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Abstract

State-of-the-art visual grounding models can achieve
high detection accuracy, but they are not designed to dis-
tinguish between all objects versus only certain objects of
interest. In natural language, in order to specify a partic-
ular object or set of objects of interest, humans use deter-
miners such as “my”, “either” and “those”. Determiners,
as an important word class, are a type of schema in nat-
ural language about the reference or quantity of the noun.
Existing grounded referencing datasets place much less em-
phasis on determiners, compared to other word classes such
as nouns, verbs and adjectives. This makes it difficult to de-
velop models that understand the full variety and complex-
ity of object referencing. Thus, we have developed and re-
leased the DetermiNet dataset 1, which comprises 250,000
synthetically generated images and captions based on 25
determiners. The task is to predict bounding boxes to iden-
tify objects of interest, constrained by the semantics of the
given determiner. We find that current state-of-the-art vi-
sual grounding models do not perform well on the dataset,
highlighting the limitations of existing models on reference
and quantification tasks.

1. Introduction

Humans combine visual and linguistic cues to perform
object localization, referencing and quantification tasks on
a daily basis. For example, when someone says “pass me a
cup”, we first locate any cups present, and then select one
cup based on other criterias, such as the nearest or cleanest
one. Deep learning models [5, 9, 10, 11, 16, 19, 29, 37, 39,
41] can localize object impressively to achieve the first part
of the task. However, the ability to deal with a variety of
complex referencing and quantification to achieve the sec-
ond part of the tasks has yet to be properly investigated.

*Equal contribution
1https://github.com/clarence-lee-sheng/

DetermiNet contains the dataset and code

A determiner is an English part-of-speech (word class)
that quantifies or references the noun following it. For in-
stance, the determiner in “my apple” versus “your apple”
takes reference from different owners. The number of ap-
ples being referenced differs for “some apples” versus “all
apples”. Such semantic differences are succinctly captured
by determiners, and not by other word classes.

Determiners like “a”, “the” and “my” are ubiquitous and
among the most common English words [1, 22]. Most chil-
dren learn to use determiners at a near-mastery level by 3
years of age [3, 6]. Since determiners play an important role
in the semantics of a phrase, they are distinctly classified in
natural language processing libraries [26, 35].

Unlike numerous nouns, verbs and adjectives, there are
only about 50 determiners in the English language [22].
Nevertheless, determiners can be highly complex, and a
hardcoded or fixed-rule approach to using or understand-
ing determiners simply will not work. For instance, take the
determiner “some” – in its simplest form, “some” refers to
a relatively small number or quantity. However, this can be
highly noun-specific and context-specific, e.g. the absolute
physical quantities for “add some salt” versus “drink some
water” are very different. Furthermore, determiners that de-
scribe ownership or possession, such as “my” and “your”,
are highly context-dependent and dynamic, as possession
can change on the fly, e.g. after handing over an object. In
general, there are many such subtleties and complexities for
determiners. Hence, a learning-based approach is needed,
along with suitable training data.

If state-of-the-art models could learn a schema of de-
terminers [33, 20, 34], it could facilitate flexible combina-
tion in novel contexts [21, 17, 28] and improve visual rea-
soning. However, existing vision-language models such as
CLIP [31] and BLIP-2 [23] do not capture the semantic or-
ganization of determiners well (see Supplementary Mate-
rial), and there is no visual grounding dataset that focuses
on Determiners. Existing grounded referring expression
datasets [4, 13, 15, 18, 27, 36, 38] exclusively focus on “the”
and “a”, making an unambiguous reference to a specific sin-
gle object. Some examples include “bottle with a lid”, “the
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blue truck in the bottom right corner” and “a bird that is
close to the baby in a pink shirt”. In other words, existing
datasets focus on the noun, verb and adjective aspects of
referring expressions, with “the” and “a” as the main deter-
miners used.

Hence, as a first step towards bridging this gap, we devel-
oped the DetermiNet diagnostic dataset [15] to benchmark
current state-of-the-art (SOTA) algorithms on their poten-
tial for learning determiner concepts. As with CLEVR [15],
good performance on DetermiNet is not an end-goal in it-
self, as knowledge of the dataset generation process can be
used to hand-craft toy models that will not generalize to
real-world determiner usage. The dataset uses a bounding
box localization task, set in a highly-constrained instruction
task context, and deals only with simplified determiner def-
initions. Even with all these simplifications, we find that
SOTA methods do not perform well.

