hierarchies are closer to those of HR@k and MRR@k.

Moreover, finetuning with ID was not found to be help-
ful, and in fact, degraded the results. However, while fine-
tuning with category labels resulted in a small performance
boost for Argus and DINO, it resulted in a performance de-
crease for BEiT. Considering this, we conclude that there
is a great deal of work to be done in this area, and in par-
ticular, finding a training scheme that improves the level of
similarity. We will, however, leave this for future research.

Image in the wild discovery results. We present the
image in the wild results in Sec. 6.3.1. In this setting,
as in the closed catalog, the HR@k and MRR@k metrics
are skewed towards the GT baselines, thereby misevaluat-
ing new models. Moreover, we found that supervised fine-
tuning approaches fall significantly behind their pretrained
counterparts, as evidenced by the significant degradation in
the AUC metrics in each of the backbones. As an example,
pretrained DINO results in 70.8% micro ROC-AUC, while
DINO CAT, DINO ID, and DINO ID+C result in 64.8%,
61.2%, and 62.0% micro ROC-AUC, respectively. Never-
theless, the finetuned version of DINO, with its own self-
supervised objective, results in a performance improvement
of 71.8% micro ROC-AUC. This may imply that finetuning
using supervised objectives results in a loss of generability.

6.5. Identification is not discovery (RQ3)

We present the results of the identity recognition task for
each baseline in Tab. 4. As can be seen, the supervised base-

lines with identity labels are essentially solving the task,
while the pretrained models perform significantly worse.
This result highlights the large difference between the iden-
tification task and the discovery task. The supervised base-
lines do not achieve the same level of performance as their
other models (e.g. BEiT and DINO) in the discovery task,
despite the fact that they solve the task of identification.

7. Conclusion
In this paper, we revisit the challenges of evaluating

methods for VSD. We demonstrated the limitations of the
common practice which is based on identification-retrieval
tasks, thereby motivating the need for utilizing domain ex-
perts’ annotations. We introduced a novel method for ef-
ficiently labeling a similarity dataset using human domain
experts. We discussed its limitations and proposed evalua-
tion metrics to mitigate them. We employed the proposed
method on the DF dataset and curated an annotated dataset
consisting of more than 110K image pairs. To the best of
our knowledge, this is the first large-scale benchmark for
evaluating VSD models in the fashion domain. We hope
that our work and the released dataset will expedite VSD re-
search. In the future, we plan to apply the proposed method
and metrics for discovery and evaluation of perceptual simi-
larity in other application domains such as natural language
understanding [38, 12, 4, 48] and audio analytics [2, 39, 51].
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Appendix

Efficient Discovery and Effective
Evaluation of Visual Perceptual Similarity:

A Benchmark and Beyond

A. Further evaluation
A.1. Additional models

In order to demonstrate that even without being a gener-
ator, it is possible to obtain good discovery results, we pro-
vide results for 8 additional pre-trained models on our anno-
tated GT in Tab. 7 and Tab. 8. We evaluated supervised top
models: ResNet50 [35] and ConvNext (CN) [44] pretrained
on ImageNet1K, ViT B-16 [26] pretrained on ImageNet21K
and SwAG [59] weakly supervised pretrained through hash-
tags. Self-supervised top methods: MoCo [34], SwAV [17],
MAE [33], and NoisyStud (NS) [68].

We observe that the results obtained by the newly added
models are on par with the GT generators (Tab. 1 in the
main paper). Specifically, SwAG produces SoTA perfor-
mance on the discovery task. An exception is MAE which
performs poorly compared to the other models. This can
be attributed to its necessity for finetuning with a non-linear
head before transferring to downstream tasks.

B. Optimization details
Our supervised finetuned baselines are complemented by

a linear classification head (at the top of the backbone) that
matches the dimension of the number of IDs and/or cate-
gories. By utilizing the attributed ID and/or category infor-
mation of each gallery item, we minimize the categorical
cross-entropy loss for 50 epochs. It is used with Adam op-
timizer, with weight decay of w = 5 ·10−5, and no momen-
tum. The size of the mini-batches is set to be 64.

HR MRR ROC-AUC PR-AUC

@5 @5 Micro Macro Micro Macro

RN50 26.5 30.9 67.4 80.7 93.4 93.6
MoCo 32.9 39.0 63.8 78.7 92.5 93.0
SwAV 41.0 48.0 63.9 79.0 92.6 93.1
MAE 13.3 17.0 59.6 77.1 91.1 92.5
CN 24.6 29.0 66.1 79.7 93.1 93.4
B-16 34.3 40.5 68.9 81.7 94.0 94.1
NS 24.0 28.6 69.0 82.2 93.8 94.2
SwAG 40.3 47.3 75.4 85.0 95.4 95.2

Table 7. Closed-catalog discovery performance.

HR MRR ROC-AUC PR-AUC

@5 @5 Micro Macro Micro Macro

RN50 6.0 6.7 64.4 71.1 54.3 66.0
MoCo 8.5 9.8 62.1 67.3 52.0 63.1
SwAV 8.3 9.6 62.4 68.1 52.1 63.5
MAE 0.6 0.7 47.4 51.7 39.8 51.7
CN 5.5 6.3 65.9 71.9 56.1 66.7
B-16 8.0 9.4 67.8 74.3 58.8 69.8
NS 9.0 10.4 70.8 76.5 62.0 70.5
SwAG 10.0 11.1 72.4 78.5 63.4 72.7

Table 8. Image in the wild discovery performance.