DetermiNet contains 250,000 synthetic images and cap-
tions covering 25 determiners. The images are designed
with the premise of two avatars interacting at a table with
objects. The captions consist of a determiner followed by a
noun; the task context is that the viewer is asking the avatar
in the image to “pass me {determiner noun}”.

The task is to choose a set of objects that is consistent
with the given {determiner noun} pair. Examples are “those
apples” or “either orange”. Beyond just object detection,
the task tests the ability to understand the logical semantics
that define various determiners (see Fig. 1), such as select-
ing the correct number of requested objects. Simply return-
ing all or random instances of the queried noun would not
lead to high performance. Since the focus of DetermiNet is
on the logical schema of determiners, high levels of visual
realism and diversity are not crucial for benchmarking the
ability of algorithms to learn determiners.

Finally, we analyze the performance of SOTA models
that were pre-trained to perform visual grounding, so as to
see if SOTA deep learning models can learn to understand
the logical schema governing determiners.

In summary, our contributions are as follows:

1. We developed DetermiNet, the first large-scale diag-
nostic dataset covering the determiners word class,
with 250,000 examples across 25 determiners from all
four main types of determiners (Articles, Possessives,
Demonstratives and Quantifiers).

2. We show that the core task of learning determiners is
very challenging – even an oracle model struggles to
learn the determiner schema from a few hundred ex-
amples and requires a large dataset.

3. We find that state-of-the-art visually-grounded mod-
els show only moderate results on DetermiNet, hence
much more work is needed to perform well on the end-
to-end task.

2. Related work
2.1. Datasets

There has been substantial work in developing datasets
for visual question answering and referring expressions.
However, referring expression datasets which include ego-
centric points of view and focus on the full coverage of
the determiner class for referring is limited (see Table 1).
While a dataset like Flickr30k Entities [30] contains some
determiners, its coverage is narrow, with only 5.33% being
non-articles. Furthermore, the captions do not consistently
capture the semantics of the determiner. For example, al-
though one particular caption specifies “some people ...”,
all the people (i.e. many) are labelled instead of just a rel-
atively small number of people. Lastly, Flickr30k Entities
is used as a phrase grounding dataset rather than a referring
expression dataset, hence it is excluded from Table 1.

Table 1. Comparison of datasets for referring expressions [14]. A,
P, D, Q, Exo and Ego stand for Articles, Possessives, Demonstra-
tives, Quantifiers, Exocentric and Egocentric respectively.

Datasets A P D Q View Images Type
RefCOCO [18] Y N N N Exo 19,994 Real
RefCOCO+ [18] Y N N N Exo 19,992 Real
RefCOCOg [27] Y N N N Exo 26,711 Real
CLEVR-Ref+ [25] Y N N N Exo 99,992 Synth
YouRefIt [8] Y N N N Exo 497,348 Real
DetermiNet Y Y Y Y Ego 250,000 Synth

2.2. Tasks

A greater confluence between computer vision and nat-
ural language processing research has given rise to increas-
ingly complex mixed-modality tasks such as Visual Ques-
tion Answering (VQA) [4, 15, 36] and Referring Expression
Comprehension (REC) [18, 27, 38].

Both the datasets for VQA and REC are similar in that
the input comprises of images or videos, and a language
query is given as a caption. For VQA tasks, the model has
to respond to the query by classifying the correct answer out
of several potential choices. REC tasks are considered to be
a harder problem as the model has to respond by predicting
the bounding box coordinates or segmentation masks that
identify the object of interest. Nevertheless, both tasks re-
quire a combined understanding of language attributes such
as colour, shape and size, and visual attributes such as of
object classes and location.

The DetermiNet dataset is related to the REC task, where
the model needs to identify the object of interest either using
bounding boxes or segmentation masks. However, our task
defers from existing REC tasks in two ways.

Firstly, DetermiNet’s captions involve only two compo-
nents, a determiner followed by a noun, instead of descrip-
tive adjectives such as colours or shapes [15], or other nouns
such as people or objects [18]. This forces models to learn



Figure 1. Organization and characteristics of the 25 determiners in DetermiNet.

and reason using a new word class, instead of using visual
features and spatial representations pre-learned from other
visual datasets.

Secondly, REC tasks usually tests the identification of a
single object. However, DetermiNet requires models to pre-
dict multiple objects based on the query given, instead of
identifying only a single instance. For example, if an image
has three apples and two carrots and the query is “all ap-
ples”, the model needs to predict all three bounding boxes
instead of a single one. This is the biggest difference be-
tween DetermiNet and other REC tasks. DetermiNet allows
the development of models to identify multiple objects that
correspond to the determiner schema.

Since DetermiNet allows multiple solutions to be pro-
posed, there can also be multiple combinations of possi-
ble solutions. For example, given the same image with
three apples and two carrots, and the query “any apples”,
the total number of correct solutions quickly increases to
C(3, 1)+C(3, 2)+C(3, 3) = 7. The task evaluation metric
should not penalise possible solutions and should accom-
modate the model prediction accordingly. To our knowl-
edge, there are no REC or VQA tasks that support multiple
combinations of solutions.

2.3. Models

Existing visually grounded models can combine lan-
guage and visual modalities to achieve superior per-
formance on many downstream tasks such as those in
Grounded Language and Visual Question and Answering.

Dual Encoder models such as MDETR [16] and
GLIP [42] use an image and text encoder model to encode
the inputs before implementing a deep fusion or transformer
layer to train the model on the image caption pairs. Seq2Seq
models such as OFA [39] follow the likes of GPT [32] by
processing multimodal inputs using byte sequence repre-
sentation. A unified vocabulary approach to vision and lan-
guage tasks is taken to perform the grounding tasks. SOTA
models such as MDETR and OFA perform really well on
visual grounding tasks by achieving 87.5% AP and 92.0%
AP respectively on the RefCOCO dataset.

However, these models have been largely evaluated
against referring expression datasets that are dependent on
the spatial and visual attributes of objects. Hence, a more
challenging dataset is needed to determine if these SOTA
models are robust to solve language and egocentric-based
object referencing, like in natural language.



3. The DetermiNet dataset
DetermiNet is the first visuo-linguistic dataset based on

the determiners word class. Fig. 1 describes our determiner
schema that describes which object and how many of those
objects should be selected. The dataset was generated syn-
thetically using this schema and focuses on the referencing
and quantification of noun phrases. Determiners are largely
used from an egocentric perspective, and their properties
requires models to perform deeper and more complex rea-
soning to accomplish the visual grounding task. Careful
curation of the dataset was conducted to account for these
complexities.

To provide a comprehensive coverage, our dataset in-
cludes all four main types of determiners [2, 22], namely:
– Articles: identify nouns which the speaker is referring to
– Possessives: signify ownership of the noun
– Demonstratives: isolate nouns that are being referred to
– Quantifiers: describe the amount of the referred noun

3.1. Dataset design and construction

DetermiNet is a synthetically generated dataset based
on an end-to end-pipeline developed in Unity. Scene and
phrase generations were done through predefined scene
configurations based on the scene chart. Since the logic
governing determiners is unrelated to the level of visual re-
alism, DetermiNet follows the approach of synthetic data
with visual simplicity [12, 15, 24, 40]. For example,
CLEVR [15] and CLEVRER [40] use only 3 shapes, 2 ma-
terials and 8 colors; the background is uniform.

3.2. Dataset statistics

DetermiNet has a comprehensive coverage of 25 deter-
miners. We generated 10,000 image-caption pairs per de-
terminer, totaling 250,000 samples. We describe the break-
down of our train, test, and validation splits in Table 2.

Table 2. Statistics for train, test and validation splits
Splits Samples Objects Ground truth b-boxes
Train 175000 2799790 460200
Validation 25000 399654 66023
Test 50000 799756 131460

In total, our dataset includes a variation of 15 object
classes, including 5 countables starting with consonant
sounds (e.g. “a lemon”), 5 countables starting with vowel
sounds (e.g. “an apple”) as well as 5 uncountable sub-
stances (e.g. “some grape juice”). Ground truths are de-
termined by the object which the determiner is referring
to. This referred object will then be labelled as part of the
ground truth annotations (Fig. 2). Variations indicate the
number of different permutations of the object, while the
number of objects spawned indicate the possible count of

that particular item spawned in the scene. A summary of
the scene and object variations is shown in Table 3.

Table 3. Scene variations
Object Variations No. spawned in scene
Referred objects 15 1-9
All objects 15 10-20

Countables (consonant) 5 1-20
Countables (vowels) 5 1-20
Uncountables 5 1-20

Trays 2 2
Tables 2 2
Tray positions 3 -
Camera positions 3 -

3.3. Scene generation and ground truth annotation

DetermiNet is based on the interaction of two avatars at a
table. We randomly spawn the positions of objects, as well
as generate different perspectives. Configuration parame-
ters were used to determine the construction of each scene,
providing a unified interface for scene generation. These
configuration parameters follow the tree in Fig. 1, and can
be adjusted to the user’s own definitions. Attributes include
type of object (countability), number of referred objects
(plurality), spawn locations and distance from the viewer.
Egocentric viewpoints of the viewer were generated by at-
taching the camera to the viewer’s head and directing the
camera to focus towards the center of the table. We varied
the avatars’ positions to generate multiple perspectives.

Images were rendered using Unity3D. Camera projec-
tions were used to check for visibility of the spawned ob-
jects and collision detectors were put in place to ensure
that objects did not intersect. Different objects (tray, tables)
were also sampled to be used as random spawn locations.

Mesh vertices were projected onto the camera’s 2D space
to extract bounding boxes for all objects, modeling a perfect
object detector. Unity’s Image Synthesis module was used
to generate object segmentation masks.

3.4. Phrase generation

DetermiNet uses the task context of “pass me
{determiner noun}”, e.g. “pass me an apple”, “pass me that
apple”. For simplicity, we omitted “pass me”. Hence, the
phrases are simple captions with only a determiner and its
noun phrase (Fig. 2), e.g. “an apple”, “this apple”, “some
grape juice”. Additionally, we follow this phrasing format
while keeping errors in grammatical structure minimal. For
example, “pass me all apples” is sufficient to capture the
task instead of “pass me all the apples”.

3.5. Evaluation metric for DetermiNet

Since the task is to evaluate bounding box predictions,
we used the detection evaluation metric used by COCO,



Figure 2. Examples from DetermiNet, with image, phrase, target
bounding boxes and segmentation masks shown.

specifically the average precision (AP) metric with IoU
thresholds ranging from 0.5 to 0.95.

The DetermiNet dataset contains scenarios where differ-
ent combinations of solutions can be correct. For instance,
for an image with three apples and a query specifying “an
apple”, there are three equally correct solutions. However,
a correct bounding box prediction should only contain one
bounding box instead of three. If all three bounding boxes
are predicted, the evaluation metric should evaluate the pre-
diction as one true positive and two false positives.

To account for multiple correct solutions during evalua-
tion, we developed a ground truth correction function that
compares the model’s predicted bounding boxes against all
the relevant bounding boxes that satisfy both the determiner
and noun conditions. The function chooses the ground truth
bounding box that has the highest IoU with the predicted
bounding box, and discards the rest of the relevant ground
truth bounding boxes based on the quantity specified by the
determiner.

The modified ground truth annotations are then used to
evaluate the predictions. This way, if a model predicts three
bounding boxes instead of one, the prediction with the high-
est IoU and prediction score will be treated as true positive,
and the other two predictions treated as false positive.

4. Experiments

In this section, we verify the challenge posed by the
dataset to refer or quantify objects of interest using five
models. Since the DetermiNet task is similar to the REC
task, models need to predict bounding boxes which were
evaluated using the Average Precision (AP) evaluation met-
ric. Before evaluation, the ground truth bounding box anno-
tations were modified to account for multiple combinations
of correct solutions.

4.1. Random selection model

The first model is a random bounding box selection
model (Fig. 3). This model has two components. The first is
a perfect object detector (see 3.3) that tags all objects with
class labels and their corresponding bounding boxes.

The second component sampled prediction scores be-
tween 0 to 1 from a uniform distribution and generated pos-
itive and negative masks based on a threshold of 0.5 which
was used to select bounding boxes as predictions.

In short, the perfect object detector generated a list of
bounding boxes and the attention mask randomly selected
a subset of bounding boxes as predictions without using in-
formation of either determiner or noun.

4.2. Neuro-Symbolic oracle model

The neuro-symbolic model (Fig. 3) was developed to iso-
late the main challenge of the dataset, which is to classify
objects of interest based on the concept specified by the de-
terminer. Hence, this model tackles the DetermiNet dataset
as a classification problem, similar to VQA models.

Like the random selection model, a perfect object detec-
tor was used to identify all the object bounding boxes, class
labels and volume of liquid within the object. These three
information were fed to a single feedforward layer with 128
units to embed the visual information.

A perfect text encoder converted the two-part caption
specifying the determiner and the noun into two one-hot
encoded vectors. The first one-hot vector of length 25 rep-
resented the determiner, and the second one-hot vector of
length 16 represented the noun. The two vectors were con-
catenated and fed to another feedforward layer with 128
units to embed textual information.

The output of the two embedding layers were concate-
nated and fed to two feedforward layers, each with 256
units, followed by a final classification layer with sigmoid
activation function.

A ground truth attention mask was generated by compar-
ing all the objects detected in the image against the ground
truth bounding boxes such that masking the list of object
bounding boxes detected by the perfect object detector will
provide the ground truth bounding boxes. The model was
trained to predict the ground truth attention mask using bi-
nary cross entropy for 30 epochs.

The model’s prediction scores from the classification
layer and bounding boxes extracted by the perfect object de-
tector were used for evaluation. The neuro-symbolic model
can be considered to be an oracle model, as it received
ground-truth information about all the objects in the image,
and it only needs to learn to predict the correct bounding
boxes given the determiner and noun.



Figure 3. Random and neuro-symbolic model architectures. Weights of fully connected (FC) layers were optimized by backpropagation.

4.3. SOTA deep learning models

To verify the full challenge posed by DetermiNet, we
fine-tuned three SOTA visual grounding models, OFA[39]
with ResNet-152 backbone, GLIP [42] and MDETR [16]
with ResNet-101 backbone for 5 epochs on our dataset.

OFA’s weights were pretrained on RefCOCO and VG
datasets, GLIP’s weights were pretrained on O365, GoldC,
CC3M and SBU datasets while MDETR’s weights were
pretrained on the RefCOCO, VG and Flickr datasets. Both
image and captions were passed as inputs to the SOTA mod-
els, and the bounding box predictions were obtained as out-
puts. The object class prediction was not relevant to our
DetermiNet task, so we set category ID to 1 for all predic-
tions. While GLIP and MDETR models returned multiple
bounding box predictions and scores, OFA is designed to
predict only one bounding box per image.

5. Benchmarking models on DetermiNet

After correcting the ground truth annotations to account
for multiple solutions, the random bounding box selection
model demonstrates the worst performance of 9.8% AP.
Even though the random model has the perfect object de-
tection module, randomly selecting different quantities of
different objects without considering the textual informa-
tion leads to poor performance. This can be treated as the
lower-bound performance for the DetermiNet dataset.

In contrast, the oracle demonstrates the highest perfor-
mance of 93.5% AP (Table 4) as it receives object class and
textual information while only needing to learn the deter-
miner schema. Since the oracle model is only tested on se-
mantics to provide a rough upper-bound for DetermiNet,
its performance should not be directly compared against
end-to-end models which learn both object detection and
determiner semantics, and whose learning performance is
difficult to disentangle. When the oracle uses MDETR ob-
ject detection outputs instead of perfect detection, overall
AP fell to 62.8%.

Table 4. Model performance after correcting ground truth annota-
tions. *OFA only predicts one bounding box.

Models AP@IoU=0.5:0.95
Random 9.8
Oracle 93.5
OFA [39] 20.6*
GLIP [42] 55.0
MDETR [16] 70.6

When comparing end-to-end finetuned models, OFA
performs the worst, as it is only able to predict one bound-
ing box, similar to the REC task condition, contribut-
ing to high false negatives. GLIP achieves 55.0% while
MDETR achieves the best performance of 70.6% AP (Ta-
ble 4). Although MDETR’s bounding box predictions are
impressive to identify the reference objects, the model does
not constrain its predictions according to the determiners
schema, incurring high false positive predictions. Con-
versely, MDETR performs well on uncountable quantifiers
and possessives (Fig. 4). This is likely because MDETR
gets the raw RGB image as input, allowing it to understand
and reason about volume levels within a cup or the presence
of the referred object on the tray.

Figure 4. MDETR suffers from high false positives as bounding
box predictions (blue) are not constrained (left) but shows learning
of uncountable quantifiers (middle) and possessives (right).

Refer to the Supplementary Material for the confusion
matrix broken down for each determiner and class, as well
as the performance when constraining each model’s predic-
tions to just the top-1 bounding box (similar to OFA’s con-
straint).



5.1. Embedding of determiners

To study how the dataset is represented in both an un-
trained and trained network, we extracted the neural activity
of the layer before the attention mask classifier. The neu-
ral activity was clustered using Linear Discriminent Analy-
sis, with the determiner labels as targets. Before training,
the neural representations corresponding to 25 determin-
ers were highly overlapped and the centroid coordinates for
each determiner class occupied the same space (Fig. 5, left).

As training progressed, the embedding of the 25 deter-
miners evolved into clusters (Fig. 5, middle). The dendro-
gram (Fig. 5, right) represents the euclidean distance be-
tween centroids after training. With training, the network
learns a representation that seemingly corresponds to the
organization of determiners in Figure 1.

Neural representations for “a” and “an” occupy the same
subspace as they obey the same articles determiner schema.
We can see similar clustering of determiner subclasses such
as “both” and “neither” which fall under quantifiers and
“this” and “that” which fall under demonstratives. How-
ever, some determiners such as “the” and “our” do not oc-
cupy the same subspaces as articles or possessives, suggest-
ing that the model struggles to disentangle them. Surpris-
ingly, unlike the oracle model, text encoders in established
vision-language models such as CLIP [31] and BLIP-2 [23]
do not demonstrate distinct organization of determiners (see
Supplementary Material).

5.2. Ablation study

To determine the importance of determiners and nouns
in the DetermiNet task, we conducted ablation studies using
oracle and MDETR models where the determiner, noun or
both determiner and noun were masked during evaluation.

Table 5. Ablation study with masked captions. Performance re-
ported AP@IoU=0.5:0.95

Ablation condition Oracle MDETR
Noun+ / Det+ 93.5 70.6
Noun+ / Det– 71.3 56.3
Noun– / Det+ 11.3 11.3
Noun– / Det– 9.8 0.2

Masking determiners while feeding in the noun is similar
to a query-based object detection task. The decrease in per-
formance for the oracle model was 22.2% while MDETR
suffered a decrease of 14.3%, suggesting that MDETR
learnt to predict bounding boxes using most of the deter-
miner concepts, though not as well as the oracle model.

When the determiner was given but the noun was
masked, AP dropped significantly since the object to be
identified was not known. Finally, when both determiner
and noun were omitted, the oracle performed similarly to

the lower bound random model while MDETR performed
much worse since it also had to perform object detection.

Nevertheless, SOTA models do learn some determiner
concepts, and lower performance can be attributed to errors
in both object detection and bounding box classification.

5.3. Dataset efficiency

Since 10,000 examples per determiner in the full dataset
is presumably way beyond what humans require to learn de-
terminers well, we trained the oracle and MDETR models
on randomly sampled subsets (N=6) of DetermiNet train-
ing samples to determine how much data is needed for the
models to learn the determiner schema.

Table 6. AP@IoU=0.5:0.95 with standard deviation attained after
training models on 10, 100, 1000 samples per determiner.

Samples 10 100 1000
Oracle 17.9±0.6 29.6±0.4 44.7±3.3
MDETR 2.8±1.0 33.5±1.2 55.0±0.8

Since the oracle has a perfect object detector and text en-
coder, the increase in oracle performance is attributed solely
to the learning of determiner schema. Despite the isolation
of training, the oracle model struggles to learn the concept
of determiners even with 1,000 examples per determiner.
This could be because the oracle model has 188,308 train-
able parameters and a large dataset is needed to optimize
the weights accordingly. Conversely, MDETR has 185 mil-
lion parameters but was pre-trained to perform object de-
tection. After fine-tuning MDETR with 1,000 examples
per determiner, its performance matches the ablation con-
dition where the model can achieve 56.3% without need-
ing to learn determiners (Table 5), suggesting that the faster
improvement is likely due to improved object detection in
DetermiNet, rather than learning about determiners. Never-
theless, DetermiNet follows a scaling law that is consistent
with other visual recognition tasks.

6. Transfer of learning to real images
We curated a dataset with 100 real world images and

captions using images from COCO [7]. The oracle model
achieved decent zero-shot performance on the real-image
samples (78.1%), demonstrating a neural network’s ability
to generalize to real images if object detection works well.

Although MDETR was pre-trained on RefCOCO, it
struggled to refer and quantify individual objects accord-
ing to the determiner schema (10.4%) since RefCOCO did
not account for such determiner concepts (Table 1) and in-
stead predicted single bounding boxes for a collection of ob-
jects (Fig. 6). Fine-tuning MDETR on the synthetic Deter-
miNet significantly increased performance to 19.5% as the
model learned to identify and quantify each object (Fig. 6,
top row), suggesting that the determiner concepts learned



Figure 5. Clustering 25 determiners represented in the last feature layer of the oracle model using LDA.

from the synthetic dataset transferred to real images to a
certain extent. However, MDETR still struggles with some
determiner concepts such as “half” (Fig. 6, bottom row).
The far lower MDETR performance could be due to poor
object detection, separate from learning the semantics of de-
terminers. The real-image test samples will be made avail-
able along with the synthetic DetermiNet.

Table 7. Zero-shot evaluation on real-image dataset
Models (Tasks pretrained on) AP@IoU=0.5:0.95
Oracle 78.1
MDETR (Pretrained) 10.4
MDETR (Finetuned on DetermiNet) 19.5

Figure 6. Ground truth, pretrained MDETR, MDETR fine-tuned
on DetermiNet and Oracle model predictions on 100 real images.

7. Current limitations
Since the dataset focuses on referencing and quantifica-

tion, we omitted the use of wh-determiners (e.g. “where”,
“what”), which are mainly used in question answering
tasks. Since we constrained our captions to fit the task con-
text of “pass me {determiner, noun}”, comparison deter-
miners such as “more” and “less” were left out for now, as
they require multiple sets of nouns. Furthermore, gender-
specific possessives such as “his” and “her” were omitted,

as gender recognition is not the focus of this work. Addi-
tionally, the composition of multiple determiners (e.g. “pass
me some of those apples) will be explored in future work.

Parameter-efficient finetuning, or adding the semantic
module of the oracle to a trained detector such as MDETR
can serve as an additional evaluation to disentangle the
learning performances of object detection and determiner
semantics in end-to-end models.

8. Conclusion
We present the DetermiNet dataset to determine if mod-

els can learn object referencing and quantification for all
four major determiner categories. The dataset accommo-
dates multiple combinations of possible solutions, as in a
natural language context. Since the dataset images and
ground truth annotations were synthetically generated, it al-
lows for rapid reconfiguration of parameters, scenes and ob-
ject classes to increase the challenge posed by the dataset.

Our experiments demonstrate that although state-of-the-
art visual grounding models are able to identify objects of
interest, they do not perform well on the overall task. While
they can learn the semantics of some determiners and trans-
fer the concept to real images, they require exponential
amounts of data to learn the determiner schema and strug-
gle to handle ambiguity when considering multiple combi-
nations of possible solutions.

In summary, DetermiNet highlights determiners as im-
portant and complex but neglected, and formulates a com-
mon task framework for all 4 determiners types. It shows
the current limitations of visual grounding models in learn-
ing determiner schemas in referencing and quantification.
Good oracle results on real images suggests the “determiner
logic module” could be used for captioning, VQA, etc.
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